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Abstract—In a previous paper presented at CEC'2011, we was able to play full games. However, this game was not very
reported the implementation of a chess engine based on evo-powerful and could be defeated by novice players.
lutionary programming with a selection mechanism that relied In 1967, the MacHack VI program developed for the PDP-
on grandmaster’'s chess games. The objegtlve was to decidesth 6 ¢ £ DEC) bl d. for the first ti inst
virtual players that would pass to the following generation Here, computer (from ) played, for the first ime, agains
we use these same techniques to adjust a larger number of@ human in a chess tournament. This program was able to
weights 9 in this work instead of the 5 used in the previous achieve a rating of 1400 points.
one). The aim was to improve the rating of our chess engine. We  |n the 19705, chess tournaments officially began. At the end
also introduce here the use of a local search scheme based &t ¢ 1his decade, the top chess programs available could play a
Hooke-Jeeves algorithm, which is adopted to adjust the wefds the level of a human chess expert (aro@d0 rating points)
of the best virtual player obtained in the evolutionary process. As . e
our results indicate, this produced a further improvement in the The programs CHESS and Belle dominated the first two
rating of our chess engine. As in our previous work, the mateel decades of competitions in the two major computer chess
values of the additional pieces considered here are simildo the tournaments: the annudlorth American Computer Chess
values known from chess theory. ChampionshipgNACCC), and theWorld Computer Chess
ChampionshipgWCCC), which was held every three years.
It is worth indicating that, in thel970s, the main chess
Chess is a game of perfect information in which there is ngrograms introduced the use of hash tables which allowed
hidden information for the players. This means that, at amivthe storage of information about positions that had already
position on the board, each player knows all of the possiliieen searched. This way, if the same position was reached
movements. If one considers all possible movements, cBesagain, no search was conducted, since the previously gedera
an intractable game, because of its considerably largelseanformation would be used in that case. Additionally, other
space. Claude Shannon was the first to estimate that the tgtsdrch refinements were also introduced. The most remarkabl
number of possible chess games 82°. were: iterative deepening (which searches down to a certain
Because of its complexity, and the human interest that chésgel of the game tree), opening books (which include rules o
has attracted during many years, this game has been usadye sequences that are known to be good to start a game),
since the 1950s, as a benchmark to test a variety of artificitid endgame databases (which contain move sequences that
intelligence techniques. are known to be good for ending a game, or even solutions to
In the 1950s, Alan Turing [19] designed a pioneering chessesitions with a certain (small) number of pieces).
playing program at a time at which getting access to digital In 1975, Knuth [15] analyzed in detail the alpha-beta
computers was almost impossible. At about the same tinpFuning algorithm. This algorithm uses a pruning technique
Claude Shannon [18] proposed two strategies to implemeawhich has the advantage of refraining from evaluating some
chess engines. The first used a “brute force” approach bydes when unnecessary.
performing an exhaustive search of the possible positibmis. During the earlyl 980s, chess programs based on micropro-
work was based on the application of the minimax algorithitessors became reachable to a larger audience. Howeer, thi
on a game-tree. The second strategy proposed by Shantemhnology also made such programs very limited due to the
adopted “artificial intelligence” to emulate the way in whic small memory capabilities and the slow processors availabl
humans play chess. Today, practically all chess engines asehat time.
one of these two strategies or even combinations of them. In 1989, two chess computers developed at Carnegie-Mellon
In 1958, Alex Bernstein wrote a chess-playing program thaiversity Hitech and Deep Thoughtwere able to defeat a
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human chessmaster each. [8], [17], [9], have been used for tuning the weights of the

By 1996, the computeiDeep Thoughtwhich was able to evaluation function of a chess engine.
examinel00 million chess positions per second, played a six- Most of these previous works make use of co-evolution
games match versus world chess champion Garry Kaspar@ournaments between virtual players) to decide whichusirt
The final result of the match walsto 2 in favor of Kasparov. players will pass to the next generation, and only two of them

In 1997, an updated version 8feep ThoughtcalledDeep have adopted grandmasters’ games to decide which virtual
Blue was released. This computer was used again to playlayer will pass to the following generation.
six-game match against Garry Kasparov. This time, however,In [6], the authors used games from chess grandmasters in
Kasparov lost the match (he obtained 2.5 points &mp the objective function of their genetic algorithm. Additally,

Blue obtained 3.5 points). After almost 50 years of researcthe authors used co-evolution to improve the adjustment of
the goal of having a computer that was able to defeat the ché®s weights of their chess engine. In [20], Vazquez-Fedea
world champion had finally been fulfilled. et al. adjusted the weights of both the material values of

In spite of its importance, this significant event did nothe pieces and the mobility factor through an evolutionary
stop the research in this area. The focus, however, changégbrithm. The work reported here, differs from this prexgo
towards the development of chess programs that did naper in that here, we adopt a larger number of weigkfis (
require specialized hardware (Beep Bluedid). The advent instead of theés adopted in [20]). Additionally, we incorporate
of faster processors, cheaper memories and more elaboluite a direct search method (i.e., a mathematical progragimi
search algorithms (including the use of metaheuristics) hi#chnique that does not require gradient information): the
made possible the development of very powerful chess esgiftooke-Jeeves method. This approach is used as a local search
that can run on conventional personal computers. engine which improves the adjustment of the weights of the

The main components of a chess engine are: (1) the mdgst virtual player obtained during the evolutionary pssce
generator (it generates all possible moves at a given positi As we will see later on, both our evolutionary algorithm and
the board), (2) the search function (it finds the best vasiarihe local search engine are able to improve the rating of our
in the search-tree from a given position on the board) afi€ss engine, which is the main objective of our work.

(3) the evaluation function. Due to the complexity of chess

games it is only possible to represent the search tree doan to I1l. OUR CHESSENGINE

certain depth. Therefore, it is necessary to e\{aluate tr_m'.nal For carrying out our experiments, we developed a chess
nodes of the search tree through the evaluation functlom;h/vhengine with the following characteristics:

is responsible for assigning a numerical value to a specific
position on the board. *

The evaluation function is the main component of any chess’
engine. Clearly, a successful implementation of the evana
function allows a chess engine to play better, and, thesefor
that is the focus of the work reported in this paper.

The evaluation function of chess engines relies on the® ) -
use of weights (these weights are associated to the pieceSUr Chess program evaluates a given position on the board
involved in a certain position) to assess the numericaleval{P" @ particular side, with the following expression:
of a certain board position. Developers of commercial chess
engines normally carry out the tuning of these weights thhou eval =pV +mV 1)
lenghty trial-and-error processes (which make take yeRes)
cently, however, the use of soft computing techniques (gmeVnere: y ,
evolutionary algorithms and neural networks) has alloned PV IS the sum of the positional values of chess pieces for a
tune these weights in a much faster (and still effective)mean Particular side. _ ,

The remainder of this paper is organized as follows. IWV_'S the sum of the mater|al values Of. chess pieces for a
Section II, we briefly present the previous related Worlgamcular side, and is given by the following expression.

The chess engine adopted for our experiments is described .

in Section Ill. Our method is described in Section IV. In mV = ZXi 2)
Section V, we present our experimental results. Finally, ou i1

conclusions and some possibe paths for future research aF]eere'

provided in Section VI. w . -
X, represents the material value for piece

r is the number of pieces of one side in particular, regardless
of the king ¢ = 5).

Alpha-beta algorithm [15].

Stabilization of positions through the Quiescence algo-
rithm that takes into account the exchange of material
and king’s checks.

« Use of iterative deepening and hash tables [4].
Null-move heuristic.

II. PREVIOUS RELATED WORK

A variety of evolutionary algorithms, including differeat
evolution [2], [3], [1], genetic algorithms [5], [6], genet  pV is given by the following expression:
programming [11], [12] and evolutionary programming [7],



row; otherwise, it is false.

PV = Z; P (3) The bishop’s positional value is given by:
where:
’ Piso:)(z'.so,*F‘z'.so7 7
P; represents the positional value for piece bishor bishop,1 % Zbishop.1 @
s is the number of pieces of one side in particular(6). where:
Xbishop,1 IS the weight of factotFysnop,1 -
The king’s positional value is given by: Frishop,1 is the bishop’s mobility.
4 - " s A .
The knight's positional value is given by:
i=1 7
where: Pknight = Z anight,i * Fknight,i (8)

Xping.i is the weight of factody,;,,,.;. A factoris a positional =1

characteristic of a particular piece; for example, its nlighi where:

its column type, etc. KXknight,i 1S the weight of factotFynghs,i-

Fying1 is the sum of material values of pieces that defenkknign:,1 is the mobility of the knight.

their king, i.e., those pieces whose movements act on f&nignt,2 is true if the knight is defended by a pawn;
king’s square or on its king’s adjacent squares. otherwise, it is false.

Fling 2 is the sum of material values of pieces that attack the...sn:,3 is true if the knight cannot be evicted by an enemy
king, i.e., those pieces whose movements act on its oppogigvn; otherwise, it is false.

king’s square or on its opposite king's adjacent squares. Finignt,4 iS true if the knight is in the squares, ..., as,

Fring,3 is true if the king is castled; otherwise, it is false. b1,...,91, h1,...,hg, @andbs, ..., gs (which corresponds to

Fring,a 1s the number of pawns that protect their king. the squares on the periphery of the board); otherwise, it is
false.

The queen’s positional value is given by (at the momentynign:,5 iS true if the knight is in the squards, ..., by,

let's consider only the queen’s mobility): c2,..-5 f2, 92,...,97, andcey, ..., fr;, otherwise, it is false.

Frnight,s 1S true if the knight is in the squares, ..., c,
Pyucen = Xqueen * Fyucen 1 (5) ds, es, fg,_. - f6,_andd6, SRR _otherwise, it is false.

Frnigne,7 is true if the knight is in the squareg, e4, ds, es;

where: otherwise, it is false.

Xqueen,1 1S the weight of factotF;.

Fyucen,1 is the queen’s mobility. We expected thalXnighea < Xinight,s < Xknight,s <
Xknight,r because if the knight is located in the center of the

The rook’s positional value is given by: board its positional value will be better.
T The pawn’s positional value is given by:
Prook - Z Xrook,i * Frook,i (6) p p g Y
1=1 5

where: Ppawn = Z Xpawn,i * Fpawn,i (9)

X, ook.i 1S the weight of factorF, .. ;. =1

Fro0k,1 is the rook’s mobility. where:

Frook 2 is true if on the rook’s column there are no pawnsX,quwn,: iS the weight of factotF},q.umn,;.-

otherwise, it is false. Fpawn,1 is true if the pawn is doubled; otherwise, it is false.

Frook,3 1S true if on the rook’s column there are onlyF,qun,2 is true if the pawn is isolated; otherwise, it is false.

adversary pawns; otherwise, it is false. Foawn,3 is true if the pawn is backwards; otherwise, it is

Fro0r,4 is true if on the rook’s column there are pawns fofalse.

both sides and the rook is on front of its pawns; otherwise, .., 4 is true if the pawn is central (i.e., if it is ia4, c5,
is false. d4, db, e4, eb, f4 or f5 square); otherwise, it is false.
Frook5 is true if on the rook’s column there are pawns foF,qwn,s IS true if the pawn is passed; otherwise, it is false.
both sides and the rook is behind of its pawns; otherwise, it

is false. The material value of the piec® corresponds to its static
Frook,6 1S true if the rook is on the seventh row; otherwiseyalue. We assigned00, 330, 500 and 900 points for the
it is false. knight, bishop, rook and queen, respectively (as Shanndn di

Fro0k,7 is true if there are at least two rooks on the seventh his work [18]). The material value for the pawn i80.



The positional value of a piece is a dynamic value arfygorithm 2 scoreCalculation()
depends on the characteristics of the position such as itypbil 1: for i =0 — N — 1 do
board location, strength, etc. In other works (Fogel et#l. [ 2@  score[i] = 0;
for example) the piece’s positional value is represented bg: end for
positional value tablesThe disadvantage of these methods4: for each positiorp in databaseS do
is that the positional value of a piece is a static value (&: m = grandmasterMovement(p);
knight in f6 square always has the same value regardless 6f setPositiong);
their location and relationship with the other pieces).Hist 7:  for each virtual playe¢ do
sense, one of the main ideas of our proposal is that the che8s n = nextMovement);

positional values depend directly on the characteristiche® 9 if m == n then
position. Of course, while more features are taken into aato 10: scorel[i]++;

in calculating the positional value of a piece, the posion 11: end if

value will be more accurate, and therefore, the positioh wil2:  end for

be better evaluated. 13: end for

The purpose of this work is to tune the weights of equa-
tions (2), (4), (5), (6), (7), (8) and (9) using evolutionary
programming [10] and a database of chess grandmasters. Tedghts of N virtual players with random values within their
aim is that the adjustment of the weights performed by og@prresponding boundaries. Liesets the generations counter

approach leads to an increase in the rating of our chesseng@fiual to zero. Lines} to 8 carry out the adjusting of the
weights for virtual players during'maz generations. In ling,

IV. OUR PROPOSEDAPPROACH we calculate the score for each virtual player (in AlgoritBm
Our proposal consists of the following steps: we will describe in more detail this aspect). In Liheve apply
. . ' the selection mechanism so that only the b3t virtual
« Exploration search. It is the first step of our pro- . . .
ayers pass to the following generation. In liflewe mutate

pogal, and is base(_j on evolutpnary programming [1 e first half of the population in order to obtain the second
which has a selection mechanism based on a databas . ) .
: . alf of the virtual players. That is, all the weights from kac
of chess grandmaster games (supervised learning). The

. . . .surviving parent were mutated to create one offspring (the
selection mechanism allows that the virtual players with ap pring (

- weights that were mutated are shown in Table I). As done
more positions properly solved from a database of chess : o . .
; i in [20], we adopted here Michalewicz’s non-uniform mutatio

grandmaster games acquire the right to pass to the nex . : .

: ; QOperator. Since we adopted evolutionary programming, no
generation. In our previous work [20], we conducted this . . .

. - . crossover operator is employed in our case. Finally, line
phase in a similar way, but now we adjusted a larger

number of weights (we went frorf to 29 weights). creases the generation co_unter]by ,
N : The procedure for computing the score of each virtual player
« Exploitation search. It is the second step of our proposal

; >~ "is described in Algorithm 2. In lined to 3, we establish

and we carried out a local search procedure, aiming fo . ;
. . . ) the score counter to zero for each virtual player. Lihe
improve the best virtual player obtained in the previ- o I .
X choose9 training positions from database Line 5 chooses
ous step. For that sake, we applied the Hooke—JeevC Yess grandmaster movements for osiporine 6 sets the
algorithm to the best virtual player obtained from the 9 P

: T o éaositionp (this allows to each virtual player to calculate its
evolutionary process. The objective function incorpatat : . .
n%>f(t movement). Finally, each virtual player calculatesi#gxt

into the Hooke-Jeeves method also used a database . . ;
. ve n, and if this movement matches movement this
chess grandmaster games to carry out the adjustment o : .
ual player increases its score by

the weights under consideration v
9 ' In the exploitation search, we employed the Hooke-Jeeves
method to further adjust the weights of the best virtual ptay

Algorithm 1 EvolutionaryAlgorithm() obtained during the exploration search step. The Hookeedee
1: intializePopulation(); method is a direct search algorithm originally proposed in
22.9=0; 1961 [13]. This method carries out a deterministic local search
3: while g++< Gmax do with a local descent algorithm, which does not make use of
4:  scoreCalculation(); the objective function derivatives.

5. selection(); Algorithm 3 shows the method of Hooke-Jeeves. In this
6: mutate(); algorithm:

7 gty « ¥ is the best virtual player obtained in the exploratory
8: end while search step.

« z* represents the current virtual player.
The exploration search of our proposal was carried oute z*~! represents the previous virtual player.
with the evolutionary algorithm shown in Algorithm 1. The « 2**! represents the pattern virtual player.
algorithm description is as follows. Liné initializes the « zF*1 represents the next or new virtual player.



TABLE |

Algorlthm 3 hOOKEJeeVGS() RANGES OF THE WEIGHTS FOR EACH VIRUAL PLAYER

1. Step 1 Define:

e . Weight Wlow Whi(}
0 gh
2 The-lnltlal virtual playerx( ) - X1 (PAWN_VALUE) 100 100
3:  The incrementg\; for each weight foi = 1,... W N. X5 (KNIGHT_VALUE) 200 400
4:  The step reduction factar > 1. X3 (BISHOP VALUE) 200 400
5. A termination parameter > 0. X4 (ROOK VALUE) 400 | 600
X5 (QUEEN VALUE) 800 1000
6: Step 2 Perform exploratory search. e o 1000
. ng,
7: Step 3 Was the exploratory search successful (i.e, was a Xing.2 —2000 0
better virtual player found)? Xking,3 0 100
8: Yes: Go to step. Xking,4a 0 100
9:  No: Continue. ?00’%1 _58 128
10: Step 4 Check for termination. X"“”’“’? 0 %5
rook,3
1 s Al < e? X ook —50 50
12: Yes: Stop: return the best current virtual player. Xrook,5 —50 50
13: No: Reduce the increments: ﬁrook,fﬁ 8 188
14: A; = AZ/OL for i = 1,....WN X”mk’7 0 100
bishop,1
15: Go to step2. Knions 1 o 100
16: Step 5 Perform patterns move. Xionight,2 0 100
17 xﬁ“ =gk 4 gk — gkt Xknight,3 0 100
18: Step 6 Perform exploratory search usimQ+1 as the base ;km‘ahm _gg 28
virtual player; let the result be**!. XZM;ZE —50 50
. k+1 k night,
19: Step 7. Is f(z*t1) > f(z¥) Xionight.7 —50 50
20 Yes: Setr*~! = gF; o = gk HL Xpawn,1 —50 50
21: Go to steps. Xpawn,2 —50 50
22:  No: Go to steps Xpawn,3 =50 50
' ' : X pawn.a —50 100
X pawn,s —50 100

« W N is the number of weights for each virtual player.

« [ is the objective function. and the virtual player obtained after the exploitation jehés-
The objective function returns the number of positionsally, in the third experiment, we carried out matches betwe
solved by each virtual player. In our case, we randomly chosar virtual players and the chess progr@hessmaster
M = 20 positions from chess grandmaster games that wereln these experiments, our chess engine used the database
not solved by any virtual player during the exploratory shar Olympiad.abkn the opening phase. This database is included
with the graphical user interfaggrend. In the following sub-
A. Initialization sections we describe the experiments performed.

During the exploratory search step, the initial populatioa. First experiment

consisted of NV = 20 virtual players {0 parents andi0 The first experiment was divided in the two steps described
offspring in subsequent generations). Their weights (@es¢ , section Iv. In the first step, we applied exploration searc

in equations (2), (4), (5), (6), (7), (8) and (9)) were ranom, 4qjust the weights shown in Table I. In this case, we
generated with a uniform distribution within their allowab performed30 runs, and in each of them, we us@ehaz = 200
bounds (these bounds for each weight are shown in Table é)enerationsN — 20 virtual players, angh = 1000 of training

positions for chess grandmaster games. The best virtugipla
from these runs at generatidn and at generatioR00, were
In our experiments, we used a database consisting@s calledVP? ..., andV P20 . . respectively.

games from chess grandmasters having a rating ab6d@ Figure 1 shows the evolutionary process for the exploration
Elo (see Appendix A). The games were taken from the Linarggarch. The plot shows the number of positions solved (a
tournaments, from matches for the world chess championsHiptal of 1000) for the best virtual player and the average
and from the Wijk aan Zee tournaments, among others.  weight values of th@0 virtual players durin@00 generations.

At generation0, the number of positions solved for the

V. EXPERIMENTAL RESULTS average weight values wds7 (which corresponds t8.7%

) ) i ___of the positions), an@08 for the best virtual player (which
We carried out three experiments. The first eXpe”meEBrresponds t®0.8% of the positions). At generatiof00,

was based on the exploration and the exploitation stagesyl .\ mper of positions solved for the average weight values
the search. In the second experiment, we performed matches

between the virtual player obtained after the explorativase  ‘http://www.playwitharena.com/

B. Database of Games



. . TABLE Il
and the best virtual player was2g (which corresponds t0 va yes oF THE WEIGHTS AFTER THE EXPLORATION SEARCKSHOWN IN

32.8% of the positions). Note that this value is competitiverHe SECOND COLUMN AND AFTER THE EXPLOITATION SEARCH(SHOWN

with the value reported in [6]. At generati@d0, the number IN THE THIRD COLUMN).
of positions solved for the average weight values and the bes [ Weight VP2 ration | V Pexploitation
virtual player was the same because we used Michalewicz’s | X1 (PAWN_VALUE) 100 100
non-uniform mutation operator [16]. ? Eg:\gﬁg;%ﬁg) ?1); 3(1]3
In the second step of the first experiment, we applied the Xi (ROOK VALUE) 502 506
exploitation search to the best virtual player obtainedhlie X5 (QUEEN VALUE) 923 910
exploration search. In this case, we applied the Hookee3eev | Xiing,1 1650 1675
algorithm with the following parameters: Xking,2 —1430 —1425
« The step reduction factar = 2. ;:nzz - -
o The termination parameter= 0.5. X, ook 1 62 73
e The incrementsh; = 30 fori = 1,...,WN (WN is Xrook,2 45 46
the number of weights). ?oow g; g?
The second column of the Table Il shows the tuning of X:ZZ:j 5 —
weights for the virtual playe¥’ P20, ..., (the best virtual X ook 6 63 68
player obtained after the exploration search). In the third | Xrook,7 78 82
column, we show the tuning of weights for the virtual player | Xbishop.1 72 76
V Peploitation (the virtual player obtained after the exploita- ;’;”Lgfz; gg gg
tion search). In both cases, we can see that the materi@salu x> 55 =3
of the pieces are close to their “theoretical” values. Xknight 4 —12 —15
Next, we used the resulting weights of the virtual player | Xknight,s 03 6
V Pegploitation 10 test them with thel000 training positions ﬁ’mightvﬁ ig ig
from chess grandmaster games. In this case, the virtuaéplay X’;Z;g:tj — "
V Pegploitation SUCCESSTUlly resolvedi3 of the 1000 positions Xpmm; —a7 —43
(which corresponds ta8.3%). Therefore, we can see that Xpawn,3 —44 —a1
the number of positions solved using both exploration and | Xpawn.4 43 48
exploitation was larger than when we used only exploration Xpawn,5 48 49

(from 32.8% to 48.3%). We consider that the number of

positions solved by our method was satisfactory because we

used only a depth of one ply in the search tree. It is noteworthoints between the virtual player obtained with explomatio

that David-Tabibi et al. [6] also used one ply in their work. plus exploitation search and the virtual player obtainety on
With the completion of the exploration and exploitatiomwith exploration search. In this table the absolute leveliie

search, we used an addition)00 positions for testing the Bayeselo tool was set i8200 rating points.

virtual playerV Pegpioitation. We let this virtual player perform

a 1-ply search on each of these positions, and the percentage RATINGSOFT:éBSIEI(E:(I)III\JD P ERIMENT

of correctly solved positions wa$7.9%. This indicates that i

. . .. + - i
the first 1000 positions used for training cover most of the Name Elo Games 22;”6 Oppo
types of positions that can arise. L P — 7 S PR RV 5308

. VpZo 2205 | 24 | 25 | 200 23% | 2425
B. Second experiment exploration 0

In this experiment, our chess engine used a search depth
of four ply. We carried ou00 games between the virtual We can have an idea of the playing strength of our virtual

player VP20, i, @nd the virtual playerV Pepioitation  PlAyers using the classification of the United States Chess
(each virtual player playe@l00 games with black pieces andFederation (see Appendix A). From Table V, we can see that
100 with white pieces). The virtual playéf P..,ioitation WON, the strength of the virtual player Pgmoggloration (2205 rating
drew, and lostl42, 25, and32 games, respectively, versus thgoints) is at the level of a master in chess, and the strerfgth o
virtual playerV P2, . ion- the virtual playerV P.apioitation (2425 rating points) is at the

Next, we used the Bayeselo t8db estimate the ratings level of a senior master in chess.
of our chess engine using a minorization-maximization alg%
rithm [14]. The obtained ratings are shown in Table IIl. In™
this table, we can see that the rating for the virtual player In this experiment, we carried oR60 games among the vir-
V Poypioitation Was2425, and the rating for the virtual playertual playersV Py, . .iion V Pegpiorations V Peaploitation, and

VP2, ation WaS2205, representing an increase rating the popular chess progra@hessmastefgrandmaster edition)
which was set a500 rating points. The results are shown in

2http:/iremi.coulom.free.fr/Bayesian-Elo/ Figure 2. In this figure, we can see th@hessmasterasog’s

Third experiment



Exploration search
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Fig. 1. Evolutionary process for the exploration searche plot shows the number of positions solved (a total@$0) for the best virtual player and the
average weight values of th# virtual players during200 generations.

Games 1 Win —ing for the virtual players/ P, 1o ation: V Poiploration: aNd
A 1 Draw v p o oitation Were 1600, 2197, and 2424, respectively. In
BN Loss  this experiment, our chess engine used a search depth of six
200 - 68-118-14 158-28-14  200-0-0 ply. In this table the absolute level for the Bayeselo tooswa
set in2500 rating points.
150 TABLE IV
100 RATINGS OF THE THIRD EXPERIMENT
T Name Elo + - Games | Score | Oppo. | Draws
50 (%) (%)
T C M 500 2499 | 23 | 23 | 600 83% | 2074 | 24%
V Pewploitation | 2424 | 28 | 28 | 200 37% | 2499 | 59%
-_— - VDI o | 2197 [ 39 | 43 | 200 | 14% | 2499 | 14%
0
H1 H2 H3 VPY oration | 1600 | 147 | 348 | 200 0% | 2499 | 0%

Fig. 2. Histogram of wins, draws and losses dhessmasterasop against
VPewploitation (Hl)v VP2OO (Hz)v VPO (H3)

exploration exploration

VI. CONCLUSIONS ANDFUTURE WORK

In this work, we used two steps to carry out the tuning of
the weights of a chess engine. In the first step, we performed
wins, draws, and losses wef@, 118, and 14, respectively, an exploration search through an evolutionary algorithrin wi
versus the virtual playeV Peapioitation (denoted as the his- supervised learning. The selection mechanism of our evo-
togram H1 in the Figure). AlsoC'hessmasterasoo’s WiNs, |utionary algorithm used games from chess grandmasters to
draws, and losses, weié8, 28, and 14, respectively, versus decide which virtual player would pass to the following
the virtual player/ P20, ..;., (denoted as the histogram H2generation. This step is similar to our previous work présen
in the Figure), respectively, and so on. at CEC'2011 with the difference that now we adjusted a
Based on these played games, we used again theger number of weights (formi to 29 weights). With this
Bayeselo tool to estimate the ratings Ofhessmasterasgy  increase in the number of weights, we obtained an increase
(C'Masgo in Table V), and the virtual players P..pioitation, iN the rating of our chess engine, since we went frof63
v p200 and V P? The obtained ratings areto 2205 (the value of1463 was obtained irl0 games against

exploration’ exploration"®

shown in Table IV. In this table we can see that the ra& human player who hak737 rating points). We believe that



TABLE V
ELO RATING SYSTEM

Interval Level
2400 and above| Senior Master
2200 — 2399 Master
2000 — 2199 Expert
1800 — 1999 Class A
1600 — 1799 Class B
1400 — 1599 Class C
1200 — 1399 Class D
1000 — 1199 Class E

this confirms the proper working of our evolutionary algiomit
in adjusting weights of our chess engine.

In the second step, we used the Hooke-Jeeves algorit

(1]

(2]

(3]

(4]

to continue the adjustment of the weights for the best Virtua
player obtained in the previous step. Using this algoritlem a

a local search engine, we increased the rating of our che@
engine from2205 to 2425 points (in the second experiment),

and from 2197 to 2424 points (in the third experiment). [7]
Therefore, we conclude that the local search procedurelbase

on the Hooke-Jeeves algorithm was successful.

On the other hand, we can see that the number of positions
solved using exploration plus exploitation search wasdarg

than when we only used exploration search (frd28% to

(8]

El

48.3%). We believe that the number of positions solved by

our method was satisfactory because we used only a depth of

one ply in the search tree. Furthermore, this value is greate

than that obtained in the previous related work.

[20]

As part of our future work, we plan to adjust more weightg 1
with the idea of creating a chess program that is able to play

better. We also plan to perform more experiments varying t
population size and increasing the number of games in t

15
€

chessmasters database. In order to extend the searchptée de

we will plan to add extensions to the quiescence algoritiom, f
example, pawn promotions or pawns on seventh row. Final
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