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Abstract—This paper presents the goal-constraint method for
incorporating preferences in multiobjective optimization. The
preferences are provided in the form of a vector of goals, which
is familiar for decision makers and operations researchers. The
portion of the Pareto front to be generated is totally defined
by the vector of goals, regardless if such a vector is feasible or
not. Once defined, it is feasible to experiment on many objective
problems, because of the reduced cost of producing less points.
The experimental results show good convergence properties, and
the graphs illustrate the way the portion of front produced is
related to the vector of goals.

I. INTRODUCTION

The multiobjective optimization problem consists of find-
ing the decision vector x that optimizes (minimizes):

f(x) = [f1(x), f2(x), . . . , fm(x)]

where x = [x1, x2, . . . , xn] is the vector of n decision
variables and f is the vector of m objective functions. The
problem may or may not have constraints.

However, the concept of optimizing several functions si-
multaneously is not as simple as to find an optimum for each
function, because the functions usually are in conflict to each
other. Finding the optimum, then, can be interpreted as finding
a good trade-off between all the objectives of the problem.

The most common way to find good trade-offs is through
the concept of Pareto optimality. A point x∗ is Pareto optimal,
if does not exist any other point x that dominates it. That is
to say, x∗ is Pareto optimal if does not exist any other point
x that fulfills:

fi(x) ≤ fi(x
∗)

for all i ∈ {1, 2, . . . ,m}, and, for at least one i:

fi(x) < fi(x
∗)

After an optimization process has found several Pareto op-
timal points, the decision maker is the person who must choose
the final solution to be implemented. Additionally, the decision
maker can incorporate preferences before the optimization
method starts. This may help to reduce computational costs,
because producing the whole Pareto front is not necessary, and
only solutions that follow the preferences are relevant.

Recently, evolutionary computation methods have achieved
a great success on solving multiobjective optimization prob-
lems. Every year appear more approaches, each time more
efficient (requiring less objective function evaluations for ob-
taining a good approximation of the Pareto optimum).

At the same time, hybrid approaches of evolutionary tech-
niques and mathematical programming methods for multiob-
jective optimization are not very popular, probably due to the
fact that mathematical programming techniques are frequently
scalarizing functions, and thus require several executions of a
single-objective optimizer to obtain the Pareto set or a sample
of it. Conversely, most evolutionary multiobjective approaches
obtain a set of nondominated solutions (i.e., an approximation
of the Pareto set) in a single run.

Nevertheless, and despite their disadvantages, some ap-
proaches have shown that hybrid techniques can be a very
effective choice under certain conditions [1]. Those approaches
show that mathematical programming techniques tend to pro-
duce points of very high quality (i.e., tend to produce Pareto
optimal points, or very good approximations of them), even
when the problem may appear to be very difficult for most
elitist multiobjective evolutionary algorithms based on Pareto
ranking. This is maybe because in this case the search focuses
on a single point, instead of aiming to converge to a set of
them, and therefore, a better exploitation may take place.

In this work, we propose a hybrid of an ε-constraint-
like method and a single-objective evolutionary algorithm.
The modification to the ε-constraint is made to incorporate
preferences, and simultaneously reduce the extension of the
generated Pareto front.

The rest of the paper is organized as follows: Section II
motivates the incorporation of preferences in an evolutionary
algorithm; Section III introduces the goal-constraint approach
for incorporating preferences and setting the portion of the
Pareto front that will be generated, all through the use of a
vector of goals; Section IV describes a procedure for pop-
ulating the desired portion of the Pareto front after solving
the goal-constraint problems; in Section V the experimental
results are presented; finally in Section VI some conclusions
are found, as well as some ideas for future work.



f1

f2

z
goal

the vector of goals

Vertices obtained from

Pareto front

Fig. 1. Use of a vector of goals beyond the Pareto front

II. INCORPORATION OF PREFERENCES

Incorporating preferences of the decision maker to a
multiobjective optimization process is a common practice in
operations research [2]. It consist of expressing the preference
for some objectives over the others, or for some region of the
objective space, aiming to reduce the total number of solutions
representing different compromises, and thus helping to the
decision making process.

Evolutionary algorithms are frequently designed to obtain
a sample of the whole Pareto front, giving all the information
to the decision maker and leaving to him/her the decision of
which to implement (a posteriori methods) [3]. However, it
may be useful to express preferences a priori or interactively
to the optimization process, for example to reduce the com-
putational cost of generating many points on regions of little
interest.

III. THE GOAL-CONSTRAINT APPROACH

The definition of a vector of goals may appear quite
natural for a decision maker, because he/she provides only

one point zgoal = (zgoal1 , . . . , zgoalm ) (one value for each of
the m objectives), and expects values near of it. The entries
of the zgoal vector are frequently called aspiration levels [2]
or goals, and there are several methods based on them in the
operations research area (such as goal programming, or the
reference points models). For this reason, this approach may
result familiar to the decision maker.

Figures 1 and 2 show two cases of vectors of goals, one
of them beyond the true Pareto front, and one before it. The
first case represents an infeasible, unreachable solution, and the
second is a feasible solution that can be improved. Both cases
are possible if the decision maker has incomplete information
of the problem (so he/she does not know where exactly is the
Pareto front).

In both cases, an optimization per objective is performed,
using a modified version of the ε-constraint problem, whose
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Fig. 2. Use of a vector of goals before the Pareto front

values for the constraints are taken from the vector of goals
(for that reason, we call it goal-constraint):

minimize fi(x)

subject to fj(x) ≤ z
goal
j ∀j ∈ {1, . . . ,m}, j 6= i

This process is carried out for all i ∈ {1, . . . ,m}, with the
aim of obtaining the vertices of the region to be explored. The
solution of each goal-constraint problem is the nearest weakly

Pareto optimal solution less or equal to the set of goals z
goal
j

with j 6= i. If the solution of the problem is unique, it will be
Pareto optimal, with the same proximity to the goals. These
two characteristics can be proven the same way as the proofs
of Pareto optimality for the ε-constraint problem [2].

It is possible that any of these optimization processes
cannot find a feasible solution (depending on the shape of the
Pareto front, and the vector of goals chosen), but an infeasible
solution will work in most of the cases as an approximation
for the next steps. If there is no feasible solution for one
problem, it is possible to generate one by eliminating some
of the m− 1 constraints of the problem, but this may increase
the computational cost of the approach. The only advise for
this approach, is that the defined goals are not lower that the
corresponding entry of the ideal objective vector (in that case,
no feasible solution will be found, because there is no x that
fulfills the constraints of the problem).

It may be the case that those m solutions are enough for
the user or decision maker, and the process can stop here. If
he/she requires more points to make a decision, any alternative
dispersion technique can be used (as that found in [1]). There
are some recent proposals of continuation methods for gener-
ating points in the curve of the Pareto front given some starting
points [4]. Other options are methods that require ranges for
incorporation of preferences; in this case, once all the results
of the goal-constraint problems have been obtained, the best
and worst values for each objective are recorded, and these
values will define the ranges for subsequent optimizations (this
method is known as payoff table). Either the best or the worst



point should be very near to zgoal, depending if such a vector
of goals is before or beyond the true Pareto front.

For simplicity, we performed experiments with the ε-
constraint method (as detailed in the next section). The ε-
constraint method need intervals for varying the ε values for
each objective, and thus generate different Pareto points. Such
intervals are commonly obtained from the ideal and nadir
objective vectors. For its use with goal-constraint, the ranges
are defined by the vector of goals, so no nadir and ideal vectors
are needed.

We can only perform a few evaluations of the dispersion
technique, to obtain at least one intermediate point. This pro-
cess will produce several points at a reasonable computational
cost, even for problems of ten or more objectives.

A. The cultured differential evolution as single-objective opti-
mizer

For solving each goal-constraint problem, and possibly
some additional ε-constraint problems, a method for con-
strained single-objective optimization is needed. There are
multiple proposals in literature, and the user can adopt any
of them.

Perhaps the most important property of the selected method
is a fast convergence, in order to keep the total number of ob-
jective function evaluations low. Here, we followed a previous
work that coupled a cultured differential evolution with an ε-
constraint method, showing this is a viable alternative, mainly
for tackling challenging problems [1].

IV. OPTIONALLY GENERATING MORE POINTS WITH

ε-CONSTRAINT

As mentioned above, if the decision maker requires more
than the m solutions generated by the goal-constraint for-
mulations, an alternative is to solve some extra ε-constraint
problems. The main issue for ε-constraint formulations is that
intervals for the objectives are needed beforehand. This is not a
problem for us, because the intervals are defined for the vector
of goals and the goal-constraint points obtained.

Let us now assume that it is available as the procedure
cde(fl, ε, g), which performs the optimization process of the
ε-constraint method during e objective evaluations for the fl
objective, and using the values of ε for constraints. It returns
the best point found. The pseudo-code for obtaining extra
points is shown in Algorithm 1.

In Algorithm 1, the ε values are updated with a δ, which
depends on the number of points in the Pareto front desired by
the user (or decision maker). It is obtained as follows: δj =
ubj−lbj
pj−1

. This way, we aim that the final points are equally

spaced in their projection over the f2 to fm axes. e is an input
parameter of the algorithm, but it is very important, because
together with pj , defines the total number of objective function
evaluations required by the approach. The number of function
evaluations is e

∏m

j=2 pj .

Algorithm 1 shows f1 as the objective to be optimized,
and f2 to fm as the constraints. However, one can interchange
the roles of the objectives if the problem looks harder to solve
in the original setting. In the experiments shown in this work,

Algorithm 1 ε-Constraint with CDE. CDE procedure can be
replaced by any other evolutionary single-objective algorithm
with constraint handling

P = ∅
(lb,ub) = solve_goal − constraint(f)
εj=2,...,m = lbj + δj
while εm ≤ ubm do
x = cde(f1, ε, e)
if x is nondominated with respect to P then

P = P − {y ∈ P | x ≻ y}
P = P ∪ {x}

end if
ε2 = ε2 + δ2
for j = 2 to m− 1 do

if εj > ubm then
εj = lbj + δj
εj+1 = εj+1 + δj+1

end if
end for

end while

the original setting was always preserved, and f1 was always
taken as the objective to optimize, to allow a fair comparison.
But, as a suggestion for better results, if it is known which of
the objective functions is the most difficult to optimize, such
objective function should be chosen to be optimized, and the
rest should be adopted as constraints.

V. RESULTS

For this approach, it is very difficult to make a comparison
of results with another multiobjective approach, because even
when there are some approaches that incorporate preferences
of the decision maker [5], [6], [7], the resulting covered
region of the Pareto front will be different. Thus, we decided
to measure only convergence, adopting a unary performance
measure. We use the generational distance, GD [8], which
measures the differences from the obtained points to the
nearest points of the true Pareto front. As it measures distances,
a value closer to zero is better.

The GD measure has received some critics because it
only measures distance from the true Pareto front, and not
the dispersion or region covered. The inverted GD measure
somehow alleviates these issues, measuring the differences
from every point of a good sample of the true Pareto front to
the nearest obtained point. However, when only a portion of
the Pareto front is intentionally produced, the inverted GD will
always report bad results, whilst the original GD measure will
measure convergence, regardless of the portion of the Pareto
front generated.

A. Test problems

To make evident the possible advantages of our approach,
we looked within the current benchmarks for multiobjective
problems that are particularly difficult to solve for current
multiobjective evolutionary approaches. Recently, researchers
have proposed problem sets that contain very difficult problems
[9], [10]: this is, a state-of-the-art evolutionary approach (say,
NSGA-II) cannot converge to the true Pareto front within
100,000 objective function evaluations (a typical budget) or



TABLE I. VECTORS OF GOALS ADOPTED FOR THE EXPERIMENTS

Test Problem Number of objectives Vector of goals

WFG1 2 (0.47, 1.03)

WFG2 2 (1.08, 2.12)

WFG1 3 (0.23, 2.44, 4.91)

WFG2 3 (0.29, 0.79, 0.77)

WFG1 5 (1.48, 1.80, 1.90, 4.78, 7.03)

WFG2 5 (1.75, 0.58, 5.14, 0.91, 6.54)

WFG1 10 (1.97, 3.35, 0.40, 1.41, 8.35,

2.77, 2.80, 4.02, 14.67, 7.18)

WFG2 10 (1.50, 3.70, 5.90, 3.84, 9.84,

9.78, 1.33, 13.10, 17.44, 8.30)

even more. It is precisely in these “hard” problems where a
hybrid approach may appear advantageous, mainly when we
use a fast convergence single-objective evolutionary approach
for the hybridization.

We adopted a recent benchmark proposed by Huband et al.
[11]. This benchmark was constructed using a block-oriented
approach, where each block introduces a desired feature to the
problem. For example, there are blocks for making the problem
non-separable, deceptive, multimodal, etc. The shape of the
Pareto front is also controlled with blocks, and it is possible to
design linear, concave, convex, mixed or disconnected fronts.

In this benchmark we found very hard problems (WFG1
and WFG2), each of them with 24 decision variables. WFG1
is strongly biased toward small values of the first 4 variables
and WFG2 is non-separable and also has a disconnected Pareto
front.

We performed experiments on WFG1 and WFG2 with two
and three objectives, to show the results graphically. Then, in
order to show the potential of the technique, some experiments
were performed on the same test problems with five and ten
objectives.

B. Experimental setup

The vectors of goals provided were obtained randomly
between the ideal and nadir objective vectors. In Table I are
shown the vectors of goals adopted. The rest of the parameters
were adopted to obtain 20 points.

The parameters adopted for the two-objective problems
were: p = 5, e = 4, 500 for WFG1 and e = 1, 500 for
WFG2, with 10% of the population shared between opti-
mizations (this is to share information between optimizations,
since the intermediate problems are very similar). For the
cde procedure we used µ = 20 (population size), F = 0.7,
CR = 0.5 (strategy parameters). The maximum number of
function evaluations for the dispersion technique was set to
7, 500. With these parameters, the approach performed 30, 000
function evaluations for WFG1 and 15, 000 for WFG2.

The parameters adopted for the three-objective problems
were: p = 3, e = 3, 500 for WFG1 and e = 1, 500 for WFG2,
with 10% of the population shared between optimizations (this
10% is chosen at random). For the cde procedure we used
µ = 20, F = 0.7, CR = 0.5. The maximum number of
function evaluations for the dispersion technique was set to
8, 500. With these parameters, the approach performed 40, 000
function evaluations for WFG1 and 22, 000 for WFG2.

TABLE II. RESULTS OF THE GD MEASURE (A SMALLER VALUE IS

BETTER)

Test Problem Number of objectives GD measure

WFG1 2 0.0142

WFG2 2 0.0015

WFG1 3 0.0511

WFG2 3 0.0124

WFG1 5 0.4176

WFG2 5 0.2379

WFG1 10 1.2867

WFG2 10 0.6675

The parameters adopted for the five-objective problems
were: p = 2, e = 2, 000 for WFG1 and e = 750 for WFG2,
with 10% of the population shared between optimizations
(chosen at random). For the cde procedure we used µ = 20,
F = 0.7, CR = 0.5. The maximum number of function
evaluations for the dispersion technique was set to 8, 000. With
these parameters, the approach performed 40, 000 function
evaluations for WFG1 and 20, 000 for WFG2.

The parameters adopted for the ten-objective problems
were: p = 1, e = 40, 000 for WFG1 and e = 15, 000
for WFG2, with 10% of the population shared between op-
timizations (chosen at random). For the cde procedure we
used µ = 20, F = 0.7, CR = 0.5. The maximum number
of function evaluations for the dispersion technique was set
to 10, 000. With these parameters, the approach performed
50, 000 function evaluations for WFG1 and 25, 000 for WFG2.

C. Results

The results for the two-objective problems adopted are
shown in Figures 3 and 4, while the results for the three-
objective problems are shown in Figures 5 and 6.

The results of the application of the GD measure on all
the instances adopted are in Table II.

According to the GD measure, the approach decreases in
quality as we increase the number of objectives. This sort of
behavior is exhibited by most other evolutionary multiobjective
approaches as well, and is subject of current research. It is
often considered part of the “curse of dimensionality”.

Another source for the degradation of the quality is that, as
the number of objectives increases, the ranges for the higher
objectives also increase (for the WFG problems), as can be
seen from their expressions [11].

Regarding the different test problems, the technique obtain
better results for WFG2, for all the number of objectives
adopted here. These results are consistent with other works
involving WFG1, which has shown to be a very difficult
problem.

The overall results are very good, lower than 0.1 for
three objectives, lower than 0.5 for five objectives, and lower
than 1.5 for ten objectives. When comparing these values is
important to keep in mind the increase of the ranges of higher
objectives for WFG problems.

VI. CONCLUSIONS AND FUTURE WORK

Hybrid evolutionary and mathematical programming meth-
ods for multiobjective optimization are typically considered
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0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2

Points produced
Vector of goals

True Pareto front

Fig. 4. Results form the two-objective WFG2

computationally expensive, but the cost can be reduced if pref-
erences are incorporated. Such reduction takes place because
the search is focused on a small region of the Pareto front, and
fewer points are still acceptable.

The approach proposed here is based on ε-constraint, and
this technique requires initial intervals for performing the
single-objective optimizations. This problem is alleviated by
using the same information of the vector of goals provided
(the user preferences).

The incorporation of preferences with the goal-constraint
method proposed here, has two main advantages compared

with an ε-constraint based approach without preferences:

• To reduce the computational cost related to obtaining
the ideal and nadir objective vectors for setting the
intervals. The ideal and nadir objective vectors are
not necessary when information about the region of
desired solutions is available, because individual opti-
mizations are carried out only inside that region.

• To alleviate the issues of the algorithm when solving
many-objective problems. Because the number of de-
sired solutions as outcome may be smaller (because
they are closer to the desired values), is not necessary
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to perform an aggressive sub-division of the objec-
tive space. This advantage allow us to experiment in
problems with up to ten objectives.

The obtained results are good regarding the GD measure
of convergence. No binary metrics were applied because com-
parisons with other algorithms at this stage are very difficult,
due to the variety of techniques for incorporating preference
information.

Comparisons are only possible if the aim is reaching the
same portion of the Pareto front. In this sense, the use of
the goal-constraint approach for defining such portion can be
adopted for other approaches, allowing fair comparisons.

As part of the future work is the efficient generation
of intermediate solutions, once the extrema are determined.

Some recent approaches suggest the use of interpolation-based
operators for this task, with very good results.

Finally, the vectors of goals were just generated at random
in this work. Setting such vectors can be done using some
methodology, maybe dependent on the problem.
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