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 Abstract—Much of the computational complexity involved in 
employing evolutionary algorithms as optimization tools is due 
to the fitness function evaluation that may either not exist or be 
computationally very expensive. With the approach proposed 
in this paper, the expensive fitness evaluation step is replaced 
by an approximate model. An intelligent guided technique via 
an adaptive fuzzy similarity analysis for fitness granulation is 
used to decide on the use of expensive function evaluations and 
dynamically adapt the predicted model. In order to avoid 
tuning parameters in this approach, a fuzzy supervisor known 
as auto-tuning algorithm is employed with three inputs. The 
proposed method is then applied to 3 traditional optimization 
benchmarks with 4 different dimensions each. The effect of the 
number of granules on the convergence rate is also studied. 
When comparing the proposed approach with the standard 
application of evolutionary algorithms, the statistical analysis 
confirms that the proposed approach demonstrates an ability to 
reduce the computational complexity of the design problem 
without sacrificing performance. Furthermore, the auto-tuning 
of the fuzzy supervisory removes the need for exact parameter 
determination. 

I. INTRODUCTION 
volution-based algorithms have long been accepted as 
promising global optimizers and have shown to be very 
powerful in solving many real-world and complex 

optimization tasks such as design optimization, see e.g., [1]. 
Unfortunately, repeated fitness function evaluation for such 
complex problems is often the most prohibitive and limiting 
segment of artificial evolutionary algorithms.  Finding 
optimal solution for complex high dimensional, multimodal 
problems often requires very expensive fitness function 
evaluations. In real world problems such as structural 
optimization problems, one single function evaluation may 
require several hours or even several days of complete 
simulation. Typical optimization methods can not deal with 
such a type of problem. In this case, it may be necessary to 
forgo an exact evaluation and use an approximated fitness 
that is computationally efficient. It is apparent that an 
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amalgamation of approximate models may be one of the 
most promising approaches to convincingly use EAs to 
solve complex real life problems, especially where: (i) 
fitness computation time of a single solution is extremely 
high, (ii) precise models for fitness computation are missing, 
(iii) the fitness function is uncertain or noisy as a result of 
simulation/measurement errors or changes in the design 
variables and/or the environmental parameters, etc. To 
alleviate this problem, a variety of techniques for 
constructing the approximation models⎯often also referred 
to as metamodels or surrogates⎯for  computationally 
expensive optimization problems have been investigated [2, 
3].  

A popular subclass of fitness function approximation 
methods is fitness inheritance where fitness is simply 
inherited [4]. A similar approach named “Fast Evolutionary 
Strategy” (FES) has also been suggested in [9] for fitness 
approximation where the fitness of a child is the weighted 
sum of its parents. In [10], it has been shown that this simple 
strategy can fail in sufficiently complex and multi- objective 
problems. 

Other common approaches based on learning and 
interpolation from known fitness values of a small 
population, (e.g. low-order polynomials and the least square 
estimations [5], artificial neural networks (ANN), including 
multi-layer perceptrons (MLP) [6], radial basis functions 
(RBF) [7], support vector machines (SVM) [8, 15] 
regression models [11],  etc.) have also been employed. 

 Because of the limited number of training samples and 
high dimensionality encountered in engineering design 
optimization, constructing a globally valid approximate 
model remains to be difficult. Evolutionary algorithms using 
such approximate fitness functions may converge to local 
optima. Therefore, it can be beneficial to selectively use the 
original fitness function together with the approximate 
model [13]. For example, Khorsand and Akbarzadeh [14] 
recently investigated structural optimization by a hybrid of 
neural network and finite element analysis, where expensive 
function evaluation is partially replaced by its approximate 
model. Also, Jin and Sendhoff [17] applied k-nearest-
neighbour method to group the individuals of a population 
into a number of clusters. For each cluster, only the 
individual that is closest to the cluster center will be 
evaluated using the expensive original fitness function. 

Fuzzy granulation of information is a vehicle for handling 
information, as well as a lack of it (uncertainty), at the level 
of coarseness that can still solve problems appropriately and 
efficiently. Zadeh proposed fuzzy information granulation in 
1977 as a technique by which a class of points (objects) are 
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partitioned into granules, with a granule being a clump of 
objects drawn together by indistinguishability, similarity, or 
functionality. The fuzziness of granules and their attributes 
is characteristic of the ways by which human concept and 
reasoning is formed, organized and manipulated. The 
concept of a granule is more general than that of a cluster, 
potentially giving rise to various conceptual structures in 
various fields of science as well as mathematics. 

In this paper, the concept of fitness granulation is applied 
to exploit the natural tolerance of evolutionary algorithms in 
fitness function computations. Nature’s “survival of the 
fittest” is not about exact measures of fitness; rather it is 
about rankings among competing peers. By exploiting this 
natural tolerance for imprecision, optimization performance 
can be preserved by computing fitness only selectively and 
only to preserve this ranking among individuals in a given 
population.  Also, fitness is not interpolated or estimated; 
rather, the similarity and indistinguishability among real 
solutions is exploited. The basic ideas behind the proposed 
framework are to:  

• Avoid initial training. 
• Use guided approximation to speed up the search 

process.  
• Exploit the design variable space by means of Fuzzy 

Similarity Analysis (FSA) as a type of fuzzy 
approximation model to avoid premature 
convergence. 

• Gradually set up an independent model of initial 
training data to compensate the Lack of sufficient 
training data and to reach a model with sufficient 
approximation accuracy.  

• Dynamic updating the approximate model with or 
without negligible overhead cost. 

• Avoid the use of models in unrepresented design 
variable regions in the training set. 

In the proposed algorithm, as explained in detail by the 
authors in [12, 16], an adaptive pool of solutions (fuzzy 
granules) with an exactly computed fitness function is 
maintained. If a new individual is sufficiently similar to a 
known fuzzy granule, then that granule’s fitness is used 
instead as a crude estimate. Otherwise, that individual is 
added to the pool as a new fuzzy granule. In this fashion, 
regardless of the competition’s outcome, fitness of the new 
individual is always a physically realizable one, even if it is 
a “crude” estimate and not an exact measurement. The pool 
size as well as each granule’s radius of influence is adaptive 
and will grow/shrink depending on the utility of each 
granule and the overall population fitness. To encourage 
fewer function evaluations, each granule’s radius of 
influence is initially large and is gradually shrunk in later 
stages of evolution. This encourages more exact fitness 
evaluations when competition is fierce among more similar 
and converging solutions. Furthermore, to prevent the pool 
from growing too large, granules that are not used are 
gradually eliminated. This fuzzy granulation scheme is 
applied here as a type of fuzzy approximation model to 
solve 3 traditional optimization benchmarks with 4 different 
dimensions each.  

The paper is organized as follows: Section 2 presents a 
brief overview of the proposed method. For future details, of 
the present approach, readers are referred to [16] where the 
proposed method is described in more detail and also 
provides an example. In Section 3, an auto-tuning strategy 
for determining the width of the membership functions 
(MFs) is presented; which removes the need for exact 
parameter determination, without obvious influence on 
convergence speed. Some supporting simulation results and 
discussion thereof are presented in Section 4. Finally, some 
conclusions are drawn in Section 5. 

II. THE AFFG FRAMEWORK 
The AFFG framework [Figure 1] includes a global model 

of genetic algorithm (GA), hybridized with fuzzy 
granulation (FG) tool. Expensive fitness evaluation of 
individuals as required in traditional evolutionary algorithm 
is partially replaced by an approximation model. Explicit 
control strategies are used for evolution control, leading to 
considerable speedup without compromising heavily on 
solution accuracy.  

While approximation is not a new idea in accelerating 
iterative optimisation process, AFFG focuses on controlled 
speedup to avoid detrimental effects of approximation. The 
following section presents the main algorithmic structure of 
AFFG. 

A. The Main Idea 
The proposed adaptive fuzzy fitness granulation aims to 

minimize the number of exact fitness function evaluations 
by creating a pool of solutions (fuzzy granules) by which an 
approximate solution may be sufficiently applied to proceed 
with the evolution. The algorithm uses Fuzzy Similarity 
Analysis (FSA) to produce and update an adaptive 
competitive pool of dissimilar solutions/granules. When a 
new solution is introduced to this pool, granules compete by 
a measure of similarity to win the new solution and thereby 
to prolong their lives in the pool. In turn, the new individual 
simply assumes fitness of the winning (most similar) 
individual in this pool. If none of the granules are 
sufficiently similar to the new individual, i.e. their similarity 
is below a certain threshold, the new individual is instead 
added to the pool after its fitness is evaluated exactly by the 
known fitness function. Finally, granules that cannot win 
new individuals are gradually eliminated in order to avoid a 
continuously enlarging pool. The proposed algorithm is 
shown in Figure 1.  

B. Basic Algorithm Structure 
Step One: Create a random parent 
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Step Two: Set , where 
 

and is a set of fuzzy granules that is initially empty, i.e. 
, where  is an m-dimensional vector of centers, 
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Step Four: The membership function  describes a 

Gaussian similarity neighborhood for each parameter k as 
follows,  
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for  where l is the number of fuzzy 
granules. 
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Remark: kσ  is a distance measurement parameter that 
controls the degree of similarity between two individuals. In 
[12], kσ  is defined based on equation (2). Based on this 
definition, the granules shrink or enlarge in reverse 
proportion to their fitness as below.  

( )( )β
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kCfk
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Where 0>β  is an emphasis operator and γ is a 
proportionality constant. The problem arising here is how to 
determine β  and γ as design parameters. The fact is that 
these two parameters are problem dependent and it is 
necessary to perform some trials to adjust these parameters. 
These trials are based on a simple rule: how much do we 
want to accelerate the optimization procedure? High speed 
needs to have enlargement in the granule spread and, in 
consequence, it produces less accuracy in the fitness 
approximation and vice versa. To overcome this drawback, a 
fuzzy controller with three inputs is introduced in Section 
III. 
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Step Six: Fitness of  is either calculated by exact 

fitness function computing or estimated by associating it to 
one of the granules in the pool if there is a granule in the 
pool with higher similarity to  than a predefined 

threshold, as follows.  
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is a proportionality constant. Threshold i  increases as the 
best individual’s fitness in generation  increases. Hence, as 
the population matures and reaches higher fitness values, the 
algorithm becomes more selective and uses exact fitness 
calculations more often. Therefore, with this technique we 
can utilize the previous computational efforts during 
previous generations. Alternatively, if 
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 is chosen as a newly created granule.  i
jX

Step Seven: If the population size is not completed, 
repeat Steps Five to Seven. 

Step Eight: Select parents using suitable selection 
operator and apply genetic operators, namely recombination 
and mutation, to create the new generation. 

Step Nine: When termination/evolution control criteria 
are not met, then update kσ  using “Equation 2” and repeat 
Steps Five to Nine.  

C. How to Control the Length of Granule Pool? 
As the evolutionary algorithm proceeds, it is inevitable 

that new granules are increasingly generated and added to 
the pool. Depending on complexity of the problem, the size 
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Figure 1.   The architecture of the proposed algorithm 
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Condition 1: Solution is similar to one of granules. 
Condition 2: Solution is not similar to each of granules. 
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Fig. 2   Flowchart of the Purposed Fuzzy Controller  

AFFG 

Structural Design 
Problem 

NDV 
MRDV 
PCG 

kσ

of this pool can become excessive and become a 
computational burden itself. To prevent such unnecessary 
computational effort, a “forgetting factor” is introduced in 
order to appropriately decrease the size of the pool. In other 
words, it is better to remove granules that do not win new 
individuals, thereby producing a bias against individuals that 
have low fitness and were likely produced by a failed 
mutation attempt. Hence,  is initially set at N and 
subsequently updated as below, 
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Where M is the life reward of the granule and K is the 
index of the winning granule for each individual in 
generation i. At each table update, only  granules with 

the highest  index are kept, and the others are discarded. 
In [12] an example is provided to illustrate the competitive 
granule pool update law.  
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III. HOW TO DETERMINE THE WIDTH OF THE MEMBERSHIP 
FUNCTIONS 

As noted in [12], it is critically important to have accurate 
estimation of the fitness function of the individuals in the 
last generations and by the proposed method, this can be 
accomplished by controlling the width of the produced MFs. 
At the early steps of evolution, by choosing the Width of the 
Membership Functions (WMFs) relatively large, the 
algorithm accepts individuals with less degree of similarity 
as similar individuals. Therefore, fitness is computed more 
often by estimation/association to the granules. As the 
algorithm matures and reaches higher fitness valuations 
while also converging more, the width decreases and the 
similarity between individuals must be increased to be 
accepted as similar individuals. This prompts higher 
selectivity for granule associability and higher threshold for 
estimation. In other words, in the last generations, the degree 
of similarity between two individuals must be larger than the 
first generations to be accepted as similar individuals. This 
procedure ensures a fast convergence rate because of fast 
computation in the first steps and accurate estimation of 
fitness function in the last generations.  

In [12], the widths of the produced MFs are determined 
using equation 2. Based on this equation, the combined 
effect of granule enlargement/shrinkage is in accordance to 
the granule fitness and it needs to adjust 2 parameters, 
namely β  andγ . These parameters are problem dependent 
and it seems critical to set up a procedure in order to avoid 
this difficulty. 

To achieve this desideratum, a fuzzy supervisor with three 
inputs has been employed. During AFFA search, the fuzzy 
logic controller observes the Number of Design Variables 
(NDV), Maximum Range of Design Variables (MRDV) and 
percentage of completed trials and specifies the WMFs. The 
first input is NDV. Range of input variables (RIV) is the 
second input; large NDV and MRDV needs big width in 

is the 3rd input, and is a number in the range [0, 1], where 1 
signifies exhaustion of all allowed trials, and, consequently, 
a maturity of the search given a fixed amount of resources. 
The combined effect of granule enlargement/shrinkage in 
accordance to the PCG is to have fast computation in the 
first steps and accurate estimation of fitness function in the 
last generations.  

The architectur

TABLE I  
Fuzzy Rules of the First Controller 

  NDV 
  Zero Small   Big 

 Zero 0 0.125 0.25

MRDV Small 0.375 0.5 0.625

Big 0 75 0 875 1

MFs and vice versa. Percent Completed Generations (PCG) 

e for adaptive fuzzy control of the WMFs 
ap

sed on 
th

pears in Figure 2. Gaussian MFs are used for specification 
of the knowledge base of the fuzzy logic controller.  

The knowledge base for control of the WMFs ba
e above architecture has a large number of rules and the 

extraction of these rules is very difficult. Consequently the 
new architecture based on figure 3 is proposed in which the 
controller is separated in two controllers to diminish the 
complexity of rules. The first controller has two inputs (with 
three MFs in each, Zero(0, 0.3), Small(0.5, 0.3), Big(1.0, 
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Fig. 3   Modified Flowchart of the Purposed Fuzzy Controller 



 
 

 

0.3), the first number is the center and the second one is the 
spread) and the second controller has only one input which 
looks like a gain. The knowledge-base for the first 
controllers is shown in Table 1. The Gaussian MFs with 
equal width in each (0.3) are used for output. The second 
controller has just one Gaussian MF in which 0 and 1.25 are 
its center and spread respectively. The fuzzy controller 
which uses singleton fuzzifier, product inference engine and 
center average defuzzifier adjusts the  after each 
generation.  

kσ

IV. EMPIRICAL RESULTS 
To illustrate the efficacy of the proposed granulation 

techniques, we have chosen a set of 3 traditional 
optimization benchmarks (Table 2) namely: Griewank, 
Rastrigin and Ackley. These benchmark functions are 
scalable and are commonly used to assess the performance 
of optimization algorithms. For the first and the second one, 
the global minimum is  at , and 

Ackley has a global minimum of   at , 
for comparison purposes, four sets of input dimensions are 
considered; namely n = 5, 10, 20, 30. 

0)( =xf 0}{ =n
ix

0)( =xf 1}{ =n
ix

The empirical study consisted in comparing the GA 
performance, as a function optimizer, AFFG (the parameters 
are used as Table III) and the proposed granulation 
techniques with fuzzy supervision (AFFG-FS). 

Since the GA was used as a function optimizer, we chose 
roulette wheel with elitism as the selection method, in order 
to keep track of the best solution found. 

The GA was implemented with 1-point crossover. The 
population size was set to 20 with the elite size of 2. The

mutation and crossover rate used was 0.01 and 1.0, 
respectively. Ten runs of each experiment were executed.  

A comparison was made with respect to the “Fast 
Evolutionary Strategy” (FES) in which a fitness and 
associated reliability values are assigned to each new 
individual. The fitness is truly evaluated if the reliability 
value is below a certain threshold. The reliability value 
varies between 0 and 1 and depends on two factors: first is 
the reliability of parents, and second is how close parents 
and children are in the solution space. Three different levels 
for T namely 0.5, 0.7, 0.9 are being used here as proposed in 
[9].  

The report is given for the 5-D (dimension), 10-D, 20-D 
and 30-D scenarios. For AFFG, and AFFG-FS the number 
of individuals in granule pool is varied between 20, 20, 40 
and 80 respectively. The reported results were obtained by 
achieving the same level of fitness evaluation for both the 
canonical GA and the proposed methods namely 500 for 5-
D, 1000 for 10-D, 2000 for 20-D and 3000 for 3-D.  

The average convergence trends of the standard GA, 
AFFG, AFFG-FG and FEA are summarized in Figures 4-6. 
All results presented were averaged over 10 runs. As shown 
in the Figures, the search performance of the AFFG and 
AFFG-FS are superior to the standard GA even with a small 
number of individuals in the granule pool. The Figures show 
that fitness inheritance has comparable performance when 
the number of dimension is small, but its performance 
deteriorates as the problem complexity increases.     

We also studied the effect of varying the number of 
granules  on the convergence behavior of AFFG and 
AFFG-FS. Comparison can be made by the results obtained 
in Figure 7. It can be shown that AFFG and AFFG-FS are 
not significantly sensitive to . However, further increase 

of , slows down the rate of convergence duo to the 
imposed computational complexity.   
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V. CONCLUDING REMARKS 
An intelligent guided technique via an adaptive fuzzy 

similarity analysis for fitness granulation is used to decide 
on the use of expensive function evaluation and dynamically 
adapt the predicted model. A fuzzy supervisor as auto-
tuning algorithm is introduced in order to avoid tuning of 
parameters used in this approach.  

TABLE II 
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TABLE III  
Parameters used for AFFG 

Function β γ 

Griewangk 0.00012 190 
Rastrigin 0.004 0.15 

Akely 0.02 0.25 

A comparison is provided between FES and the proposed 
approach using 3 traditional optimization benchmarks with 4 
different dimensions in each. Numerical results showed that 
the proposed technique is capable of optimising functions of 
varied complexity efficiently. Furthermore in comparison 
with our previous work, it can be shown that AFFG and 
AFFG-FS are not significantly sensitive to , and a small 

 can still produce good results. Moreover, the auto-
tuning of fuzzy supervisor removes the need for exact 
parameter determination without obvious influence on 
convergence speed.  
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