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Abstract—One of the challenges that appear in solving
constrained optimization problems is to quickly locate the
search areas of interest. Although the initial solutions of
any optimization algorithm have a significant effect on its
performance, none of the existing initialization methods can
provide direct information about the objective function and
constraints of the problem to be solved. In this paper, a technique
for generating initial solutions is proposed, which provides
useful information about the behavior of both the objective
function and the constraints. Based on such information, an
automatic mechanism for selecting individuals, from the search
areas of interest, is introduced. The proposed method is
adopted with different evolutionary algorithms and tested on the
CEC2006 and the CEC2010 test problems. The results obtained
show the benefits of the proposed method in enhancing the
performance, and reducing the average computational time, of
several algorithms with respect to their versions adopting other
initialization techniques

Index Terms—constrained optimization problems, population
initialization, evolutionary algorithms

I. INTRODUCTION

Many engineering, business, computer science and defense
decision processes require solving optimization problems in
the presence of constraints. Such problems are known as
constrained optimization problems (COPs). A COP may
contain different types of variables and constraints. These
problems become more challenging if they possess difficult
characteristics, such as multi-modality, high dimensionality,
and small feasible regions [1]. Formally, a COP can be
expressed as:

minimize f(−→x )

subject to: ck(−→x ) ≤ 0, k = 1, 2, . . . ,K

he(
−→x ) = 0, e = 1, 2, . . . , E

Lj≤xj≤Uj , j = 1, 2, . . . , D (1)

where −→x = [x1, x2, ..., xD] is a vector with D decision
variables, f(−→x ) the objective function, ck(−→x ) the kth

inequality constraint, he(−→x ) the eth equality constraint and
each xj has a lower limit (Lj) and an upper limit (Uj).

Over the years, the solution of COPs has attracted
a considerable amount of research. Among the currently
available approaches to deal with COPs, evolutionary
algorithms (EAs), such as genetic algorithms (GAs) [2] and
differential evolution (DE) [3], have become very popular.
Normally, the first step in such algorithms is to generate an
initial set of solutions to evolve. Due to the influence of such
solutions in the performance of an EA, a considerable number
of new initialization methods has been developed, with the
main aim of uniformly cover the search space.

The most popular technique for generating a population of
individuals is the pseudo-random number generator (PRNG)
[4] which generates a sequence of of random numbers [4],
in which the solutions are scattered according to a uniform
distribution, or to any other statistical distribution. This
initialization method is simple, but it has difficulties when
the dimensionality increases [5] because it tends to fail in
the generation of points that are fully distributed [4], [6].
Based on chaos theory [7], the chaotic number generator
(CNG) [8] has been proposed for its use with EAs [8]. Among
seven chaotic maps used with DE, the variant with the sinus
map outperformed all the other variants [8]. As a type of
space-filling method, uniform experimental design (UED) [9]
searches for points to be uniformly distributed in a given range.
However, evaluating such a large population is expensive
for both small- and large-scale problems. This shortcoming
was the motivation for introducing orthogonal design. An
orthogonal array aims to specify a set of combinations spread
uniformly over the space of all possible combinations. In
the literature, such an initialization method enhanced the
performance of several optimization approaches, such as
DE [10]. Latin hypercube sampling (LHS) [11] divides the
variables into a fixed number of intervals (creating grids)



and then generates a random value within each grid with the
restriction that only one value exists in each row or column.
Opposition-based learning (OBL) initialization method has
demonstrated success in improving optimization algorithms
[12]. In it, a set of initial solutions (original) is generated by
any of the above methods, and subsequently a heuristic is used
to generate opposite solutions(x̃) from the original ones. After
that, the best individuals from both populations are selected.
Several variations of this method have been introduced, such as
center-based sampling [13], generalized OBL [14] and current
optimum OBL [15].

Generally, existing approaches have some shortcomings; for
instance, none takes into consideration the behavior of the
objective function and constraints of a problem in hand which
may give vital indications to determining the approximate
areas of interest for exploration, and subsequently may save
computational efforts. In fact, this motivated Elsayed et al.
[16] to introduce a heuristic space-filling approach to generate
initial solutions in EAs.

Therefore, in this paper, we propose a new initialization
approach that capitalizes the behavior of both objective
function and constraints in deciding the initial individuals.
The proposed technique divides the entire search space into a
predefined number of unit spaces in a deterministic sequence
within the decision variables’ boundaries. Individuals are then
produced by taking the corner points of those unit spaces.
By considering the fitness values and constraints violation of
these individuals, interesting behaviors of both of them are
gained. Consequently, an automatic selection mechanism is
introduced to select a subset of points to be used to form the
initial population for an EA.

The proposed method was incorporated into five
optimization algorithms and was used to solve a set of
24 well-known COPs. The results demonstrated the ability
of the proposed method to uncover interesting information
about the objective function and constraints. In addition,
it is shown that the proposed approach had the ability to
enhance the performance of all the algorithms considered by
obtaining high-quality solutions and saving the average fitness
evaluations and computational time up to 9.00% and 12.64%,
respectively, in comparison with the same algorithm adopting
a uniform distribution. Based on the above mentioned, the
best two algorithms were selected, with their performance
with different initialization methods tested on the CEC2010
test problems. The results confirmed the benefits of the
proposed method in improving such algorithms by obtaining
good solutions and saving the average number of fitness
evaluations.

The remainder of this paper is organized as follows. The
proposed approach is illustrated in Section II, followed by the
experimental results and conclusions in Sections III and IV,
respectively.

II. EA WITH SEQUENCE-BASED INITIALIZATION

It is fundamental that any EA starts with a set of PS
initial solutions, i.e., X = {−→x 1,

−→x 2, ...,
−→x z, ...,−→x PS}. Then,

each individual is evaluated, and the number of current fitness
evaluations (cfe) is increased. A new population

(
X

′
)

is
generated by applying the evolutionary operators. A selection
operation is then carried out to determine the solutions that
should survive to the next generation. The process continues
until a stopping criterion is met.

As starting with good initial solutions may help achieving
high-quality solutions, our focus is to develop an initialization
method that can help getting information about the problem
at hand and hence may determine the search areas of interest
that an EA can focus on. The details of such a procedure is
described below.

A. Sequence-based Initialization

Initially, the search domain
[−→
L ,
−→
U
]

is divided into γ + 1

segment vectors (
−→
S β , ∀β = 1, 2, ..., γ + 1), with the first and

last ones being the lower and upper range vectors of all the
decision variables, respectively. Firstly, the interval (I) of all−→
S can be determined using equation (2).

−→
I =

(−→
U −

−→
L
)

γ
(2)

Then, each
−→
S β is generated as follows:

−→
S β =


−→
L β = 1
−→
S β−1 +

−→
I 2 ≤ β ≤ γ

−→
U β = γ + 1

(3)

Then, a set of possible solutions is generated as described
in Algorithm 1. For the βth vector in S

(−→
S β

)
, some possible

individuals are produced, such that starting with the last
variable, i.e., j = D, by changing its value to all possible
Sβ,j ∀ β = {1, 2, ...γ + 1}, no redundant points should be
generated. It is worth mentioning that the sequence in which
the points are generated is vital. Based on this approach, the
maximum number of solutions (PStotal) that can be generated
is (γ + 1)× ((D × γ) + 1). It is worthy to mention that even
for large scale problems, i.e., D = 1000, the total number
of solutions that can be generated assuming that γ = 10,
represents only 4% of the total evolutionary process.

By using this initialization method, it is possible to get
important information about the problem landscape. For
example, consider the following COP:

Minimize f(−→x ) =

D∑
j=1

− xjsin (|xj |)

subject to:

c1(−→x ) =

 D∑
j=1

(( xj
100

)2

− 10cos
(

2π
xj
100

)
+ 10

)−30 ≤ 0

c2(−→x ) =

D∑
j=1

(xj)− 7.5D ≤ 0



Algorithm 1 Population Initialization

0: define
−→
Ω = [0, 0, ..., 0]γ+1 //to avoid generating similar

individuals;
0: i← 0;
0: for β = 1:γ + 1 do
0: for j = D : −1 : 1 // for each decision variable do
0: for α = 1:γ + 1 do
0: if (β == α) and (Ω(β) == 0) then
0: Ω(β)← 1;
0: i← i+ 1;
0: −→x i ←

−→
S β ;

0: xi,j ← Sα,j ; // change the jth variable in the ith point
0: else if (β == α) and (Ω(β) == 1) then
0: α← α+ 1; // skip generating a similar point
0: else if β ∼= α then
0: i← i+ 1;
0: −→x i ←

−→
S β ;

0: xi,j ← Sα,j ; // change the jth variable in the ith point
0: end if
0: end for
0: end for
0: end for=0

where D = 5 and −100 ≤ xj ≤ 100. The optimal
solution for this problem is −→x ∗ = {−20.4706137885503,
−20.4706134690268, −20.4706136869296,
−20.4706137241736, 97.6422527509791} with
f(−→x ∗) = −179.4480. Assuming γ = 50, 12801 points
are generated (remember this number can be reduced by
setting γ at a smaller value), with their f(−→x ), c1(−→x ) and
c2(−→x ) calculated and plotted, as depicted in Figure 1. From
this plot, important information can be obtained, such as:
the objective function and the first constraint are both multi-
modal. Such information may help when solving a black-box
optimization problem. Also, we can put more emphasis on
areas of interest (a1 and a2), which have feasible solutions.
Also, if we analyze the corresponding x values generated,
we can find that when all x values increase (the second half
of points plotted), the solution becomes infeasible, i.e., c2
cannot be satisfied. This piece of information may help in
reducing the search space that is explored. In contrast, when
we generate the same number of solutions using a uniform
distribution, and plot them (see Figure 1(b)), such information
cannot be easily obtained.

B. Constraint-handling

The selection of better solutions is carried out based on three
cases: (1) for two feasible solutions, the best one (based on
the quality of fitness value) is chosen; (2) a feasible solution
is always better than an infeasible one; and (3) between two
infeasible individuals, the one with a smaller sum of constraint
violations (Θ) is selected, where Θ of an individual (−→xz) is

Θz =

K∑
k=1

max(0, gk(−→xz)) +

E∑
e=1

max(0, |he(−→xz)| − εe) (4)

where gk(−→xz) is the kth inequality constraint and he(−→xz) the
eth equality constraint. Note that, as some equality constraints
may be difficult, instead of setting the right-hand side of

any he to 0.0001 a large value is used and then reduced to
0.0001. The initial value of εe is set at the average constraint
value of the best individuals in the initial population, i.e.,

εe = min

(
1,

∑PS
z=1|he(−→xz)|

PS

)
.

C. EAs with proposed initialization method

The initialization method is carried out only once before
starting the first run of the optimization process. Then, the
corresponding fitness and constraints values are calculated. As
this set of solutions is generated only once, and to attain a fair
comparison with existing optimization algorithms, this number
of fitness evaluations is deducted from the overall number of
fitness evaluations (FEmax) and distributed over all runs (25

runs are used here), so that we perform FEmax−
(

PStotal

Runsmax

)
fitness evaluations, where Runsmax is the maximum number
the algorithm will run. Based on the shape of the curve of the
fitness values and constraints violation of a problem at hand,
PS individuals are selected as follows:

1) All the PStotal solutions are divided into different
groups (ng), each of which is of size PSg .

2) Solutions with a total constraints violation less than a
threshold (τ), i.e., Θz < τ, ∀ z = {1, 2, ..., PStotal},
where τ = max(Θ)

2 , are accepted, while the other ones
are removed and PSg is updated. The aim of this step is
to get information from those infeasible solutions with
good fitness values which may help.

3) For each group, based on the average fitness values and
constraints violation of solutions that satisfy the above
mentioned condition, ng solutions are selected, such that
• The quality index of each group is firstly calculated

f̄g =

∑PSg

i=1 f(−→x )

PSg
∀g = 1, 2, ..ng (5)

λf =

ng∑
g=1

∑ng

gf=1 f̄gf

f̄g
(6)

Indexf,g =

(∑ng

gf=1 f̄gf

fg

)
×λ−1

f , ∀g = 1, 2, ..ng (7)

• Similarly, the index of constraints violation is
measured

Θ̄g =

∑PSg

i=1 Θ(−→x )

PSg
∀g = 1, 2, ..ng (8)

λvio =

ng∑
g=1

∑ng

gv=1 Θ̄gv

Θ̄g
(9)

IndexΘ,g =

(∑ng

gv=1 Θ̄gv

Θg

)
× λ−1

vio, ∀g = 1, 2, ..ng

(10)
Θ is calculated as discussed in Section II-B.
• Then, the average index (AvgIndex) of both rates

is computed
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Fig. 1. Fitness and constraints values of solutions generated by our proposed approach and by the use of a uniform distribution

AvgIndexg =
Indexf,g + IndexΘ,g

2
, ∀g = 1, 2, ..ng

(11)
• Finally, the number of individuals selected from

each group is as follows

PSg =
AvgIndexg∑ng

l=1AvgIndexg
× PStarget,∀g = 1, 2, ..ng

(12)
where PStarget is the maximum population size to be
used.

4) The best individual in each group is selected, while the
remaining PSg − 1, ∀ g = {1, 2, ..., ng} are randomly
selected at the beginning of each run. This means PS =∑ng

g=1 PSg .
5) For each individual −→x i, ∀i = {1, 2, ..., PS}, a new

vector is generated, such that −→x ′

i = −→x i +
−→
4i, where−→

4i = {4i,1,4i,2, ...,4i,D} and 4i,j is randomly
generated based on a uniform distribution within[
− (xj−xj)

γ ,
(xj−xj)

γ

]
. Then, −→x ′

i replaces −→x i if it is

better (based on both, its fitness value and the total sum
of constraints violation) and we simultaneously update
the number of fitness evaluations.

Note that steps 4 and 5 are considered to add randomness in
each run to allow a fair comparison, i.e., we avoid starting
with the same initial points in each run.

III. EXPERIMENTAL RESULTS

In this section1, the computational results obtained by five
optimization algorithms (each of which has two variants,
with the first adopting a uniform distribution to generate
the initial solutions, while the proposed method was used
in the second) for a set of 24 constrained problems [17]
are presented and analyzed. The algorithms are (1) enhanced
multi-operator DE (E-MODE) [18]; (2)DE1: rand-to-pbest
with archive/1/bin (equation 13); (3) DE2: current-to-pbest
with archive/1/bin DE (equation 14); (4) covariance matrix
adaption-ES (CMA-ES) [19]. Note that as CMA was originally

1Due to pages limitation, some results were moved to a supplementary
document which can be found HERE.

developed for unconstrained problems, the constraint-handling
technique discussed in section II-B was adopted to make it
work for COPs; and (5) DE with adaptation of operators and
continuous control parameters (DE-AOPS) [20].

u1
z,j =


x1
r1,j

+ Fz.(x
i
φ,j − x1

r1,j
+ x1

r2,j
− x̃r3,j)

if(rand ≤ crz or j = jrand)

x2
z,j otherwise

(13)

u2
z,j =


x2
z,j + Fz.(x

i
φ,j − x2

z,j + x2
r1,j
− x̃r3,j)

if(rand ≤ crz or j = jrand)

x2
z,j otherwise

(14)

where r1 6= r2 6= r3 6= z are random integer numbers, with
−→x r1 and −→x r2 randomly selected from xi, xiφ,j was selected
from the best 10% individuals in xi [21], while x̃r3,j was
chosen from the union of the entire X and archive AR.
Initially, the archive was empty. Then, parent vectors which
failed in the selection process were added to it and, once its
size exceeded a threshold, 1.4PS, randomly selected elements
were deleted to make space for the newly inserted ones [21].

As previously mentioned, based on the proposed method
mentioned in Section II-C, PS can be changed from one
problem to another. In other words, by setting PStarget = 100,
PS is 82, 85, 87, 100, 100, 98, 93, 81, 81, 99, 97, 96,
83, 55, 93, 100, 86, 100, 94, 52, 100, 100, 99, 100 for
all the 24 problems, respectively. Therefore, both versions
of each algorithm started with the same PS. F and Cr
of the first three algorithms were adapted as discussed in
[18] with H = 6. For CMA-ES, µ = PS

2 and σ = 0.3.
Runsmax was set to 25 times for each test problem for up
to FEmax = 200, 000. Note that DE-AOPS used a different
constraint-handling technique and adaptation mechanism of its
parameters, as described in the corresponding paper. Also, as
DE-AOPS uses an initial PSset that has four values, in this
paper, to start with the same number of solutions, we set it to
PSset = {PSid − 15, PSid − 10, , PSid − 5, PSid}, where
PSid is the population size of the idth problem previously
mentioned.

https://drive.google.com/open?id=1hvI1OF9tuobivw28R1lXrFSuGrq-Zj5q


1) Quality of solutions: Considering the quality of the
solutions obtained (see Tables 1 and 2 in the supplementary
material file), it was found that all the algorithms obtained the
optimal solutions for all problems, except for g20 and g22, and
CMA-ES for g2. To our knowledge, no feasible solution has
been found for g20 in the literature. Considering the average
fitness values obtained, a summarized comparisons is given in
Table I, which reveals that the proposed method adds benefits
to the optimization algorithms considered.

TABLE I
SUMMARIZED COMPARISON BASED ON THE QUALITY OF THE SOLUTIONS

Variants Average fitness values
Better Similar Worse

E-MODE(proposed) vs.E-MODE(random) 7 15 0
DE1(proposed) vs.DE1(random) 7 15 0
DE2(proposed) vs.DE2(random) 7 14 1

CMAES(proposed) vs. CMAES (random) 5 13 4
DE-AOPS(proposed) vs.DE-AOPS(random) 4 17 1

2) Statistical validation: Statistically speaking, the
Wilcoxon signed rank test [22] was carried out with a
significance level of 5%. Three symbols (+, −, and ≈)
were used, with the first, second and third symbol meaning
that the optimization algorithm with the proposed method
was statistically superior, inferior and similar to the same
algorithm with a uniform initialization, respectively. The
results in Table II show E-MODE, DE1 and DE2 were
superior to those adopting a uniform initialization. However,
there was no significant difference between the CMA-ES
variants. The same also occurred for the DE-AOPS variants.
However, if we considered a significance level of 10%,
DE-AOPS with the proposed method would statistically
outperform the other variants.

TABLE II
WILCOXON TEST RESULTS BETWEEN EACH ALGORITHM WITH PROPOSED
AND UNIFORM INITIALIZATION METHODS BASED ON AVERAGE FITNESS

VALUES OBTAINED

Algorithms p
E-MODE(proposed) vs. E-MODE(uniform) 0.012(+)
DE1(proposed) vs. DE1(uniform) 0.012(+)
DE2(proposed) vs. DE2(uniform) 0.021(+)
CMA-ES(proposed) vs. CMA-ES(uniform) 0.671(≈)
DE-AOPS(proposed) vs. DE-AOPS(uniform) 0.08(≈)

3) Computational time: To further show the benefit of the
proposed method, the average savings in both (1) average
fitness evaluations, and (2) computational time to reach the
optimal solution with a threshold of 1e − 04 in the objective
value (

∣∣∣f (−→x best,t)− f
(−→
x∗
)∣∣∣ ≤ 1e − 04, where f (−→x best,t)

and f
(−→
x∗
)

are the fitness values of the best feasible vector
at generation t and the optimal solution, respectively), were
computed, as shown in Table III. Note that all experiments

were run on a PC with a Core(TM) i7-3770 CPU @ 3.40GHz,
16 GB RAM and Windows 7 using MATLAB 8.5.0.197613
(R2015a). The results show that up to 9.00% and 12.64%
savings in the average fitness evaluations and computational
time were achieved, respectively.

TABLE III
AVERAGE SAVINGS IN AVERAGE FITNESS EVALUATIONS AND TIME

Avg. FFEs (saving%) Average computational time (saving%)
random proposed random proposed

E-MODE 78102.2 72131.82 (7.64%) 11.15 9.74 (12.64%)
DE1 79994.77 72797.27 (9.00%) 9.86 9.05 (8.13%)
DE2 82852.91 76492.65 (7.68%) 9.723 8.97 (7.77%)

CMA-ES 79859.49 75464.49 (5.5%) 9.73 9.39 (3.5%)
DE-AOPS 59855.6 58514.07 (2.24%) 9.813 8.98 (8.46% )

4) Feasibility rate: It was also important to calculate the
feasibility rate (FR) of the initial population (the ratio of the
feasible solution (those with Θ = 0) to PS) generated by both
methods. The results shown in Table IV demonstrate that the
proposed initialization method was able to have more feasible
solutions than those generated by a uniform initialization. It
is important to mention that for g2, the reason for getting a
high FR by the uniform initialization method was the way
in which the initial points were selected from PStotal. To
clarify, as discussed in II-C, some infeasible solutions might be
preferred rather than feasible ones, as τ > 0, but such behavior
may be convenient considering the usefulness of infeasible
solutions reported in the literature [23]. In addition, the FR of
the population during the evolutionary generations was higher
in case of using the proposed initialization, as depicted in
Figure 2. For g03 and g15, there is a sharp drop in the number
of feasible solutions at 100K FFs, due to the way equality
constraints are handled, in which, each he was relaxed with
a parameter εe which adaptively reaches 0.0001 at 100, 000
FFs.

TABLE IV
FEASIBLE RATE OF THE INITIAL SOLUTIONS GENERATED BY UNIFORM

AND THE PROPOSED INITIALIZATION METHODS

Prob FR in initial population Prob FR in initial population
random proposed random proposed

g1 0.00% 25.61% g13 0.00% 0.00%
g2 100.00% 76.19% g14 0.00% 0.00%
g3 0.00% 3.91% g15 0.00% 0.00%
g4 27.56% 38.92% g16 0.00% 0.00%
g5 0.00% 0.00% g17 0.00% 0.00%
g6 0.00% 0.00% g18 0.00% 1.00%
g7 0.00% 0.00% g19 32.64% 63.96%
g8 0.54% 5.68% g20 0.00% 0.00%
g9 0.49% 25.73% g21 0.00% 0.00%
g10 0.00% 0.00% g22 0.00% 0.00%
g11 0.08% 4.12% g23 0.00% 10.14%
g12 4.96% 89.04% g24 44.84% 74.76%

5) Convergence pattern: About the convergence rate,
both E-MODE variants were selected, due to their good
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Fig. 2. Percentage of feasible solutions in each generation for E-MODE with both initialization methods

performance, to depict their convergence plots, as shown
in Figure 3, with the proposed method adding benefits to
E-MODE by making it faster to converge to high-quality
solutions. It is worth mentioning that, for g12, E-MODE with
the proposed method was able to obtain the optimal solution,
which was at the corner of search space, in the first generation.
Note that in problems with equality constraints, i.e., g3, g17

and g23, the curves go below the optimal solution and then go
up, due to the way the equality constraints were handled, in
which, each he was relaxed with a parameter εe, as discussed
in II-B.

6) Comparison with other initialization methods: To show
the benefit of the proposed method, all the algorithms
previously adopted were run with two other initialization
methods (LHS and OBL-uniform) and their performances
were compared to those of a variant with the proposed
initialization method. Then, the average savings in the average
fitness evaluations and time were recorded. As presented
in Table V, all the algorithms with the proposed method
showed similar or superior performance to those with LHS
and OBL-uniform. It was also interesting to observe that
there was no difference between CMA-ES with LHS and its
version with our proposed method. However, CMA-ES with
the proposed method was able to save the average time and
fitness evaluations compared with the same algorithm with the
OBL-uniform method.

Regarding the quality of solutions, a closer inspection of
Table V shows that algorithms with the proposed method
have the ability to obtain better average results than those
with the other initialization methods. However, no significant
differences were found among algorithms, except DE1, in
which the variant with the proposed method was statistically
better than that with the OBL-uniform method.

7) Parameters analysis: The new parameter introduced by
the proposed method is γ . Therefore, in this subsection, its
effects are analyzed. To do this, we selected one algorithm
from above mentioned ones: E-MODE. This algorithm was
ran with different values of γ, namely, γ = 10, 15, 20, 30 and

40.
The first set of analyses examined the impact of γ on the

quality of the solutions. The results show that all the variants
were able to attain the optimal solution for the majority of
test problems, with minor differences appearing in g2, g13, g17

and g21. Nevertheless, it was hard to determine the best one.
This was also the conclusion after carrying out the statistical
test (Table VI), in which no significance difference was found
among all the variants. To decide which one to use. The
average ranks of all the variants based on the Friedman test
were calculated (Table VII), and the results revealed that E-
MODE with γ = 10 had the best performance, although no
big differences were found.

The second set of analyses examined the impact of γ on
the average fitness evaluations required to reach one of the
stopping criteria mentioned in Section III-3. The results shown
in Table VIII reveal that increasing the value of γ leads to an
increase of the average fitness evaluations.

A. Solving the CEC2010 Benchmark

In this section, the performance of the proposed method
is evaluated on the CEC2010 test suite with 30D. Two
algorithms (E-MODE and DE-AOPS) which showed good
performance in solving the CEC2006 test suite were run 25
times for each test problem, using as a stopping criterion
600, 000 fitness evaluations. The average fitness errors from
the best known solutions

(∣∣∣f (−→x best,t)− f
(−→
x∗
)∣∣∣) were

considered successful when an algorithm achieved an average
fitness error lower than 1.00E−04 and the result was presented
as zero.

The average fitness errors are shown in Tables 3 and 4 in
the supplementary material document. In terms of solutions
quality, it is clear from the comparison summary shown in
Table IX that E-MODE with the proposed method was superior
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Fig. 3. Convergence plots for E-MODE with random and the proposed initialization methods

TABLE V
COMPARISON SUMMARY OF DIFFERENT ALGORITHMS WITH BY PROPOSED INITIALIZATION METHOD WITH RESPECT TO THE LHS AND OBL-UNIFORM

ONES

Algorithm Variants better similar worse St. Test Saving
Avg. FFE avg. time

E-MODE proposed vs. LHS 6 15 1 0.091 (≈) 10.53% 6.73%
proposed vs. OBL-uniform 4 16 2 0.917 (≈) 5.62% 9.11%

DE1
proposed vs. LHS 4 17 1 0.225 (≈) 6.16% 11.80%
proposed vs. OBL-uniform 7 15 0 0.018 (+) 7.91% 14.09%

DE2
proposed vs. LHS 4 16 2 0.753 (≈) 7.00% 9.45%
proposed vs. OBL-uniform 4 15 3 0.612 (≈) 6.45% 10.71%

CMA-ES proposed vs. LHS 6 11 5 0.790 (≈) ≈ 0% ≈ 0%
proposed vs. OBL-uniform 7 10 5 0.875 (≈) 5.11% 3.94%

DE-AOPS proposed vs. LHS 1 19 2 1.000 (≈) ≈ 1% 3.44%
proposed vs. OBL-uniform 4 16 0 0.068 (≈) 2.13% 4.51%

TABLE VI
COMPARISON SUMMARY OF E-MODE WITH DIFFERENT VALUE OF γ

E-MODE Variants better similar worse St. Test
γ = 10 vs. γ = 15 4 17 1 0.500 (≈)
γ = 10 vs. γ = 20 4 18 0 0.068 (≈)
γ = 10 vs. γ = 30 4 18 0 0.068 (≈)
γ = 10 vs. γ = 40 3 18 1 0.456 (≈)

TABLE VII
AVERAGE RANKS OF E-MODE WITH DIFFERENT VALUE OF γ (BASED ON

THE FRIEDMAN TEST)

γ = 10 γ = 15 γ = 20 γ = 30 γ = 40
2.7 2.93 3.09 3.18 3.09

to the other variants. Moreover, there was a bias towards DE-
AOPS with the proposed method in terms of the number
of problems in which it was successful in obtaining better
solutions.

Statistically, E-MODE with the proposed initialization
method was superior to the random initialization technique,

TABLE VIII
AVERAGE FFE FOR E-MODE WITH DIFFERENT VALUE OF γ

γ = 10 γ = 15 γ = 20 γ = 30 γ = 40
72131.82 73996.53 74881.74 76005.8 75107.37

while no difference was observed with respect to the two
other variants. However, if we set the confidence level to 90%,
E-MODE with the proposed initialization technique would
statistically outperform the variant using the LHS method.
For the DE-AOPS variants, none of these differences were
statistically significant.

Further analysis showed that the proposed method helped E-
MODE to save the average fitness evaluations by up to 1.92%.
This rate increased to 5.80% when the proposed method was
incorporated in DE-AOPS.

Based on the Friedman test, what stands out in Table X is
that the proposed method was consistently ranked first with
both algorithms. Interestingly, it was found that the random
initialization method was the worst-performing method with
E-MODE, but it outperformed the LHS method when they
incorporated it in DE-AOPS.

TABLE IX
SUMMARY OF THE COMPARISON OF E-MODE WITH THE PROPOSED

METHOD WITH RESPECT TO THE OTHER METHODS

Algorithm Variants better similar worse St. Test FEs saving

E-MODE
proposed vs. LHS 6 11 1 0.063 (≈) 1.37%
proposed vs. OBL 7 10 1 0.123 (≈) 0.82%
proposed vs. Random 7 11 0 0.018 (+) 1.92%

DE-AOPS
proposed vs. LHS 8 7 3 0.248 (≈) 4.14%
proposed vs. OBL 4 11 3 1.000 (≈) 5.80%
proposed vs. Random 7 6 5 0.530 (≈) 4.01%



TABLE X
AVERAGE RANKS, BASED ON THE FRIEDMAN TEST FOR DIFFERENT

VARIANTS OF E-MODE AND DE-AOPS WITH DIFFERENT INITIALIZATION
METHODS

proposed LHS OBL-uniform Random
E-MODE 2.00 2.64 2.69 2.67
DE-AOPS 2.28 2.78 2.42 2.53

IV. CONCLUSIONS AND FUTURE WORK

For any EA, starting the evolutionary process with a
good set of solutions could affect its performance in solving
COPs. As a consequence, researchers have proposed several
initialization methods to tackle this aspect. However, such
existing initialization approaches could not get any direct
information about the objective function and constraints being
optimized. Recently, a new deterministic space filling approach
showed its advantages, but it was only adopted to solve
unconstrained problems. Therefore, in this paper, the approach
was extended to solve COPs. In it, a set of solutions was
systematically generated, and based on both the objective and
constraints values, a subset of solutions was selected using an
automatic selection procedure.

Based on the CEC2006 benchmark problems, the proposed
approach was incorporated into five algorithms. In comparison
with a uniform initialization method, the results showed that
the algorithms with the proposed method were able to (1)
achieve better solutions, (2) attain an average saving in time
of up to 12.64% , (3) save the average fitness evaluations
by 9.00%, and (4) attain a higher feasibility rate in the
initial solutions and throughout the execution of the algorithm.
All the algorithms with the proposed method were then
compared with the same ones with LHS and OBL-uniform
initialization methods. The results confirmed the superiority
of the proposed method in saving both computational time
and fitness evaluations. Also, it is concluded that setting γ at
a value of 10 could achieve good results.

Further analysis was conducted by solving the CEC2010
test suite. Two algorithms were run with four initialization
methods, with the proposed one achieving better results and/or
reducing the average fitness evaluations. Also, it was observed
that the proposed method was consistently ranked first based
on a statistical test, while other methods might perform well
with one algorithm, and poorly with another.

In terms of directions for future research, further work could
investigate the performance of the proposed method in solving
large-scale problems. Another possible area of future research
would be to investigate how to use the initialization method
in determining the set of operators and/or parameters to use
in an optimization algorithm.
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