
Multi-Objective Particle Swarm Optimizers:

An Experimental Comparison

Juan J. Durillo1, José Garćıa-Nieto1, Antonio J. Nebro1

Carlos A. Coello Coello2⋆, Francisco Luna1, and Enrique Alba1

1 Department of Computer Science, University of Málaga (Spain)
{durillo, jnieto,antonio,flv,eat}@lcc.uma.es

2 Department of Computer Science, CINVESTAV-IPN, Mexico
ccoello@cs.cinvestav.mx

Abstract. Particle Swarm Optimization (PSO) has received increasing
attention in the optimization research community since its first appear-
ance in the mid-1990s. Regarding multi-objective optimization, a consid-
erable number of algorithms based on Multi-Objective Particle Swarm
Optimizers (MOPSOs) can be found in the specialized literature. Un-
fortunately, no experimental comparisons have been made in order to
clarify which MOPSO version shows the best performance. In this pa-
per, we use a benchmark composed of three well-known problem families
(ZDT, DTLZ, and WFG) with the aim of analyzing the search capa-
bilities of six representative state-of-the-art MOPSOs, namely, NSPSO,
SigmaMOPSO, OMOPSO, AMOPSO, MOPSOpd, and CLMOPSO. We
additionally propose a new MOPSO algorithm, called SMPSO, charac-
terized by including a velocity constraint mechanism, obtaining promis-
ing results where the rest perform inadequately.

Key words: Particle Swarm Optimization, Multi-Objective Optimiza-
tion, Comparative Study

1 Introduction

The relative simplicity and competitive performance of the Particle Swam Op-
timization (PSO) [11] algorithm as a single-objective optimizer have favored
the use of this bio-inspired technique when dealing with many real-word opti-
mization problems [17]. A considerable number of these optimization problems
require the optimization of more than one objective at the same time which
are in conflict with respect to each other. These properties, along with the fact
that PSO is a population-based metaheuristic, have made it a natural candi-
date to be extended for multi-objective optimization. Since the first proposed
Multi-Objective Particle Swarm Optimizer (MOPSO) developed by Moore and
Chapman in 1999 [15], more than thirty different MOPSOs have been reported
in the specialized literature. Reyes and Coello [17] carried out a survey of the

⋆ The fourth author is also affiliated to the UMI 1375 CNRS.

2 Authors Suppressed Due to Excessive Length

existing MOPSOs, providing a complete taxonomy of such algorithms. In that
work, the authors considered as the main features of all existing MOPSOs the fol-
lowing ones: the existence of an external archive of non-dominated solutions, the
selection strategy of non-dominated solutions as leaders for guiding the swarm,
the neighborhood topology, and the existence or not of a mutation operator.

In this work, we are interested in analyzing six representative state-of-the-
art MOPSOs in order to provide hints about their search capabilities. Five of
them were selected from Reyes and Coello’s survey, namely: NSPSO [14], Sig-
maMOPSO [16], OMOPSO [18], AMOPSO [19], and MOPSOpd [1]. An ap-
proach not covered in the survey is also compared: MOCLPSO [9].

With the aim of assessing the performance of these algorithms, we have
used three benchmarks of multi-objective functions covering a broad range of
problems with different features (concave, convex, disconnected, deceptive, etc.).
These benchmarks include the test suites Zitzler-Deb-Thiele (ZDT) [20], the
Deb-Thiele-Laumanns-Zitzler (DTLZ) problem family [5], and the Walking-Fish-
Group (WFG) test problems [10]. The experimental methodology we have fol-
lowed consists of computing a pre-fixed number of function evaluations and then
comparing the obtained results by considering three different quality indicators:
additive unary epsilon [13], spread [4], and hypervolume [21]. The results of our
study reveal that many MOPSOs have difficulties when facing some multi frontal
problems. We analyze this issue and propose a new algorithm, called SMPSO,
which incorporates a velocity constraint mechanism. We find that SMPSO shows
a promising behavior on those problems where the other algorithms fail.

The remainder of this paper is organized as follows. Section 2 includes basic
background about PSO and MOPSO algorithms. In Section 3, we briefly review
the studied approaches focusing on their main features. Section 4 is devoted
to the experimentation, including the parameter settings and the methodology
adopted in the statistical tests. In Section 5, we analyze the obtained results
regarding the three quality indicators mentioned before. The results are discussed
in Section 6, where a new MOPSO based on a constraint velocity mechanism is
introduced. Finally, Section 7 contains the conclusions and some possible paths
for future work.

2 PSO Background

PSO is a population-based metaheuristic inspired on the social behavior of birds
within a flock. In a PSO algorithm each potential solution to the problem is
called a particle and the population of solutions is called a swarm. The way in
which PSO updates the particle xi at the generation t is through the formula:

xi(t) = xi(t − 1) + vi(t) (1)

where the factor vi(t) is known as velocity and it is given by

vi(t) = w ∗ vi(t − 1) + C1 ∗ r1 ∗ (xpbesti
− xi) + C2 ∗ r2 ∗ (xgbesti

− xi) (2)

Multi-Objective Particle Swarm Optimizers: An Experimental Comparison 3

Algorithm 1 Pseudocode of a general PSO algorithm.
1: initializeSwarm()
2: locateLeader()
3: generation = 0
4: while generation < maxGenerations do

5: for each particle do

6: updatePosition() // flight (Formulas 1 and 2)
7: evaluation()
8: updatePbest()
9: end for

10: updateLeader()
11: generation ++
12: end while

In this formula, xpbesti
is the best solution that xi has viewed, xgbesti

is the
best particle (also known as the leader) that the entire swarm has viewed, w is
the inertia weight of the particle and controls the trade-off between global and
local experience, r1 and r2 are two uniformly distributed random numbers in
the range [0, 1], and C1 and C2 are specific parameters which control the effect
of the personal and global best particles.

Algorithm 1 describes the pseudo-code of a general single-objective PSO.
The algorithm starts by initializing the swarm (Line 1), which includes both the
positions and velocities of the particles. The corresponding pbest of each particle
is initialized, as well as the leader (Line 2). Then, during a maximum number
of iterations, each particle flies through the search space updating its position
(Line 6), it is evaluated (Line 7), and its pbest is also calculated (Lines 6-8).
At the end of each iteration, the leader is updated. As commented before, the
leader can be the gbest particle in the swarm. However, it can be a different
particle depending on the social structure of the swarm (i.e., the topology of the
neighborhood of each particle) [12].

To apply a PSO algorithm in multi-objective optimization the previous scheme
has to be modified to cope with the fact that the solution of a problem with mul-
tiple objectives is not a single one but a set of non-dominated solutions. Issues
that have to be considered are [17]:

1. How to select the set of particles to be used as leaders?
2. How to retain the non-dominated solutions found during the search?
3. How to maintain diversity in the swarm in order to avoid convergence to a

single solution?

The pseudo-code of a general MOPSO is included in Algorithm 2. After
initializing the swarm (Line 1), the typical approach is to use an external archive
to store the leaders, which are taken from the non-dominated particles in the
swarm. After initializating the leaders archive (Line 2), some quality measure
has to be calculated (Line 3) for all the leaders to select usually one leader for
each particle of the swarm. In the main loop of the algorithm, the flight of each
particle is performed after a leader has been selected (Lines 7-8) and, optionally,
a mutation or turbulence operator can be applied (Line 9); then, the particle
is evaluated and its corresponding pbest is updated (Lines 10-11). After each

4 Authors Suppressed Due to Excessive Length

Algorithm 2 Pseudocode of a general MOPSO algorithm.
1: initializeSwarm()
2: initializeLeadersArchive()
3: determineLeadersQuality()
4: generation = 0
5: while generation < maxGenerations do

6: for each particle do

7: selectLeader()
8: updatePosition() // flight (Formulas. 1 and 2)
9: mutation()
10: evaluation()
11: updatePbest()
12: end for

13: updateLeadersArchive()
14: determineLeadersQuality()
15: generation ++
16: end while

17: returnArchive()

iteration, the set of leaders is updated and the quality measure is calculated
again (Lines 13-14). After the termination condition, the archive is returned as
the result of the search. For further details about the operations contained in
the MOPSO pseudocode, please refer to [17].

3 Studied Approaches

The studied approaches we have considered in this work can be classified as
Pareto-based MOPSOs [17]. The basic idea, commonly found in all these algo-
rithms, is to select as leaders the particles that are non-dominated with respect
to the swarm. However, this leader selection scheme can be slightly different
depending on the additional information each algorithm includes on its own
mechanism (e.g., information provided by a density estimator). We summarize
next the main features of the considered MOPSOs:

– Non-dominated Sorting PSO: NSPSO [14] incorporates the main mech-
anisms of NSGA-II [4] to a PSO algorithm. In this approach, once a particle
has updated its position, instead of comparing the new position only against
the pbest position of the particle, all the pbest positions of the swarm and
all the new positions recently obtained are combined in just one set (given
a total of 2N solutions, where N is the size of the swarm). Then, NSPSO
selects the best solutions among them to conform the next swarm (by means
of a non-dominated sorting). This approach also selects the leaders randomly
from the leaders set (stored in an external archive) among the best of them,
based on two different mechanisms: a niche count and a nearest neighbor
density estimator. This approach uses a mutation operator that is applied
at each iteration step only to the particle with the smallest density estimator
value.

– SigmaMOPSO: In SigmaMOPSO [16], a sigma value is assigned to each
particle of the swarm and of an external archive. Then, a given particle of
the swarm selects as its leader to the particle of the external archive with the

Multi-Objective Particle Swarm Optimizers: An Experimental Comparison 5

closest sigma value. The use of the sigma values makes the selection pressure
of PSO even higher, which may cause premature convergence in some cases.
To avoid this, a turbulence operator is used, which is applied on the decision
variable space.

– Optimized MOPSO: The main features of OMOPSO [18] include the use
of the crowding distance of NSGA-II to filter out leader solutions and the
combination of two mutation operators to accelerate the convergence of the
swarm. The original OMOPSO algorithm makes use of the concept of ǫ-
dominance to limit the number of solutions produced by the algorithm. We
consider here a variant discarding the use of ǫ-dominance, being the leaders
archive the result of the execution of the technique.

– Another MOPSO: AMOPSO [19] uses the concept of Pareto dominance
to determine the flight direction of a particle. The authors adopt clustering
techniques to divide the population of particles into several swarms. This
aims at providing a better distribution of solutions in the decision variable
space. Each sub-swarm has its own set of leaders (non-dominated particles).
In each sub-swarm, a PSO algorithm is executed (leaders are randomly cho-
sen) and, at some point, the different sub-swarms exchange information: the
leaders of each swarm are migrated to a different swarm in order to variate
the selection pressure. Also, this approach does not use an external archive
since elitism in this case is an emergent process derived from the migration
of leaders.

– Pareto Dominance MOPSO: in MOPSOpd [1], the authors propose
methods based exclusively on Pareto dominance for selecting leaders from
a non-dominated external archive. Three different selection techniques are
presented: one technique that explicitly promotes diversity (called Rounds
by the authors), one technique that explicitly promotes convergence (called
Random), and finally one technique that is a weighted probabilistic method
(called Prob) reaching a compromise between Random and Rounds. Addi-
tionally, MOPSOpd uses a turbulence factor that is added to the position
of the particles with certain probability; we have used the same operator
applied in SigmaMOPSO.

– Comprehensive Learning MOPSO: MOCLPSO [9] incorporates a Pareto
dominance mechanism to the CLPSO algorithm for selecting leaders from
non-dominated external archive. In this approach, a crowding distance method
is used to estimate the density of the solutions once the external archive
reaches its maximum allowable size. The distance values of all the archive
members are calculated and sorted from large to small. The first Nmax
(maximum size of archive) members are kept whereas the remaining ones
are deleted from the archive. The leaders are randomly chosen from this ex-
ternal archive of non-dominated solutions. In MOCLPSO, no perturbation
methods are applied to keep the diversity through the evolution steps.

6 Authors Suppressed Due to Excessive Length

4 Experimentation

In this section, we detail the parameter settings we have used, as well as the
methodology followed in the experiments.

The benchmarking MOPs chosen to evaluate the six MOPSOs have been the
aforementioned ZDT [20], DTLZ [5], and WFG [10] test suites, leading to a total
number of 21 problems. The two latter families of MOPs have been used with
their bi-objective formulation. For assessing the performance of the algorithms,
we have considered three quality indicators: additive unary epsilon indicator
(I1

ǫ+) [13], spread (∆) [4], and hypervolume (HV) [21]. The two first indicators
measure, respectively, the convergence and the diversity of the resulting Pareto
fronts, while the last one measures both convergence and diversity.

All the algorithms have been implemented using jMetal [7], a Java-based
framework for developing metaheuristics for solving multi-objective optimization
problems.

4.1 Parameterization

We have chosen a common subset of parameter settings which are the same to
all the algorithms. Thus, the size of the swarm and the leader archive, when
applicable, is fixed to 100 particles, and the stopping condition is always to
perform 250 iterations (yielding a total of 25,000 function evaluations). If we
consider NSPSO, for example, the swarm size and the number of iterations used
in [14] is 200 and 100, respectively. Our approach has been to establish common
settings in order to make a fair comparison, keeping the rest of the parameters
according to the papers where the algorithms were originally described.

The parameter settings are summarized in Table 1. For those particular pa-
rameters that have not been explained, please see the references for further
details.

4.2 Methodology

To assess the search capabilities of the algorithms, we have made 100 independent
runs of each experiment, and we have obtained the median, x̃, and interquar-
tile range, IQR, as measures of location (or central tendency) and statistical
dispersion, respectively. Since we are dealing with stochastic algorithms and we
want to provide the results with statistical confidence, the following statistical
analysis has been performed in all this work [6]. Firstly, a Kolmogorov-Smirnov
test is applied in order to check whether the values of the results follow a nor-
mal (Gaussian) distribution or not. If the distribution is normal, the Levene test
checks for the homogeneity of the variances. If samples have equal variance (pos-
itive Levene test), an ANOVA test is done; otherwise a Welch test is performed.
For non-Gaussian distributions, the non-parametric Kruskal-Wallis test is used
to compare the medians of the algorithms. We always consider a confidence level
of 95% (i.e., significance level of 5% or p-value below 0.05) in the statistical
tests. Successful tests are marked with ‘+’ symbols in the last column in all the

Multi-Objective Particle Swarm Optimizers: An Experimental Comparison 7

Table 1. Parameterization.

Common parameters
Swarm size 100 Particles
Iterations 250

NSPSO [14]
Variant CD (Crowding distance)
C1, C2 2.0
w Decreased from 1.0 to 0.4

SigmaMOPSO [16]
Archive size 100
C1, C2 2.0
w 0.4
Mutation newPosition = position + rand(0.0, 1.0) ∗ position
Mutation probability 0.05

OMOPSO [18]
Archive size 100
C1, C2 rand(1.5, 2.0)
w rand(0.1, 0.5)
Mutation uniform + non-uniform + no mutation
Mutation probability Each mutation is applied to 1/3 of the swarm

AMOPSO [19]
Number of subswarms 5
C1, C2 2.0
w 0.4

MOPSOpd [1]
Archive Size 100
C1, C2 1.0
w 0.5
Mutation newPosition = position + rand(0.0, 1.0) ∗ position
Mutation probability 0.05
Selection method Rounds

MOCLPSO [9]
Archive Size 100
C1, C2 N/A
w 0.9 to 0.2

tables containing the results; conversely, ‘-’ means that no statistical confidence
was found (p-value > 0.05). The best result for each problem has a gray colored
background. For the sake of a better understanding of the results, we have also
used a clearer grey background to indicate the second best result.

To further analyze the results statistically, we have also included a post-hoc
testing phase which allows for a multiple comparison of samples [8]. We have
used the multcompare function provided by Matlab c© for that purpose.

5 Computational results

This section is devoted to evaluating and analyzing the results of the experi-
ments. We start by discussing the values obtained after applying the I1

ǫ+ quality
indicator, which are contained in Table 2. We can observe that OMOPSO clearly
outperforms the rest of MOPSOs according to this indicator, achieving the low-
est (best) values in 13 out of the 21 problems composing the benchmark. It
also obtains six second best values. The next best performing algorithms are
SigmaMOPSO, MOPSOpd, and AMOPSO, which get similar numbers of best
and second best results. Thus, we can claim that OMOPSO produces solution
sets having better convergence to the Pareto fronts in most of the benchmark

8 Authors Suppressed Due to Excessive Length

Table 2. Median and interquartile range of the I
1
ǫ+ quality indicator.

NSPSO SigmaMOPSO OMOPSO AMOPSO MOPSOpd MOCLPSO
Problem x̄IQR x̄IQR x̄IQR x̄IQR x̄IQR x̄IQR
ZDT1 4.57e − 13.7e−1 3.07e − 22.6e−2 6.36e − 35.1e−4 2.41e − 18.0e−2 6.75e − 21.6e−2 3.74e − 18.8e−2 +

ZDT2 1.54e + 08.5e−1 1.00e + 00.0e+0 6.19e − 35.4e−4 6.33e − 18.3e−1 1.00e + 08.9e−1 6.45e − 11.4e−1 +

ZDT3 9.14e − 14.1e−1 9.75e − 18.3e−1 1.32e − 27.7e−3 7.30e − 13.5e−1 1.66e − 11.1e−1 5.97e − 12.0e−1 +

ZDT4 4.14e + 11.6e+1 8.30e + 06.8e+0 5.79e + 04.3e+0 1.21e + 17.6e+0 4.23e + 02.1e+0 1.71e + 11.3e+1 +

ZDT6 1.81e − 13.2e−1 5.91e − 31.1e−3 4.65e − 34.2e−4 1.69e − 16.0e−2 1.21e − 17.0e−2 3.38e + 03.8e−1 +

DTLZ1 2.30e + 18.0e+0 2.54e + 11.3e+1 1.92e + 11.1e+1 8.46e + 01.9e+1 1.72e + 11.1e+1 2.12e + 18.0e+0 +

DTLZ2 4.41e − 26.5e−2 1.13e − 19.1e−2 6.72e − 39.1e−4 1.25e − 13.9e−2 9.26e − 25.1e−2 3.95e − 23.8e−2 +

DTLZ3 1.04e + 26.2e+1 1.79e + 27.5e+1 8.86e + 19.5e+1 4.41e + 19.0e+1 1.23e + 26.5e+1 2.37e + 25.7e+1 +

DTLZ4 8.91e − 25.9e−2 3.00e − 14.5e−2 3.18e − 21.0e−2 2.20e − 11.1e−1 6.33e − 23.0e−2 2.56e − 28.6e−3 +

DTLZ5 3.92e − 23.6e−2 1.11e − 19.8e−2 6.62e − 38.9e−4 1.22e − 14.3e−2 9.10e − 24.0e−2 3.31e − 23.0e−2 +

DTLZ6 1.47e + 07.9e−1 1.00e + 02.9e−1 5.36e − 34.8e−4 1.75e − 19.1e−1 1.57e + 01.3e+0 4.77e + 03.2e−1 +

DTLZ7 1.33e + 01.4e+0 1.27e + 02.7e−2 7.13e − 36.8e−4 3.00e − 11.9e−1 1.65e − 11.1e−1 4.94e − 11.0e−1 +

WFG1 1.36e + 07.7e−2 1.00e + 09.3e−2 1.35e + 04.9e−2 1.53e + 03.0e−2 1.10e + 02.0e−1 1.31e + 05.1e−2 +

WFG2 1.67e − 25.5e−3 4.87e − 23.6e−2 1.04e − 21.7e−3 3.57e − 11.8e−1 7.24e − 22.1e−2 5.96e − 23.7e−2 +

WFG3 2.00e + 05.3e−4 2.00e + 04.2e−3 2.00e + 01.6e−5 2.10e + 01.2e−1 2.00e + 04.5e−5 2.12e + 02.0e−1 +

WFG4 1.09e − 11.8e−2 6.06e − 22.7e−2 5.98e − 21.5e−2 3.21e − 18.1e−2 5.57e − 21.8e−2 8.04e − 22.4e−2 +

WFG5 8.34e − 22.0e−2 6.36e − 21.2e−3 6.37e − 29.0e−4 6.24e − 13.3e−1 3.24e − 13.5e−1 2.57e − 12.2e−1 +

WFG6 1.04e − 16.6e−2 5.60e − 13.8e−1 1.79e − 22.5e−3 4.63e − 11.3e−1 3.30e − 12.6e−1 2.40e − 12.3e−1 +

WFG7 4.05e + 26.1e+3 5.75e + 21.8e+2 1.94e + 21.7e+3 3.77e + 11.5e+1 6.16e + 11.1e+1 2.44e + 13.4e+1 +

WFG8 5.24e − 19.2e−2 5.66e − 11.9e−1 5.06e − 13.4e−2 8.30e − 11.2e−1 5.39e − 12.3e−2 7.70e − 16.0e−2 +

WFG9 6.38e − 22.0e−2 2.89e − 21.7e−3 2.95e − 22.5e−3 3.25e − 12.5e−1 1.11e − 14.6e−2 1.49e − 12.1e−1 +

problems considered in our study. All the results have statistical significance, as
it can be seen in the last column, where only ‘+ ’ symbols are found.

The values obtained after applying the ∆ quality indicator are included in
Table 3. We can observe again that OMOPSO is clearly the best performing
algorithm, yielding the lowest (best) values in 16 out of the 21 problems. Con-
sidering the next algorithms according to the best and second best indicator
values, we find SigmaMOPSO, NSPSO, and MOCLPSO. AMOPSO is the worst
performer according to the ∆ indicator, not achieving any best nor second best
result.

Table 3. Median and interquartile range of the ∆ quality indicator.

NSPSO SigmaMOPSO OMOPSO AMOPSO MOPSOpd MOCLPSO
Problem x̄IQR x̄IQR x̄IQR x̄IQR x̄IQR x̄IQR
ZDT1 7.19e − 11.0e−1 4.11e − 13.9e−1 1.00e − 11.4e−2 9.57e − 11.6e−1 6.03e − 11.1e−1 7.70e − 16.4e−2 +

ZDT2 9.82e − 19.4e−2 1.00e + 00.0e+0 9.45e − 21.8e−2 1.00e + 06.0e−2 1.00e + 02.8e−1 8.03e − 17.4e−2 +

ZDT3 8.17e − 19.7e−2 1.09e + 03.6e−1 7.35e − 15.2e−2 9.00e − 11.5e−1 8.59e − 16.7e−2 8.85e − 15.7e−2 +

ZDT4 9.53e − 18.0e−2 1.00e + 03.3e−3 8.78e − 15.2e−2 1.03e + 02.5e−2 1.00e + 02.4e−2 9.32e − 18.2e−2 +

ZDT6 1.39e + 06.6e−2 2.89e − 13.6e−1 8.78e − 21.2e+0 1.12e + 01.5e−1 1.20e + 02.7e−1 9.67e − 14.1e−2 +

DTLZ1 8.38e − 11.2e−1 1.14e + 01.7e−1 7.77e − 11.1e−1 1.13e + 02.6e−1 8.72e − 12.0e−1 7.90e − 17.2e−2 +

DTLZ2 6.02e − 11.5e−1 1.01e + 01.4e−1 1.81e − 12.3e−2 1.15e + 01.8e−1 1.21e + 08.6e−2 7.92e − 18.7e−2 +

DTLZ3 9.31e − 12.0e−1 1.23e + 01.6e−1 7.90e − 11.1e−1 1.09e + 04.3e−1 8.55e − 11.3e−1 7.69e − 18.5e−2 +

DTLZ4 7.17e − 11.7e−1 1.41e + 08.0e−1 6.77e − 17.9e−2 1.46e + 02.7e−1 1.10e + 09.2e−2 7.33e − 15.3e−2 +

DTLZ5 5.99e − 19.3e−2 1.00e + 01.7e−1 1.77e − 12.6e−2 1.16e + 01.9e−1 1.21e + 09.3e−2 7.89e − 18.9e−2 +

DTLZ6 8.18e − 14.0e−1 1.28e + 01.0e+0 1.18e − 11.7e−2 1.23e + 04.4e−1 8.35e − 11.5e−1 8.04e − 17.2e−2 +

DTLZ7 9.08e − 11.6e−1 7.96e − 12.4e−1 5.21e − 16.8e−3 1.02e + 02.4e−1 7.95e − 11.3e−1 8.51e − 17.0e−2 +

WFG1 1.14e + 05.5e−2 7.50e − 11.2e−1 1.17e + 06.0e−2 1.30e + 03.9e−2 1.16e + 07.8e−2 1.12e + 04.2e−2 +

WFG2 8.65e − 19.0e−2 9.61e − 18.5e−2 7.64e − 15.5e−3 9.94e − 11.9e−1 1.22e + 07.0e−2 1.11e + 05.8e−2 +

WFG3 5.00e − 12.6e−2 4.96e − 12.5e−2 3.78e − 18.7e−3 1.20e + 08.7e−2 1.19e + 01.3e−1 9.04e − 16.2e−2 +

WFG4 6.25e − 15.0e−2 5.01e − 17.7e−2 5.06e − 16.3e−2 1.14e + 01.3e−1 4.83e − 14.4e−2 6.18e − 14.9e−2 +

WFG5 3.59e − 14.5e−2 1.44e − 12.0e−2 1.44e − 12.0e−2 1.03e + 01.7e−1 1.13e + 02.3e−1 8.06e − 19.7e−2 +

WFG6 5.98e − 18.1e−2 6.34e − 12.1e−1 1.63e − 12.5e−2 1.09e + 01.7e−1 1.23e + 07.0e−2 8.32e − 17.6e−2 +

WFG7 3.71e + 15.8e+2 4.07e + 15.5e+2 1.59e + 12.1e+2 1.13e + 01.3e+1 1.31e + 07.1e+2 9.13e + 18.7e+2 +

WFG8 7.19e − 18.4e−2 9.08e − 11.7e−1 7.93e − 18.8e−2 1.02e + 01.4e−1 8.68e − 16.6e−2 7.88e − 15.3e−2 +

WFG9 5.07e − 11.3e−1 2.22e − 12.6e−2 2.24e − 12.7e−2 1.19e + 01.5e−1 7.54e − 15.2e−2 7.29e − 16.3e−2 +

After applying a quality indicator that measures convergence and another one
that measures diversity, the HV indicator should confirm the previous results.

Multi-Objective Particle Swarm Optimizers: An Experimental Comparison 9

Table 4. Median and interquartile range of the HV quality indicator.

NSPSO SigmaMOPSO OMOPSO AMOPSO MOPSOpd MOCLPSO
Problem x̄IQR x̄IQR x̄IQR x̄IQR x̄IQR x̄IQR
ZDT1 1.54e − 12.4e−1 6.54e − 18.3e−3 6.61e − 11.5e−4 3.81e − 19.3e−2 5.94e − 11.7e−2 3.28e − 14.6e−2 +

ZDT2 – – 3.28e − 12.5e−4 4.10e − 21.9e−1 0.00e + 02.6e−1 6.54e − 23.7e−2 +

ZDT3 1.12e − 11.2e−1 3.21e − 12.3e−1 5.10e − 13.8e−3 2.45e − 11.1e−1 4.38e − 17.2e−2 2.55e − 13.2e−2 +

ZDT4 – – – – – – -
ZDT6 3.09e − 11.3e−1 4.01e − 13.1e−4 4.01e − 11.5e−4 2.31e − 14.1e−2 3.50e − 15.7e−2 – +

DTLZ1 – – – – – – –
DTLZ2 1.64e − 15.9e−2 1.64e − 12.1e−2 2.10e − 14.5e−4 1.23e − 12.4e−2 1.78e − 12.5e−2 2.01e − 12.3e−3 +

DTLZ3 – – – – – – -
DTLZ4 1.37e − 15.1e−2 – 1.96e − 16.1e−3 7.62e − 29.8e−2 1.90e − 19.8e−3 1.96e − 14.0e−3 +

DTLZ5 1.71e − 13.5e−2 1.65e − 12.3e−2 2.11e − 15.4e−4 1.22e − 12.9e−2 1.77e − 12.0e−2 2.01e − 12.1e−3 +

DTLZ6 – – 2.12e − 14.4e−5 8.77e − 21.5e−1 – – +

DTLZ7 1.59e − 29.7e−2 2.18e − 11.7e−2 3.34e − 13.2e−4 2.00e − 17.1e−2 2.53e − 15.5e−2 1.01e − 11.3e−2 +

WFG1 8.98e − 28.3e−3 1.21e − 12.2e−3 1.04e − 11.0e−2 6.22e − 27.4e−3 1.69e − 17.2e−2 1.01e − 15.1e−3 +

WFG2 5.61e − 12.5e−3 5.60e − 11.7e−3 5.64e − 11.0e−4 4.68e − 13.9e−2 5.57e − 13.6e−3 5.60e − 11.8e−3 +

WFG3 4.40e − 13.3e−4 4.38e − 18.0e−4 4.42e − 15.4e−5 4.04e − 11.2e−2 4.27e − 11.8e−2 4.30e − 11.3e−2 +

WFG4 1.78e − 17.0e−3 2.00e − 11.6e−3 2.02e − 11.6e−3 1.27e − 11.2e−2 2.07e − 11.3e−3 2.00e − 12.3e−3 +

WFG5 1.96e − 12.8e−4 1.96e − 18.8e−5 1.96e − 16.3e−5 1.60e − 11.7e−2 1.68e − 15.9e−2 1.90e − 11.9e−3 +

WFG6 1.75e − 12.6e−2 1.90e − 11.9e−2 2.09e − 13.5e−4 9.88e − 22.8e−2 1.60e − 14.7e−2 2.01e − 11.9e−3 +

WFG7 2.03e + 12.7e+3 2.02e + 11.1e+3 2.09e + 11.7e+4 1.14e + 11.4e+2 9.49e + 24.2e+2 2.01e + 12.7e+3 +

WFG8 1.07e − 18.7e−3 1.33e − 14.2e−3 1.26e − 13.0e−3 6.08e − 21.9e−2 1.41e − 13.0e−3 1.33e − 11.9e−3 +

WFG9 2.24e − 16.1e−3 2.34e − 14.1e−4 2.34e − 16.6e−4 1.87e − 11.1e−2 2.29e − 14.7e−3 2.30e − 11.1e−3 +

The HV values, included in Table 4, show that OMOPSO generates solution
sets with the highest (best) values in 15 out of the 21 problems. Thus, we can
state that according to the parameterization, quality indicators, and benchmark
problems considered in this work, OMOPSO is clearly the most salient technique
among the six considered in our study.

The results corresponding to problems ZDT4, DTLZ1, and DTLZ3 deserve
additional comments. We have used the ‘–’ symbol in Table 4 to indicate those
experiments in which the HV value is equal to 0, meaning that the solution
sets obtained by the algorithms are outside the limits of the Pareto front; when
applying the HV indicator these solutions are not taken into account, because
otherwise the obtained results would be unreliable. In the case of the three afore-
mentioned problems, none of the six algorithms is able to achieve a HV greater
than 0 over the 100 independent runs. We can also see that other problems
are difficult to solve by some techniques, e.g., ZDT2 and DTLZ6. The statisti-
cal tests indicate that the results of the ∆ and HV indicators have statistical
confidence. To provide further statistical information, we show in Table 5 those
problems for which no statistical differences appear between OMOPSO and the
rest of algorithms considering the three quality indicators. It can be observed
that statistical differences exist for most of the pair-wise comparisons.

6 Discussion

The conclusion drawn from the analysis of the results in the previous section
is that OMOPSO performs the best in our study. In this section, we carry out
the same experiments but using OMOPSO and NSGA-II in order to put the
results of the first one in context. Such a comparison will allow us to know how
competitive OMOPSO is. Before that, we investigate why OMOPSO (as well as
the rest of MOPSOs) is unable to solve the ZDT4, DTLZ1, and DTLZ3 problems.
If we consider ZDT4, it is a well-known problem characterized by having many

10 Authors Suppressed Due to Excessive Length

Table 5. Non-successful statistical tests between OMOPSO and the rest of the algo-
rithms.

I1
ǫ+ ∆ HV

- - -
AMOPSO DTLZ3 - -

- - -

- ZDT6 -
MOCLPSO DTLZ1, DTLZ4 DTLZ1, DTLZ3 DTLZ4

- WFG8 WFG1, WFG4

ZDT4 - -
MOPSOpd DTLZ1, DTLZ3 - -

WFG3, WFG4 WFG1, WFG4 -

- - -
NSPSO DTLZ3 DTLZ4 -

WFG1, WFG8 - -

- ZDT6 -
SigmaMOPSO - - -

WFG4, WFG5, WFG9 WFG4, WFG5, WFG9 WFG5, WFG9

Fig. 1. Tracing the velocity of the second variable of OMOPSO when solving ZDT4.

� � �� � �� � �� � �� ���� �� �� �� �
� �

� 	 �
 � �
� � � � �S peed

N u m b e r o f i t e r a t i o n s

Z D T 4

local optima (it is a multifrontal problem). We have traced the velocity of the
second variable in the first particle in OMOPSO when facing the solution of
ZDT4 (the second variable takes values in the interval [−5, +5], which provides
a better illustration of the following analysis than using the first variable, which
ranges in [0, 1]). The obtained values after the 250 iterations are depicted in
Fig. 1. We can observe that the velocity values suffer a kind of erratic behavior
in some points of the execution, alternating very high with very low values. Let
us note that the limits of the second variable in ZDT4 are [−5, +5], and the
velocity takes values higher than ±20. The consequence is that this particle is
moving to its extreme values continuously, so it is not contributing to guide the
search.

To find out whether this is one of the reasons making OMOPSO unable to
solve multi frontal MOPs, we have modified it by including a velocity constraint
mechanism, similar to the one proposed in [2]. In addition, the accumulated
velocity of each variable j (in each particle) is also bounded by means of the
following equation:

Multi-Objective Particle Swarm Optimizers: An Experimental Comparison 11

vi,j(t) =

deltaj if vi,j(t) > deltaj

−deltaj if vi,j(t) ≤ −deltaj

vi,j(t) otherwise

(3)

where

deltaj =
(upper limitj − lower limitj)

2
(4)

Fig. 2. Tracing the velocity of the second variable of SMPSO when solving ZDT4.

� � �� � �� � �� � �� ���� �� �� �� �
� �

� 	
 � �
� � � �S peed

N u m b e r o f i t e r a t i o n s

Z D T 4

This way, we can ensure an effective new position calculation. We have called
the resulting algorithm SMPSO (Speed-constrained Multi-objective PSO). In
Fig. 2 we show again the velocity of the particle representing the second pa-
rameter of ZDT4. We can observe that the erratic movements of the velocity
have vanished, so the particle is taking values inside the bounds of the variable
and thus it is moving along different regions of the search space. To evaluate
the effect of the changes in SMPSO, we have included this algorithm in the
comparison between OMOPSO and NSGA-II. We have solved all the problems
again, following the same methodology. The parameter settings of NSGA-II are:
the population size is 100 individuals, we have used SBX and polynomial muta-
tion [3] as operators for crossover and mutation operators, respectively, and the
distribution indexes for both operators are ηc = 20 and ηm = 20, respectively.
The crossover probability is pc = 0.9 and the mutation probability is pm = 1/L,
where L is the number of decision variables.

In Table 6, we include the median and interquartile range of NSGA-II, O-
MOPSO, and SMPSO corresponding to the I1

ǫ+ quality indicator. We observe
that SMPSO yields the best values in 11 out of the 12 problems comprising
the ZDT and DTLZ benchmarks. If we focus on the WFG problems, the lowest

12 Authors Suppressed Due to Excessive Length

Table 6. NSGA-II vs OMOPSO vs SMPSO: Median and interquartile range of the
I
1
ǫ+ quality indicator.

NSGA-II OMOPSO SMPSO
Problem x̄IQR x̄IQR x̄IQR

ZDT1 1.37e − 23.0e−3 6.36e − 35.1e−4 5.78e − 33.8e−4 +
ZDT2 1.28e − 22.3e−3 6.19e − 35.4e−4 5.66e − 33.0e−4 +
ZDT3 8.13e − 31.9e−3 1.32e − 27.7e−3 6.09e − 31.3e−3 +
ZDT4 1.49e − 23.0e−3 5.79e + 04.3e+0 7.93e − 31.4e−3 +
ZDT6 1.47e − 22.8e−3 4.65e − 34.2e−4 4.87e − 34.8e−4 +
DTLZ1 7.13e − 31.6e−3 1.92e + 11.1e+1 3.73e − 35.4e−4 +
DTLZ2 1.11e − 22.7e−3 6.72e − 39.1e−4 5.81e − 36.0e−4 +
DTLZ3 1.04e + 01.2e+0 8.86e + 19.5e+1 6.57e − 31.0e−2 +
DTLZ4 1.13e − 29.9e−1 3.18e − 21.0e−2 6.54e − 38.8e−4 +
DTLZ5 1.05e − 22.5e−3 6.62e − 38.9e−4 5.77e − 36.1e−4 +
DTLZ6 4.39e − 23.4e−2 5.36e − 34.8e−4 5.22e − 34.4e−4 +
DTLZ7 1.04e − 22.8e−3 7.13e − 36.8e−4 5.46e − 34.3e−4 +
WFG1 3.52e − 14.6e−1 1.35e + 04.9e−2 1.34e + 04.6e−2 +
WFG2 7.10e − 17.0e−1 1.04e − 21.7e−3 1.40e − 23.4e−3 +
WFG3 2.00e + 05.8e−4 2.00e + 01.6e−5 2.00e + 03.9e−4 +
WFG4 3.26e − 26.7e−3 5.98e − 21.5e−2 6.46e − 26.0e−3 +
WFG5 8.41e − 28.3e−3 6.37e − 29.0e−4 6.40e − 22.0e−3 +
WFG6 4.14e − 21.6e−2 1.79e − 22.5e−3 2.56e − 23.8e−3 +
WFG7 3.47e + 28.1e+3 1.94e + 21.7e+3 2.67e + 23.8e+3 +
WFG8 3.38e − 12.3e−1 5.06e − 13.4e−2 4.32e − 17.8e−2 +
WFG9 3.73e − 27.5e−3 2.95e − 22.5e−3 3.15e − 23.3e−3 +

(best) metric values are shared between OMOPSO (six problems) and NSGA-II
(three problems), while SMPSO obtains the second lowest values in 8 out of the 9
WFG problems. These results indicate first, that OMOPSO is competitive when
compared against NSGA-II concerning convergence and, second, that the veloc-
ity constraint mechanism included in SMPSO improves globally the behavior of
OMOPSO considering all the benchmark problems.

The values obtained when applying the ∆ and HV indicators are included
in Tables 7 and 8, respectively. We can observe that we can practically draw the
same conclusions obtained from the I1

ǫ+ indicator, i.e., the algorithms obtain the
lowest values in the same problems according to the convergence and diversity
indicators. In all the experiments included in this section all the statistical tests
are significant, which actually grounds our claims. If we focus in the HV and in
those problems in which OMOPSO obtained a value of 0 (ZDT4, DTLZ1, and
DTLZ3), we see that the velocity constraint mechanism added to SMPSO allows
it to successfully solve them. NSGA-II also outperforms OMOPSO in this sense,
only presenting difficulties in DTLZ3.

Table 9 contains those problems for which no statistical confidence exist
considering the three algorithms and the three quality indicators. The results
of OMOPSO against NSGA-II are significant in all the problems but DTLZ3
with respect to the ∆ indicator. Concerning SMPSO, there a few cases where
the results are not significant, but they do not alter the analysis carried out.

We can summarize this section by stating that OMOPSO, the most salient of
the six MOPSOs studied in this work, is a competitive algorithm when compared
with NSGA-II, and we have shown that its search capabilities can be improved
by including a velocity constraint mechanism. However, although SMPSO out-

Multi-Objective Particle Swarm Optimizers: An Experimental Comparison 13

Table 7. NSGA-II vs OMOPSO vs SMPSO: Median and interquartile range of the ∆

quality indicator.

NSGA-II OMOPSO SMPSO
Problem x̄IQR x̄IQR x̄IQR

ZDT1 3.70e − 14.2e−2 1.00e − 11.4e−2 8.66e − 21.6e−2 +
ZDT2 3.81e − 14.7e−2 9.45e − 21.8e−2 7.46e − 21.5e−2 +
ZDT3 7.47e − 11.8e−2 7.35e − 15.2e−2 7.17e − 11.7e−2 +
ZDT4 4.02e − 15.8e−2 8.78e − 15.2e−2 1.53e − 12.2e−2 +
ZDT6 3.56e − 13.6e−2 8.78e − 21.2e+0 7.28e − 11.2e+0 +
DTLZ1 4.03e − 16.1e−2 7.77e − 11.1e−1 1.14e − 11.8e−2 +
DTLZ2 3.84e − 13.8e−2 1.81e − 12.3e−2 1.59e − 12.3e−2 +
DTLZ3 9.53e − 11.6e−1 7.90e − 11.1e−1 1.98e − 13.3e−1 +
DTLZ4 3.95e − 16.4e−1 6.77e − 17.9e−2 1.70e − 12.5e−2 +
DTLZ5 3.79e − 14.0e−2 1.77e − 12.6e−2 1.58e − 12.2e−2 +
DTLZ6 8.64e − 13.0e−1 1.18e − 11.7e−2 1.14e − 12.1e−2 +
DTLZ7 6.23e − 12.5e−2 5.21e − 16.8e−3 5.20e − 12.0e−3 +
WFG1 7.18e − 15.4e−2 1.17e + 06.0e−2 1.12e + 05.0e−2 +
WFG2 7.93e − 11.7e−2 7.64e − 15.5e−3 8.26e − 13.5e−2 +
WFG3 6.12e − 13.6e−2 3.78e − 18.7e−3 3.84e − 16.4e−3 +
WFG4 3.79e − 13.9e−2 5.06e − 16.3e−2 5.51e − 17.0e−2 +
WFG5 4.13e − 15.1e−2 1.44e − 12.0e−2 1.50e − 12.8e−2 +
WFG7 3.79e + 14.6e+2 1.59e + 12.1e+2 2.44e + 13.1e+2 +
WFG6 3.90e − 14.2e−2 1.63e − 12.5e−2 2.47e − 14.1e−2 +
WFG8 6.45e − 15.5e−2 7.93e − 18.8e−2 8.08e − 15.4e−2 +
WFG9 3.96e − 14.1e−2 2.24e − 12.7e−2 2.46e − 12.8e−2 +

performs both NSGA-II and OMOPSO in the ZDT and DTLZ problems, it does
not achieve the best result in the WFG benchmark. This indicates that more
research has to be done. It is also necessary to consider a broader set of prob-
lems as well as studying in more depth the effect of modulating the speed in a
MOPSO.

7 Conclusions and Further Work

We have evaluated six MOPSO algorithms over a set of three well-known bench-
mark problems by using three different quality indicators. For each experiment,
100 independent runs have been carried out, and statistical tests have been ap-
plied to know more about the confidence of the obtained results. In the context
of the problems analyzed, the experimentation methodology, and the parameter
settings used, we can state that OMOPSO is clearly the most salient of the six
compared algorithms. The results have also shown that all the algorithms are
unable to find accurate Pareto fronts for three multi frontal problems. We have
studied this issue and we have proposed the use of a velocity constraint mech-
anism to enhance the search capability in order to solve these problems. The
resulting algorithm, SMPSO, shows significant improvements when compared
with respect to OMOPSO and NSGA-II. As part of our future work, we plan
to study the convergence speed of MOPSO algorithms in order to determine
whether they are faster than other multi-objective evolutionary algorithms in
reaching the Pareto front of a problem.

14 Authors Suppressed Due to Excessive Length

Table 8. NSGA-II vs OMOPSO vs SMPSO: Median and interquartile range of the
HV quality indicator.

NSGA-II OMOPSO SMPSO
Problem x̄IQR x̄IQR x̄IQR

ZDT1 6.59e − 14.4e−4 6.61e − 11.5e−4 6.62e − 11.5e−4 +
ZDT2 3.26e − 14.3e−4 3.28e − 12.5e−4 3.28e − 11.1e−4 +
ZDT3 5.15e − 12.3e−4 5.10e − 13.8e−3 5.15e − 15.1e−4 +
ZDT4 6.56e − 14.5e−3 – 6.61e − 13.8e−4 +
ZDT6 3.88e − 12.3e−3 4.01e − 11.5e−4 4.01e − 11.0e−4 +
DTLZ1 4.88e − 15.5e−3 – 4.94e − 13.4e−4 +
DTLZ2 2.11e − 13.1e−4 2.10e − 14.5e−4 2.12e − 12.3e−4 +
DTLZ3 – – 2.12e − 12.8e−3 +
DTLZ4 2.09e − 12.1e−1 1.96e − 16.1e−3 2.09e − 13.3e−4 +
DTLZ5 2.11e − 13.5e−4 2.11e − 15.4e−4 2.12e − 12.1e−4 +
DTLZ6 1.75e − 13.6e−2 2.12e − 14.4e−5 2.12e − 14.8e−5 +
DTLZ7 3.33e − 12.1e−4 3.34e − 13.2e−4 3.34e − 17.3e−5 +
WFG1 5.23e − 11.3e−1 1.04e − 11.0e−2 9.70e − 25.3e−3 +
WFG2 5.61e − 12.8e−3 5.64e − 11.0e−4 5.62e − 15.7e−4 +
WFG3 4.41e − 13.2e−4 4.42e − 15.4e−5 4.41e − 11.1e−4 +
WFG4 2.17e − 14.9e−4 2.02e − 11.6e−3 1.96e − 12.0e−3 +
WFG5 1.95e − 13.6e−4 1.96e − 16.3e−5 1.96e − 15.8e−5 +
WFG6 2.03e − 19.0e−3 2.09e − 13.5e−4 2.05e − 11.1e−3 +
WFG7 2.09e + 13.3e+4 2.09e + 11.7e+4 2.06e + 18.2e+4 +
WFG8 1.47e − 12.1e−3 1.26e − 13.0e−3 1.40e − 11.9e−3 +
WFG9 2.37e − 11.7e−3 2.34e − 16.6e−4 2.33e − 14.1e−4 +

Table 9. Non-successful statistical tests among NSGA-II, OMOPSO, and SMPSO.

I1
ǫ+ OMOPSO SMPSO

NSGA-II WFG3, WFG8

OMOPSO N/A ZDT6, DTLZ6, WFG1, WFG4

∆ OMOPSO SMPSO

NSGA-II DTLZ3 WFG2

OMOPSO N/A ZDT6, DTLZ6

HV OMOPSO SMPSO

NSGA-II ZDT6

OMOPSO N/A DTLZ6, DTLZ7, WFG8

Acknowledgments. This work has been partially funded by the “Consejeŕıa
de Innovación, Ciencia y Empresa”, Junta de Andalućıa under contract P07-
TIC-03044 DIRICOM project, http://diricom.lcc.uma.es. Juan J. Durillo
is supported by grant AP-2006-03349 from the Spanish Ministry of Education
and Science. Francisco Luna acknowledges support from the Spanish Ministry of
Education and Science and FEDER under contract TIN2005-08818-C04-01 (the
OPLINK project).

References

1. J. E. Álvarez-Beńıtez, R. M. Everson, and J. E. Fieldsend. A MOPSO Algorithm
Based Exclusively on Pareto Dominance Concepts. In C. A. Coello Coello et al.,
editor, EMO 2005, number 3410 in LNCS, pages 459–473, 2005.

2. M. Clerc and J. Kennedy. The particle swarm - explosion, stability, and conver-
gence in a multidimensional complex space. IEEE Transactions on Evolutionary
Computation, 6(1):58–73, 2002.

3. K. Deb. Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley
& Sons, 2001.

Multi-Objective Particle Swarm Optimizers: An Experimental Comparison 15

4. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation,
6(2):182–197, 2002.

5. K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable Test Problems for
Evolutionary Multiobjective Optimization. In A. Abraham, L. Jain, and R. Gold-
berg, editors, Evolutionary Multiobjective Optimization. Theoretical Advances and
Applications, pages 105–145. Springer, 2005.

6. J. Demšar. Statistical comparisons of classifiers over multiple data sets. J. Mach.
Learn. Res., 7:1–30, 2006.

7. J.J. Durillo, A.J. Nebro, F. Luna, B. Dorronsoro, and E. Alba. jMetal: A Java
Framework for Developing Multi-Objective Optimization Metaheuristics. Techni-
cal Report ITI-2006-10, Departamento de Lenguajes y Ciencias de la Computación,
University of Málaga, E.T.S.I. Informática, Campus de Teatinos, December 2006.

8. Y. Hochberg and A. C. Tamhane. Multiple Comparison Procedures. Wiley, 1987.
9. V. L. Huang, P. N. Suganthan, and J. J. Liang. Comprehensive learning particle

swarm optimizer for solving multiobjective optimization problems. Int. J. Intell.
Syst., 21(2):209–226, 2006.

10. S. Huband, P. Hingston, L. Barone, and L. While. A Review of Multiobjective
Test Problems and a Scalable Test Problem Toolkit. IEEE Transactions on Evo-
lutionary Computation, 10(5):477–506, October 2006.

11. J. Kennedy and R. Eberhart. Particle swarm optimization. In Fourth IEEE Inter-
national Conference on Neural Networks, pages 1942–1948, 1995.

12. James Kennedy and Russell C. Eberhart. Swarm Intelligence. Morgan Kaufmann
Publishers, San Francisco, California, 2001.

13. J. Knowles, L. Thiele, and E. Zitzler. A Tutorial on the Performance Assessment
of Stochastic Multiobjective Optimizers. Technical Report 214, Computer Engi-
neering and Networks Laboratory (TIK), ETH Zurich, 2006.

14. X. Li. A Non-dominated Sorting Particle Swarm Optimizer for Multiobjective
Optimization. In Genetic and Evolutionary Computation - GECCO 2003, volume
2723 of LNCS, pages 37–48, 2003.

15. J. Moore and R. Chapman. Application of particle swarm to multiobjective opti-
mization. Technical report, Department of Computer Science and Software Engi-
neering, Auburn University, 1999.

16. S. Mostaghim and J. Teich. Strategies for finding good local guides in multi-
objective particle swarm optimization (MOPSO). In Proceedings of the IEEE
Swarm Intelligence Symposium, 2003. SIS ’03, pages 26–33, 2003.

17. M. Reyes-Sierra and C. Coello. Multi-Objective Particle Swarm Optimizers: A
Survey of the State-of-the-Art. International Journal of Computational Intelligence
Research, 2(3):287–308, 2006.

18. M. Reyes Sierra and C. A. Coello Coello. Improving PSO-Based Multi-objective
Optimization Using Crowding, Mutation and ǫ-Dominance. In Evolutionary Multi-
Criterion Optimization (EMO 2005), LNCS 3410, pages 505–519, 2005.

19. G. Toscano and C. Coello. Using Clustering Techniques to Improve the Perfor-
mance of a Multi-objective Particle Swarm Optimizer. In Genetic and Evolutionary
Computation - GECCO 2004, volume 3102/2004 of LNCS, pages 225–237, 2004.

20. E. Zitzler, K. Deb, and L. Thiele. Comparison of Multiobjective Evolutionary
Algorithms: Empirical Results. Evolutionary Computation, 8(2):173–195, 2000.

21. E. Zitzler and L. Thiele. Multiobjective Evolutionary Algorithms: A Comparative
Case Study and the Strength Pareto Approach. IEEE Transactions on Evolution-
ary Computation, 3(4):257–271, 1999.

