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Abstract. Decomposition-based Many-Objective Evolutionary Algo-
rithms (MaOEAs) usually adopt a set of pre-defined distributed weight
vectors to guide the solutions towards the Pareto optimal Front (PF).
However, when solving Many-objective Optimization Problems (MaOPs)
with complex PFs, the effectiveness of MaOEAs with a fixed set of
weight vectors may deteriorate which will lead to an imbalance be-
tween convergence and diversity of the solution set. To address this
issue, we propose here an Adaptive Normal-Boundary Intersection Di-
rections Decomposition-based Evolutionary Algorithm (ANBID-DEA),
which adaptively updates the Normal-Boundary Intersection (NBI) di-
rections used in MP-DEA. In our work, we assist the selection mechanism
by progressively adjusting the NBI directions according to the distribu-
tion of the population to uniformly cover all the parts of the complex PFs
(i.e., those that are disconnected, strongly convex, degenerate, etc.). Our
proposed ANBID-DEA is compared with respect to five state-of-the-art
MaOEAs on a variety of unconstrained benchmark problems with up to
15 objectives. Our results indicate that ANBID-DEA has a competitive
performance on most of the considered MaOPs.

Keywords: Many-objective optimization - Decomposition-based algo-
rithms - Adaptive normal-boundary intersection directions

1 Introduction

Many real-world optimization problems normally have more than three (of-
ten conflicting) objectives. For example: Cloud task scheduling [31] and protein
structure prediction [30], to mention just a few. These are the so-called Many-
objective Optimization Problems (MaOPs). Researchers have shown that the
conventional Multi-objective Evolutionary Algorithms (MOEAs) face some dif-
ficulties when the number of objectives increases mainly because the Pareto dom-
inance relationship is not able to properly differentiate solutions [5]. Solutions
quickly become non-dominated as we add more objectives and, consequently, the
selection pressure dilutes, which prevents the algorithm from properly converg-
ing to the true Pareto optimal Front (PF). Several Many-Objective Evolutionary
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Algorithms (MaOEAs) have been proposed over the years. They can be roughly
classified into the following four categories [9]: (1) Dominance relation-based
MaOEAs, (2) indicator-based MaOEAs, (3) objective reduction-based MaOEAs,
and (4) decomposition-based MaOEAs. The latter decompose the problem into
a number of sub-problems that are then simultaneously optimized with the help
of weight vectors (i.e., reference points). The work reported here will focus on
this last category.

Decomposition-based algorithms have attracted a lot of interest and they are
considered as one of the most promising options for handling MaOPs. MOEA /D
[29] and NSGA-IIT [] are the most representative decomposition-based algo-
rithms and they are designed to perform well on high dimensional objective
problems. However, they face several challenges in providing well-diversified so-
lutions particularly when the problem complexity increases (i.e., in the presence
of a large number of objectives and/or complicated PF shapes).

One interesting choice is to explore the merits of combining Pareto dominance
and decomposition. A representative approach of such type is the Multi-objective
Evolutionary Algorithm Based on Dominance and Decomposition (MOEA /DD)
[13]. MOEA /DD favors the selection of non-dominated solutions over dominated
ones and emphasizes the selection of solutions in isolated regions since these
solutions are beneficial to maintain the population’s diversity. The updating
mechanism of MOEA /DD has shown its effectiveness in solving problems having
regular PFs. Nevertheless, MOEA /DD does not provide a well-diversified set
of solutions on some problems with irregular PF shapes (i.e., problems with
degenerate, discontinuous, inverted, strongly convex, and/or strongly concave
fronts). In fact, when we use pre-defined weight vectors, several weight search
directions may miss several regions of the irregular PF. Since the performance
of the decomposition-based algorithms that were originally proposed depends on
the pre-defined set of reference points, they achieve promising performance on
MaOPs with regular PFs, but the uniformity of the distribution of the solutions
cannot be guaranteed with irregular PFs. To overcome this shortcoming, some
authors have proposed to adapt the weight vectors during the evolutionary search
process. Many adaptive weight vector-based algorithms have been proposed, such
as MOEA /D-LTD [25] and ADEA [1]. VaEA eliminates the use of weight vectors
and uses the solutions themselves as reference directions [26]. This approach uses
a modified niche preservation operator that incorporates the worse-elimination
and the maximum-vector-angle-first principles to balance between convergence
and diversity. Nevertheless, VaEA emphasizes diversity and it is difficult for this
algorithm to achieve good convergence in some MaOPs with regular PFs.

Motivated by the previously discussed issues of MOEA/DD and VaEA,
we propose here a new Adaptive Normal Boundary Intersection Direc-
tions Decomposition-based Evolutionary Algorithm (ANBID-DEA) for MaOPs.
ANBID-DEA adaptively updates the set of pre-defined Normal Boundary Inter-
section (NBI) directions employed in MP-DEA during the evolutionary process
[6], favors the selection of isolated solutions as done in the update procedure
of MOEA/DD, and integrates the mechanisms used in the worse-elimination
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principle of VaEA. The main contributions of this paper can be summarized as
follows:

1. We propose ANBID-DEA that aims to enhance the update procedure of
MOEA /DD and the worse-elimination mechanism of VaEA by ensuring the
balance between the uniformity of the distribution of the solutions and the
convergence when dealing with irregular PFs.

2. We investigate the importance of adaptively adjusting the NBI directions
used in MP-DEA according to the distribution of the population to discover
the missing parts of the PF and to detect misleading directions.

3. We show that ANBID-DEA is able to outperform several state-of-the-art ap-
proaches in terms of IGD and HV when applied to a variety of unconstrained
benchmark problems.

The remainder of this paper is organized as follows. Section [2[ introduces the
previous related work and the main motivation for this research. In Section[3] we
describe our proposed ANBID-DEA. Section [d] presents our experimental setup.
In Section [5} we present the performance assessment of our proposed ANBID-
DEA by comparing it to five MaOEAs. Section [f] provides our conclusions and
some possible paths for future research.

2 Previous Related Work and Motivation

Most of the MaOEAs which belong to the first generation of decomposition-based
algorithms follow the general assumption which states that evenly distributed
weights result in an evenly distributed solution set [I2]. Nevertheless, when fac-
ing problems with irregular PFs (i.e., disconnected, degenerated, strongly convex,
etc.) it is hard to estimate the shape of the PF using a set of static distributed
weights, since several weights may not intersect the PF. Therefore, researchers
have proposed to dynamically adjust the weight directions during the search
process to adapt the shape of the target PF according to the current pop-
ulation. In the literature, several attempts have been made in this direction.
Recently, several works tended to consider the distribution of the current popu-
lation during the evolutionary process when adjusting weights [18]. Some weight
adaptation methods use the distribution of the solutions to guide the adapta-
tion of weights, while other methods employ some solutions in the population
to generate weights. Representative algorithms include A-NSGA-III [I1], VaEA
[26], MOEA /D-AM2M [I5], and MaOEA-PDE [27]. Other existing approaches
use an external solution set (i.e., an external archive) to preserve the best so-
lutions from the population. These approaches utilize the preserved solutions
in two manners: (1) using the archive to generate weights (such as in iRVEA
[16], MOEA/D-AWA [19], and AdaW [14]) or (2) leveraging the solutions from
the archive to estimate the shape of the PF and to guide the weight adaptation
process (such as in RVEA-iGNG [17] and MOEA /D-SOM [g]). The main advan-
tage of using an archive is that it is able to provide a robust representation of



4 M. Elarbi et al.

the PF shape by guiding the weight adaptation process. For more details on the
proposed weight vector adaptation methods, refer to [18].

Although the aforementioned weight vector adaptation methods have shown
good performance, three main issues remain. First, some of the previously men-
tioned methods adapt multiple weights at a single generation and at any time
in the evolutionary process. However, as shown in [7], the frequent change of the
weights may deteriorate the convergence of the solutions. Second, an unstable
archive in which we perform changes on its solutions may harm the convergence
of the weight adaptation algorithms [I8]. Third, to the best of our knowledge
all the existing adaptation methods adjust PBI directions (i.e., a line connecting
the origin and a weight vector). Such directions are well-suited to solve MaOPs
with regular PFs. However, when the shape of the PF is irregular, PBI-based
adaptation methods struggle to provide a set of well-distributed solutions due
to the inconsistencies between the shape of the PF and the distribution of the
PBI directions [6/21].

The limitation of the existing weight adaptation methods motivated us to
propose ANBID-DEA which replaces only one weight at a time. Moreover, we
also propose an enhanced worse-elimination strategy that: (1) eliminates the
worst solutions in terms of convergence and diversity and replaces them by better
ones and (2) updates the NBI directions during the search process so that they
uniformly intersect with the PF regardless of the complexity of its geometrical
shape.

3 Owur Proposed Approach: ANBID-DEA

3.1 General Framework

ANBID-DEA follows the same framework of MOEA /DD but it modifies its up-
date mechanism. First, a population P of size N and a set of W well-spread
reference points RP are generated. Then, a set of mirror points MP is generated
so that each reference point in RP has its mirror point in MP. The RP and
MP sets are used to create the NBI directions. After that, the loop iteration
is executed until the termination criterion is met. A reproduction procedure is
applied to generate offspring solutions by performing the mating selection and
the variation operation. The mating selection is applied to choose the mating
parents, while the variation operation generates new candidate solutions. The
created offspring solutions are used to update the population P by considering
an offspring solution x. each time. Once the offspring solution x. is added to
P, we obtain a new population P’ with size N + 1. Thereafter, we normalize
the members of the P’ population and we associate the solutions to their clos-
est reference points by computing the acute angle between each solution and
the reference points. After this, we apply non-dominated sorting to divide the
population into different layers using Pareto dominance. Finally, we apply our
enhanced worse-elimination mechanism to delete an inferior solution.
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3.2 Construction of the NBI Directions

The generation of the reference points set RP is done using the two-layer gen-
eration method suggested in [I3]. Using this method, an RP set with W well-
distributed reference points is obtained and intermediate reference points within
the simplex are guaranteed. Thereafter, the set of W mirror points MP is created
using the same mirror points generation procedure employed in [6]. The latter
constructs a set of mirror points by decreasing the coordinates of the reference
points by 1. The obtained reference and mirror points are then used to create the
NBI directions that connect each reference point with its corresponding mirror
version.

3.3 Generation of the Offspring Solutions

The generation of offspring solutions takes place in two steps. First, mating se-
lection is performed in which parents are chosen at random from the population.
The second step is the variation operation. In this operation, genetic operators
are applied on the mating parents. The operators used in our approach are the
well-known Simulated Binary Crossover (SBX) and polynomial-based mutation.
The SBX operator uses two parents to create two offspring solutions. This op-
erator uses the distribution index parameter that is responsible for creating an
offspring close or away from its parents.

3.4 Normalization and Association of the Solutions

After the creation of the P’ population, we then normalize its members. This step
is important specially when we deal with MaOPs having disparately scaled PFs.
Thus, the objective value (i.e., f;,2 =1,..., M) of each solution z is normalized
through the following equation:

fllay =0 =5 0

K3

where 2] and z{“‘d are the ideal and the nadir points of the population Pl7 respec-

tively. 2} corresponds to the minimum value of f;, while z%¢ is the i*" objective
value of the nadir point 2™*?. For the estimation of 2"%?, we use the same method
employed in [28]. We first determine the extreme solution corresponding to each
coordinate axis (i.e., f;) by minimizing an Achievement Scalarizing Function
(ASF). Then, we construct an M-dimensional hyperplane by connecting the ex-
treme solutions. Next, the interception a;,7 = 1,..., M of the hyperplane with
each objective axis is determined. Finally, the objective values of each solution
are normalized using equation , where 2794 — 2i* = a; is used and the value
of z{“‘d is updated. For a degenerate PF, we may not be able to determine the
extreme solutions that will serve to construct the hyperplane. In such a case,
znad is assigned as the maximum value of each objective f; for all solutions,
where i =1,..., M.
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After normalizing the solutions, each solution z is associated with a unique
sub-region (i.e., reference direction) according to its acute angle value that is
computed as follows:

F'(z) @ RP;
norm(z).norm(RP;)

(2)

angle(z, RP;) £ arccos

where F,(IL') = (fi(m)v fé(x)a ) f[l\/[(x))Tv RPJ = (ijqla TPj,25 - - ,T’pij)T,
norm(x) £ \/Ziﬂil fi(2)2, F'(x) e RP; returns the inner product between F ()

and RP;, and it is defined as follows:

F'(e) s RP; =3 £i(a) - 1oy )

A solution is associated to the reference point that has the smallest angle with
it. In this manner, we can identify three types of reference directions: (1) ref-
erence directions that are not associated by any solution, (2) isolated reference
directions with a single solution associated to them, and (3) crowded reference
directions that are associated with more than one solution.

3.5 Enhanced Worse-Elimination Selection

Once the population members are associated to the reference directions, we
apply non-dominated sorting to divide the population members into different
levels using Pareto dominance. Next, we eliminate an inferior solution = from
P’ by following one of these two scenarios:

1. Case 1: There is a single non-domination level (i.e., | = 1): We start by
identifying the non-isolated solution x having the minimum angle with its
reference point:

(a) If this angle is non-zero and less than o, then the following steps are
executed: (1) the solution z is eliminated, (2) the reference vector takes
the direction of the solution y that has the maximum angle with it,
(3) a new NBI direction is generated by creating the mirror point y of
the solution y, (4) and the solutions are re-associated using the new set
of reference points. Fig. [T] illustrates this case where the non-dominated
solution z is deleted and the NBI direction of x is replaced by generating
a new NBI direction (i.e., the line connecting the solution y and its new
generated mirror point y/).

(b) Otherwise, if the angle is greater than o, we identify the most crowded
sub-region and we delete the solution z having the highest Euclidean
distance to its corresponding mirror point.

2. Case 2: There are multiple non-domination levels (i.e., I > 1): We identify
the last layer Fj:
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Fig. 1: Tllustration of case 1(a) of the enhanced worse-elimination selection.

(a) If it contains only isolated solutions, we delete the solution x having the
highest Euclidean distance to its corresponding mirror point in the most
crowded sub-region.

(b) Otherwise, we look for the non-isolated solution x in F; that has the
minimum angle with its reference point and we perform the same steps
of case 1.

In this work, o = ]@;ﬁ as set in [26]. It is important to note that the angle
represents a metric of diversity and, in some cases, also of convergence, while
the Euclidean distance measures uniformity and convergence. Moreover, our en-
hanced worse-elimination selection mechanism adaptively updates the NBI direc-
tions during the evolutionary process to uniformally cover the irregular PFs and
eliminates the worst solutions in terms of convergence and diversity through the

use of the PBI (acute angle) and NBI (Euclidean distance) metrics (cf. Fig. [2).

4 Experimental Study

4.1 Benchmark Problems

In order to assess the performance of our proposed ANBID-DEA, we adopted the
benchmarks used in the original papers of the algorithms from our comparative
study: The three well-known test suites DTLZ, WFG, and MaF [13/6]. These
test problems have several challenging features. In this paper, we have selected
only the test problems DTLZ1-4, WFG2-3, WFG5, WFG9, MaF1, MaF3, and
MaF6-7. The considered instances cover the following properties: linear, multi-
modal, concave, convex, scaled, degenerate, deceptive, inverted, disconnected,
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Fig. 2: Tllustration of the acute angle and Euclidean distance metrics.

mixed, and biased. In this paper, the number of objectives varies from 5 to 15,
M € {5,10,15}. The number of decision variables was set to D = M + k — 1,
where k is set as 5 for DTLZ1 and 10 for DTLZ2-4. For the considered WFG
test problems, the number of decision variables was set as D = 2 x (M —1) + 20.
The MaF problems have the same number of decision variables as in DTLZ. For
MaF1, MaF3, and MaF6, k = 10, while for MaF7, k = 20.

4.2 Baseline Approaches

We have compared the performance of our proposed ANBID-DEA with re-
spect to that of two non-adaptive weight vector-based algorithms: MP-DEA
(i.e., the fixed NBI direction-based algorithm version of ANBID-DEA) [6], and
MOEA/DD [I3]. Moreover, we have also conducted comparative experiments
against three adaptive-based algorithms: VaEA [26] which uses the maximum-
vector-angle-first rule to select individuals one by one as a reference direction,
RVEA [3] that uses an adaptive strategy for reference vectors and an angle pe-
nalized distance to balance the convergence and diversity of the solutions in a
high-dimensional objective space, and MOEA /D-AWA [19] that adds and deletes
weights according to the sparsity degree of the solutions stored in the archive.

4.3 Performance Measures

To assess the performance of the six approaches adopted in our comparative
study, we used the Inverted Generational Distance (IGD) [2] and the HyperVol-
ume (HV) [32] performance measures since they are both commonly used in the
specialized literature.
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Table 1: Specific experimental parameters settings.

Algorithm Parameter Value
RVEA Changing rate a of the penalty function 2
Adaptive reference vector update frequency fr |0.1
Maximum capacity of the archive 1.5N
MOEA /D-AWA Maximum numbervof adjusted sub-problems nus|rate__update__weight X N
rate__update__weight 0.05
rate__evol 0.8
Penalty paramecter 0 of PBI 5.0
MOEA/DD Number T of neighbors 20
probability 6 of selecting a neighbor 0.9

— IGD calculates the distance between the set of non-dominated solutions ob-
tained on the final population (S) and a reference set (normally, the true
Pareto front of the problem). The lower the IGD value is, the better the
quality of S. The reference set is generated using the open-source platform
PlatEMO [24].

— HV computes the volume covered by the set of non-dominated solutions
obtained on the final population with respect to a specified reference point.
It measures both convergence and maximum spread. As recommended in
[26] the reference point was set to 1.1 times of the upper bounds of the true
PFs. The larger the HV value is, the better the quality of S.

4.4 Parameters Settings and Statistical Testing

A parameter tuning process was conducted to find the best parameter values
for each algorithm. In all the experiments, each algorithm was run 31 times
on each test instance. The population sizes of MP-DEA, VaEA, and RVEA
were set as 212, 276, and 136 for M = 5, M = 10, and M = 15, respectively.
For ANBID-DEA, MOEA/DD, and MOEA/D-AWA the population size was
set to 210 for M = 5, 275 for M = 10, and 135 for M = 15. The number
of weight vectors was set the same as the population size of MOEA /DD. SBX
and polynomial-based mutation were used to produce new offspring solutions.
The crossover probability and the mutation probability were set to 1.0 and 1/D,
respectively. The distribution index of SBX was set to 30, while the distribution
index of the polynomial-based mutation operator was set to 20. In this paper,
we used as a termination criterion a Maximum number of Function Evaluations
(MFEs) for each algorithm. The MFEs were set as MFEs = MaxGen x N,
where MFE is equal 100.000 for M = {5,10,15}. Table [1| shows the settings
of some specific parameters. In order to statistically compare the performance
of the peer algorithms and to see whether there are statistical differences in
their obtained results, we used the Friedman and Iman-Davenport statistical
tests [23]. We have also applied the Wilcoxon test in a pairwise manner with a
significance level of 0.05 [23]. The “4”, “-”, and “=" mean that the IGD or HV
values of the considered algorithms are significantly better, significantly worse
than, or without a significant difference to those of our proposed ANBID-DEA,
respectively.
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Fig.3: Median HV variation curves of 31 independent runs performed by each
algorithm on WFG3 and MaF3.

5 Results and Discussion

Table 2] shows the median IGD and HV results obtained on DTLZ1-4, WFG2-
3, WFG5, WFGY, MaF1, MaF3, and MaF6-7. The statistical significance of the
difference in results between our proposed ANBID-DEA and the peer algorithms
is also shown by using the Wilcoxon test. We can see that ANBID-DEA had the
best overall performance in almost all the considered test problems in terms of
IGD and HV. MP-DEA had the second best performance and was very compet-
itive with respect to ANBID-DEA, while VaEA ranked third and was able to
obtain the second best performance on: (1) DTLZ2, MaF3, and MaF7 with 10,
5, and 10 objectives in terms of IGD, respectively and (2) the 5-objective version
of MaF3 and the 10-objective version of MaF6 in terms of HV. MOEA /D-AWA|
RVEA, and MOEA /DD had the worst position in the ranking. The performance
of MOEA /D-AWA was promising on WFG3, MaF6, and MaF7 which have com-
plex PF shapes (degenerate, disconnected, multi-modal, etc.). RVEA managed
to obtain the best performance in the 5-objective version of MaF3 with respect to
the IGD and HV indicators. Regarding MOEA /DD, it had a poor performance
in almost all the considered test instances except for the 5- and 15-objective
instances of DTLZ1 and MaF1, respectively. Fig. [3| shows the median HV values
of each algorithm over the total number of function evaluations on WFG3 and
MaF3 with 15 objectives. It can been seen from these figures that the median
of ANBID-DEA converges faster than the other algorithms and remains stable
at the maximum value. This can be explained by the fact that our approach is
able to cover the different parts of the PF since the early stages of the search
due to the application of its enhanced worse-elimination selection mechanism.
As can be seen from Table [2| our proposed ANBID-DEA shows a superior
performance. ANBID-DEA significantly outperforms MP-DEA, VaEA, RVEA,
MOEA/D-AWA, and MOEA /DD on 33, 36, 34, 34, and 36 problems from a
total of 36 test instances in terms of IGD. Similar to the previous observation,
ANBID-DEA significantly outperforms the other baseline approaches on 33, 35,
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Table 2: Median values of IGD and HV on DTLZ1-4, WFG2-3, WFG5, WFG9,
MaF1, MaF3, and MaFG6-7. The first line shows the IGD value, while the second
line indicates the HV value. The best and the second best results for each test

instance are shown in boldface and underlined, respectively.

Problem|M [ANBID-DEA| MP-DEA VaEA RVEA MOEA/D-AWA | MOEA /DD
5 2.002E-1 2.430E-1 (-) | 2.089E-1 (-) | 2.336E-1 (-) 3.382E-1 (-) | 2.005E-1 (-)
1.00E+40 9.98E-1 (-) | 9.88E-1 (-) | 9.95E-1 (-) 9.83E-1 (-) 9.99B-1 (-)
DTLZ1 [[ [~ 1.887E-T | LBOBE-1 (-) | 2.046E-1 () | 1.015E-1 (-) | 1.805BE-1 (-) |2.864B-1 (-)
1.09E40 | 1.0TE+0 (-) | 9.94E-1 (-) | 1.00E40 (-) 1.06E40 (-) | 9.23E-1 (-)
15| L-728E-1 | L.752B-1 (-) | 2.185E-1 () | 2.085E-1(-) T.761B-1 (-) | 1.832E-1 (-)
1.08E4-0 1.06E40 (-) | 9.97E-1 (-) | 9.98E-1 (-) 1.03E40 (-) | 9.99E-1 (-)
5 2.123E-1 2.292E-1 (-) | 2.389E-1 (-) | 2.307E-1 (-) 2.302E-1 (-) | 2.386E-1 (-)
9.99E-1 9.98E-1 (-) | 9.89E-1 (-) | 9.91E-1 (-) 9.96E-1 (-) 9.88E-1 (-)
DTLZ2 [[ [ 4.616E-1 | 4.811B-1 (-) |4712E-1 (-) | 5.183E-1 (-) | 5.712B-1 (-) | 5.100B-1 (-)
1.00E40 9.99E-1 (=) | 9.98E-1 (-) | 9.73E-1 (-) 9.78E-1 (-) 9.86E-1 (-)
15| B-GBOE-1 | 5.807E-1 (-) | 5.990E-1 () | 6.109B-1 (-) | 7-516BE-1 (-) | 6.123E-1 (-)
9.89E-1 9.73E-1 (-) | 9.70E-1 (-) | 9.53E-1 (-) 9.44E-1 (-) 9.65E-1(-)
5 1.695E-1 | 1.716E-1 (-) | 1.983E-1 (-) | 2.820E-1 (-) | 1.816E-1 (-) | 3.898B-1 (-)
1.05E40 | T.OIE+O0 (-) | 9.96E-1 (-) | 9.71E-1 (-) 9.97E-1 (-) 9.26E-1 (-)
DTLZ3 [, 4.598E-1 | 4.617E-1 (-) | 4.788E-1 (-) | 4.703E-1 (-) 4.726B-1 (-) | 5.223BE-1 (=)
1.08E40 | T.00E+0 (-) | 9.92E-1 (-) | 9.98E-1 (-) 9.94E-1 (-) 9.69E-1 (-)
15| B-998E-1 | G.I26E-1(-) | 6.936E-1 (-) | 6.882B-1 (-) | 7.109E-1 (-) | 6.233BE-1 (-)
9.97E-1 9.94E-1 (-) | 9.68E-1 (-) | 9.29E-1 (-) 9.21E-1 (-) 9.86E-1 (-)
5 1.680E-1 | 1.692E-1 (=) | 1.726B-1 (-) | 1.795E-1 (-) | 2.378E-1 (-) | 2.531B-1 (-)
1.09E40 | 1T.0TE+O0 (-) | 9.90E-1 (-) | 9.84E-1 (-) 9.62E-1 (-) 9.63E-1 (-)
DTLZ4 [, 4.276E-1 | 4.286E-1 (-) | 4.622B-1 (-) | 4.283E-1 (1) | 4.596B-1 (-) | 5.690B-1 (-)
9.99E-1 9.97E-1 (-) | 9.91E-1 (-) | 9.95BE-1 (-) 9.86E-1 (-) 9.75E-1 (-)
15| B-996E-1 | 4.223E-1 (-) | 4.907E-1 (-) | 4.386B-1 (-) | 5.116BE-1 (-) | 5.396B-1 (-)
1.08E+40 1.06E+0 (-) | 9.89E-1 (-) | 1.00E+0 (-) 9.77E-1 (-) 9.70E-1 (-)
5 7.398E-1 7.413B-1 (-) | 8.117E-1 (-) | 3.209B40 (-) | 7.996B-1 (-) | 8.345E-1 (-)
- 9.97E-1 9.94E-1 (-) | 9.83E-1 (-) | 9.69E-1 (-) 9.88E-1 (-) 9.84E-1(-)
WFG2 [[ 7 1.279E-1 | L283E-1 (-) | 1.316E-1 (-) | 1.623B40 (-) | 1.356E-1 (-) | 1.342B-1 (-)
1.00E+40 9.99E-1 (-) | 9.92E-1 (-) | 7.87E-1 (-) 9.77E-1 (-) 9.85E-1 (-)
15| LI8OE-T |1.222E-1 (=) | 1.324E-1 () | 1.612E-1 (-) | 1.637E+0 (-) | 1.647B-1 (-)
9.91E-1 9.86E-1 (-) | 9.74E-1 (-) | 9.70E-1 (-) 9.38E-1 (-) 9.61E-1 (-)
5 4.896E-1 5.101E-1 (-) | 5.221B-1 (-) | 5.117E-1 (-) | 4.870E-1 (4) | 7.711BE-1 (-)
7.47E-1 7.41E-1 (=) | 7.26E-1 (-) | 7.34E-1 (-) 7.48E-1 (4) | 6.42E-1 (-)
WFG3 [[ 7 1.115E-1 | LI128E-T (-) | 1.126B-1 (-) | 1.234E-1 (-) | L.174E-1 (-) |1.311EF0 (-)
8.39E-1 8.33E-1 (-) | 8.27E-1 (-) | 8.19E-1 (-) 8.20E-1 (-) 6.78E-1 (-)
15| 3-196EF0 | 3.226E+0 () [3.234E+0 ()| 4.101E+0 (-) | 3.486E+0 (-) |3.830E+0 (-)
5.91E-1 5.79E-1 (-) | 5.71E-1 (-) | 5.16E-1 (-) 5.86E-1 (+) | 5.67E-1 (-)
s 6.208E-1 | 6.464E-1 (-) | 7.186E-1 (-) | 9.912B-1 (-) | 7.229B-1 (-) | 7.236BE-1 (-)
8.73E-1 8.61E-1 (-) | 8.27E-1 (-) | 7.49E-1 (-) 8.17E-1 (-) 8.16E-1 (-)
WFG5 [[ 7] 5.856E-1 | 5.037E-1 (-) [1.508E+0 (-)| 1.221E40 (-) | 7.823E-1 (-) |3.909E+0 (-)
1.08E40 | 1.OTE+O0 (-) | 5.69E-1 (-) | 5.18E-1 (-) 1.05E40 (-) | 4.76E-1 (-)
15| L-0B6E-T | LO6BE-1 (-) [2.221E+0 ()| 2.118E+0 (-) | 4.685E+0 (-) |1.286E+0 (-)
) 5.32E-1 5.34E-1 (=) | 4.68E-1 (-) | 4.06E-1 (-) 2.31E-1 (-) 4.51E-1 (-)
~ 3.254E-1 | 3.385E-1 (-) | 4.616E-1 (-) | 4.128B-1 (-) | 9.111BE-1 (-) | 3.487E-1 (-)
° 9.91E-1 9.87E-1 (-) | 9.53E-1 (-) | 9.64E-1 (-) 7.46E-1 (-) 9.80E-1 (-)
WFG9 [[ 7 6.168E-1 | 6.218E-1 (-) | 6.235E-1 (-) | 6.594E-1 (-) | G6.019E-1 (-) | 6.783E-1 (-)
9.33E-1 9.27E-1 (-) | 9.11E-1 (-) | 8.87E-1 (-) 8.93E-1 (-) 8.81E-1 (-)
15| 7-992EF0 |8.129E+0 (-) [8-386E+0 ()| 8.207E+0 (-) | T.IIBEFT (-) |1.382E+1 (-)
3.69E-1 3.64E-1 (-) | 3.51E-1 (-) | 3.57E-1 (-) 2.67E-1 (-) 2.65E-1 (-)
S 1.146E-1 1.211E-1 (-) | 3.256E-1 (-) | 3.036E-1 (-) 1.420E-1 (-) | 1.252E-1 (-)
9.27E-3 9.13E-3 (-) | 2.00E-3 (-) | 2.24E-3 (-) 7.91E-3 (-) 8.82E-3 (-)
MaF1 [[07[ 2:261E-1 [2.250E-1 (+)| 5.352E-1 () | 6.849B-1 (-) | 6.072B-1 (-) | 2.317E-1 (-)
5.83E-7 5.80E-7 (-) | 7.32E-9 (-) | 5.86E-9 (-) 5.91E-9 (-) 5.81E-7 (-)
15| 2-41BE-1 | 2.531E-1 (-) | 6.934E-1 () | 7.120B-1 (-) | 5.028E-1 (-) | 3.164B-1 (-)
9.99E-11 | 9.97E-11 (-) | 1.60E-13 (-) | 2.90E-14 (-) | 3.66E-14 (-) | 8.00E-13 (-)
5 9.623E-2 1.024E-1 (-) | 9.463E-2 (-) |9.858E-2 (+)| 2.594E-1 (-) | 2.599E-1 (-)
9.53E-1 9.26E-1 (-) | 9.60E-1 (-) | 9.80E-1 (+) | 8.73E-1 (-) 8.87E-1 (-)
MaF3 [ 8.126E-2 | 8.380E-2 () | L.288E-1 () | 1.338E-1 (-) | 1.088 EF0 (-) | 9.821E-1 (-)
9.99E-1 9.98E-1 (-) | 9.87E-1 (-) | 9.78E-1 (-) 1.11E-1 (-) 9.87E-1 (-)
15| 8-194E-2 [ 8.337E-2 () | 9.326E-2 (-) | 9.984E-2 (-) | 9.508E-1 (-) | 2.883E-1 (-)
9.99E-1 9.96E-1 (-) | 9.76E-1 (-) | 9.95E-1 (-) 9.94E-1 (-) 8.31E-1 (-)
5 9.222E-3 | 9.394B-3 (-) | 8.331E-2 (-) | 9.505E-3 (-) | 9.191E-3 (-) | 1.923E-1 (-)
i 1.16B-1 1.12B-1(-) 1.08E-1 (-) | 1.01E-1 (-) 1.18E-1 (-) | 1.07E-1 (-)
MaF6 [[7[ 8.112E-3 | 3.182E-3 () | 3.341E-1 (-) | L.OIOB-1 (-) | 4.154B-3 (-) | 7.728E-1 (-)
1.06E-1 1.00B-1 (-) | 1.04E-1 (-) | 7.91E-2 (-) 9.83E-2 (-) 4.35E-2 (-)
15| 9-685E-2 | 0.7I0E-2 (-) | 9.902E-2 (-) | 2.008E-1 (-) | 0.915B-2 (-) | 3.616E-1 (-)
9.67E-2 9.63E-2 (-) | 9.57E-2 (-) | 8.73E-2 (-) 9.41E-2 (-) 8.66E-2 (-)
- 3.213E-1 3.366E-1 (-) | 4.508E-1 (-) | 4.601B-1 (-) | 2.998E-1 (+) |5.468 BE-1 (-)
° 2.53E-1 2.51E-1 (-) 2.49E-1 (-) 2.43E-1 (-) 2.56E-1 (4) | 2.12E-1 (-)
MaF7 [[ 7] 8.218E-1 | 8.686E-1 (-) | 8.462E-1 (-) | 2.122E+0 (-) | 8.698E-1 (-) |1.880EF0 (-)
1.86E-1 1.65E-1 (-) | 1.84E-1 (=) | 1.46E-1 (-) 1.95E-1 (-) 1.51E-1 (-)
15| 2-126E0 | 2.387EF0 () [2.661E+0 (-)| 4.022E+0 (-) | 6.659E+0 (-) |2.399E+0 (-)
1.72E-1 1.57B-1 (-) | 1.53E-1 (-) | 6.13E-2 (-) 3.16E-2 (-) 1.55B-1 (-)
1GD: +/-/= B 1/33/2 0/36/0 2/34/0 2/34/0 0/36/0
HV: +/-/= B 0/33/3 0/35/1 1/35/0 3/33/0 0/36/0
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Table 3: Results of the Friedman and Iman-Davenport tests in terms of IGD and
HV (a =0.05).

Test Parameters

Crit. value Value Null hypothesis p-value
IGD
Friedman 11.07 107.492 Rejected 1.388E-21
Iman-Davenport 2.27 51.887 Rejected 1.110E-16
HV
Friedman 11.07 107.184 Rejected 1.612E-21
Iman-Davenport 2.27 51.419 Rejected 1.110E-16

35, 33, and 36 problems from a total of 36 test instances in terms of the HV.
Table [3] shows the obtained results of the Friedman and Iman-Davenport tests
for the IGD and HV performance indicators. In fact, with a level of significance
a = 0.05, the obtained values by both statistical tests are clearly larger than their
associated critical values. Therefore, there are significant differences among the
obtained results and the null hypothesis is rejected. Thus, our proposed ANBID-
DEA performs significantly better than all the other compared approaches.

This superior performance of our proposed ANBID-DEA is mainly due to
the following aspects: (1) we use the NBI directions that uniformly intersect the
PF regardless of its geometrical shape, (2) we adaptively update the NBI direc-
tions during the search process to cover the non-discovered parts of the PF with
some solutions, and (3) we ensure a balance between convergence and diversity
by considering the importance of preserving isolated solutions and adopting the
FEuclidean and acute angle mechanisms in our proposed worse-elimination se-
lection mechanism. For all these reasons, our proposed ANBID-DEA is able to
outperform the other algorithms with respect to which it was compared when
dealing with high dimensional problems with complex PFs.

6 Conclusions and Future Work

This paper introduced ANBID-DEA, a new decomposition-based algorithm that
adaptively updates the NBI directions used in MP-DEA when applying its en-
hanced worse-elimination selection mechanism. An empirical study was carried
out to evaluate the performance of ANBID-DEA on a set of selected many-
objective unconstrained benchmark problems with irregular PFs and with a num-
ber of objectives that goes from 5 to 15. The obtained results showed that our
proposed approach is competitive when compared against five state-of-the-art
algorithms on the majority of the test instances adopted. As part of our future
work, we are interested in designing an efficient constraint-handling technique
and integrate it into ANBID-DEA [22]. We are also interested in the develop-
ment of a surrogate-assisted evolutionary algorithm to solve expensive MaOPs
where a small number of real-objective function evaluations are allowed [I0].
Finally, we are also interested in applying machine learning methods to solve
MaOPs [20].
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