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Abstract- In this paper, we present two hybrid particle
swarm optimization (PSO) algorithms that incorporate a
mutation operator similar to the one used with evolution-
ary algorithms. We study our hybridized PSO algorithm
with two schemes called ���������
	 and � �������
	 , and we
apply them to multimodal functions. The proposed ap-
proaches are validated using test functions taken from the
specialized literature, and our results are compared with
respect to those obtained by other highly competitive PSO
algorithms. Our comparative study indicates that the hy-
bridization of PSO with a non-uniform mutation operator
significantly improves its performance when dealing with
multimodal functions.

1 Introduction

The algorithm now known as particle swarm optimization
(PSO) was introduced by James Kennedy and Russell Eber-
hart in 1995 [8]. PSO is a population-based heuristic search
technique in which each particle represents a potential solu-
tion within the search space and it is characterized by a posi-
tion, a velocity and a record of its past performance. At each
flight cycle, we evaluate the objective function for each par-
ticle with respect to its current position. The obtained value
measures the quality of the particle (the equivalent to the fit-
ness value used in evolutionary algorithms).

In the original PSO algorithm, particles “fly” through the
search space influenced by two factors: a) the best position of
the particle (as recorded in its history), and b) the best global
position reached by any particle from the swarm (or popula-
tion). The equations adopted are the following:
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where 
�� ���#� is the velocity of particle 4 in the 5 th dimension,
�
� and �-, are weights applied to the influences of the best po-
sitions obtained so far by particle 4 and to the best particle
in the swarm � ; ��� and �2, are random values (using a uni-
form distribution) in the interval 6 798;:;< . After the velocity is

updated, the new position of the particle 4 is updated in its
5 th dimension using equation 2. This process is repeated for
each dimension of the particle 4 and for all the particles in the
swarm.

In further work, Shi and Eberhart [15] introduced the con-
cept of inertia factor, = , whose goal is to control the amount
of a particle’s previous velocity that will be kept. In conse-
quence, equation 1 is now expressed as:
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In related work, Kennedy and Eberhart [7] studied the effects
of using neighborhoods in PSO. Further related work can be
found in several other references (see for example [7, 6, 9,
13]).

In this paper, we are particularly interested in the topology
called � �����
	 , which includes in its neighborhood only to the
nearest neighbors in terms of the particles’ indices. In this
model, equation 3 is expressed as follows:
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where " F � represents to the best particle in the neighborhood
of particle 4 , instead of the best global particle (i.e., with re-
spect to the entire swarm).

Recently, other authors have proposed a hybridization of
PSO with evolutionary algorithms concepts [5]. Some time
before, Angeline had already proposed a hybrid swarm that
uses the original PSO algorithm combined with the concept
of selection [2].

The main goal of this paper is to evaluate the performance
of two proposed PSO models (a global best and a local best
model) when applied to multimodal optimization. For that
sake, a well-known benchmark is adopted and results are
compared with respect to other PSO-based approaches pre-
viously reported in the literature. The remainder of the paper
is organized as follows. Section 2 describes the algorithm
that implements our PSO global model using mutation. Sec-
tion 3 describes the algorithm that implements our PSO local
best model using mutation. Section 4 provides a description



of the test functions adopted for our study. The parameters
fine-tuning and the experimental design are described in Sec-
tion 5. Section 6 provides our results and their comparison
with respect to previous PSO-based algorithms reported in
the specialized literature. Finally, Section 7 states our con-
clusions and some possible paths for future research.

2 Global Best Model

Figure 1 shows the pseudo-code of the global PSO model
adopted in this paper. This version of the algorithm is called
“synchronous” because the evaluation to find the best global
particle is done between iterations (the first time is done on
line 9, just before entering the flight loop) and all the particles
are updated before performing the next leader selection (line
26).

The mutation operator that we adopted is the non-uniform
mutation proposed in [12]. If we assume a chromosome
(under real-numbers representation) ���� ��� 
 � 8������
8 
	��

( 	 is the generation number), and if the element to be mu-
tated is 

� , then the new chromosome will be ����� �� ���
 � 8������
8 
��� 8������
8 
	��
 , where:
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� * if a random digit is 0
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�!��� � * if a random digit is 1
(5)

and � � and ��� are the lower and upper bounds of the
variable 
 � . The function �  	 8��9* returns a value in the
range 6 708��'< such that the probability of �  	 8��9* being close
to 0 increases as 	 increases. The function suggested by
Michalewicz (and adopted in our work) is [12]:�  	 8��9*����� "!G: � �  �$#�%& *('() (6)

where � is a random number in the range 6 7*�+�@:-< , , is the total
number of generations and � is a system parameter determin-
ing the degree of dependency on iteration number (we used� �.- , as suggested in [12]).

Note that in this work we argue that the use of a non-
uniform mutation operator (such as the one previously de-
scribed) combined with PSO introduces the diversity neces-
sary to avoid getting trapped in local optima when dealing
with multimodal functions. Thus, our hypothesis was that
by using such a non-uniform mutation operator, even rela-
tively simple topologies (such as the two models adopted in
our work) would become highly competitive when dealing
with multimodal functions.

3 Local Best Model

Figure 2 shows an asynchronous version of PSO with neigh-
borhoods. In this case, when a particle needs to be updated,
we look for the best particle within the neighborhood and
such particle influences the velocity of the particle to be up-
dated. It is important to note that, in this case, the neighbors

that are to the left of the particle to be updated have already
been updated, whereas those to its right are pending. The
same mutation operator described in the previous section was
adopted in this case.

The two models proposed in this paper (the global best
and the local best) follow Carlisle’s suggestions [4], whom
indicated that it seems natural to work with a synchronous
PSO when using the � �����;	 model and with an asynchronous
PSO when working with an � �����
	 model.

4 Test Functions

To validate our approach, we chose several multimodal func-
tions. The functions selected turn out to be difficult for any
search algorithm because of their several local minima which
can produce premature convergence. Note, however, that in
all cases, a single global optimum exists. Diversity is a key
issue to avoid premature convergence in our PSO approaches
and mutation will be the operator responsible for maintaining
such required diversity, regardless of the topology adopted
(either the global or the local best models).

Note that the functions selected have been widely studied
by PSO researchers [10, 16, 13, 5, 14, 1, 11] and, in general,
provide a good mixture of test functions in terms of complex-
ity. The easiest of these functions is Ackley’s function and
the most difficult is Schwefel’s function. Their mathematical
descriptions are provided next.
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2. Griewank’s function:
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where
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optimum.

3. Ackley’s function:
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where
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optimum.



1. Swarm Initialization
2. for 4 � : to number of particles do
3. for 5 � : to number of dimensions do
4. Initialize 1 �#� with a ��2��$ ���� 4 2�8���� % 1 * value
5. Initialize 
 ��� with zero value
6. copy 1 �#� in "$�#�
7. end
8. end
9. Search the best global leader and record its position in �
10. Swarm flight through the Search Space
11. do
12. for 4 � : to number of particles do
13. for 5 � : to number of dimensions do
14. Update 
 �#� using " ��� and 1 �#�
15. Prevent explosion of 
 �#�
16. Update 1 ���
17. if  ����� " 2
	�� ��� � � 	 � 	 %�� ����� " �A"0��� � �
	 	 *
18. then Mutate 1 ���
19. fi
20. end for
21. Evaluate fitness  1 � *
22. if fitness  #" � * � fitness  1 � *
23. then update " �
24. fi
25. end for
26. Search the best global leader and record its position in �
27. while  ����� " 2
	�� ��� � � 	 � 	 %'� ����� "&*

Figure 1: General outline of the synchronous g-PSO Algorithm

4. Schwefel’s function:
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where
/ �  �01"C * � 7 for 01"C �  C798 798��+�D� 8 7G* is the global

optimum.

5 Experimental Setup

Table 1: Function parameters
Function n Xmin Xmax/ � 30 � -V� :�@ -S�@:N@/ , 30 ��� 7 7 � 7 7/ L

30 � \ 7 \ 7/ �
30 � - 7 7 - 7 7

The parameters adopted for our two PSO models are
shown in Table 1 for each of the test functions previously
indicated. Note that in all cases we used the same number of

dimensions (30) and that the only difference were the ranges
of the variables.

In all our experiments, we used 20 particles, and 10,000
iterations (i.e., a total of 200,000 evaluations of the objective
function). The values of the additional parameters are the fol-
lowing: � � � � , � :
� \ , = � 7V� \ , initial mutation rate =
0.9 (this value decreases as the iteration number increases),
neighborhood radius = 4 (20% of the population size as sug-
gested in [9]). The values of these parameters were empiri-
cally derived after performing a set of experiments.

All our experiments were conducted on a Notebook Com-
paqPresario 1692 with an AMDK62 processor running at 450
Mhz and with 96 MB of RAM. The algorithms were imple-
mented under the Linux operating system, using the GNU
C++ compiler. For each of the test functions previously de-
scribed, we performed 100 runs per model (global and local).

6 Comparison of Results

We compare results with respect to Peer et al. [13], who
studied 6 different neighborhood topologies for the so-called
guaranteed convergence PSO (GCPSO) [16]. We used the
same number of fuction evaluations as Peer et al. [13] to al-
low a fair comparison of results.



1. Swarm Initialization
2. for 4���: to number of particles do
3. for 5 ��: to number of dimensions do
4. Initialize 1 �#� with a ��2��$ ���� 4 2�8���� % 1 * value
5. Initialize 
 ��� with zero value
6. copy 1 �#� in "&���
7. end
8. end
9. Swarm flight through the Search Space
11. do
12. for 4 � : to number of particles do
13. Search better in the � 2 � 4 ���$� ��� � ����� of particle 1 � and record it in �
14. for 5 � : to number of dimensions do
15. Update 
 ��� using " �#� and "0F �
16. Prevent explosion of 
 �#�
17. Update 1 �#�
18. if  ����� " 2
	�� ��� � � 	 � 	 %'� ����� " �A"0��� � �
	 	 *
19. then Mutate 1 ���
20. fi
21. end for
22. Evaluate fitness  1 � *
23. if fitness  #" � * � fitness  1 � *
24. then update " �
25. fi
26. end for
27. while  C����� " 2
	�� ��� � � 	 � 	 %�� ����� " *

Figure 2: General outline of the asynchronous l-PSO Algorithm

Peer et al. [13] use the prefixes � and � to identify if
GCPSO ( � ) or standard PSO ( � ) are being used. The sub-
scripts � , � and 
 refer to the neighborhood topology used:� �����
	 ( � ), � �����
	 ( � ) or von Neumann ( 
 ). We use the prefix �
(for mutation-extended PSO) and subscripts � (global model)
and � (local model). We follow Peer et al.’s notation in which1  � * is reported, where 1 is the average value obtained and� is the standard deviation of the results. We also indicate
the median and the average range between the best and worst
values obtained.

From Table 2, we can see that both our global and our lo-
cal models outperformed the 6 models studied in [13]. Our
� �����
	 model was able to converge to the global optimum of
Rastrigin’s function without much difficulties. In this case,
the mean of the number of iterations at which the best solu-
tion was reached by our � �����
	 model was 7763 (median was
7787) with an average processing time of 15 seconds (these
values are not reported by Peer et al. [13]).

On Table 3 we can see the comparison of results between
our two PSO models and the 6 topologies adopted by Peer et
al. [13] when dealing with Griewank’s function. In this case,
results are similar, although we can see that the �3F algorithm
found the best average values with the lowest standard devi-
ation. In this case, the mean of the number of iterations at

which the best solution was reached by our � �-���
	 model was
7178 (median was 7160) with an average processing time of
18.5 seconds

On table 4, we can see that for Ackley’s funcion, our two
models had perfect convergence in the 100 runs performed
(i.e., in all the runs, the entire swarm converged to the global
optimum). This contrasts with the performance presented by
the 6 topologies studied by Peer et al. [13]. � F had the best
average behavior from the 6 topologies studied by Peer et al.,
but still was unable to achieve perfect convergence in all the
runs performed. In this case, the mean of the number of it-
erations at which the best solution was reached by our � �-���
	
model was 7763 (median was 7787) with an average process-
ing time of 15 seconds

On table 5, we compare our two PSO models with respect
to the 6 PSO topologies studied by Peer et al. [13] in Schwe-
fel’s function. Note that in this case, our two models again
presented better average results than any of the other tech-
niques with respect to which were compared. Not only are the
average and the median values lower for our two PSO mod-
els, but also their corresponding standard deviations. In this
case, the mean of the number of iterations at which the best
solution was reached by our � �����;	 model was 8911 (median
was 8918) with an average processing time of 15.5 seconds.



Table 2: Comparison of results for Rastrigin’s function. We compare our 2 models ( � / and � F ) with respect to the 6 topologies
studied in [13].

Algorithms 1  � * Median Range
� / 71.925 (18.692) 71.637 [31.839:139.29]
� F 61.202 (15.415) 60.692 [27.859:93.526]
� � 55.837 (14.501) 54.723 [29.849:99.496]
� / 72.204 (18.678) 68.652 [29.849:136.31]
�+F 64.567 (14.941) 63.677 [31.839:112.43]
� � 54.355 (15.353) 51.738 [22.884:98.501]
� / 46.891 (15.554) 45.031 [4.4447:119.50]
� F 3.0016 (3.8211) 2.6209 [0.0000:42.796]

Table 3: Comparison of results for Griewank’s function. We compare our 2 models ( � / and � F ) with respect to the 6 topologies
studied in [13].

Algoritmos 1  � * Median Range
� / 0.0162 (0.0219) 0.0074 [1e-19:0.1077]
� F 0.0039 (0.0075) 1e-19 [1e-19:0.0393]
� � 0.0104 (0.0145) 0.0074 [0.000:0.8549]
�A/ 0.1353 (0.3154) 0.0405 [2e-19:2.1642]
�+F 0.0051 (0.0086) 1e-19 [0.000:0.0394]
� � 0.0134 (0.0190) 0.0074 [0.0000:0.0903]
� / 0.0253 (0.0224) 0.0193 [0.0247:0.0247]
� F 0.0014 (0.0047) 0.0000 [0.0000:0.1367]

Table 4: Comparison of results for Ackley’s function. We compare our 2 models ( � / and � F ) with respect to the 6 topologies
studied in [13].

Algoritmos 1  � * Median Range
� / 2.0181 (1.3102) 1.9565 [1e-14:9.3975]
� F 0.2794 (0.5424) 7e-15 [7e-15:2.221]
� � 0.6824 (0.8269) 7e-15 [4e-15:2.5799]
�A/ 3.6708 (1.5625) 3.3444 [3e-14:8.9018]
�+F 0.0667 (0.2676) 7e-15 [7e-15:1.3404]
� � 0.7098 (0.8450) 7e-15 [4e-15:2.8870]
� / 0.0000 (0.0000) 0.0000 [0.000:0.0000]
� F 0.0000 (0.0000) 0.0000 [0.000:0.0000]

Table 5: Comparison of results for Schwefel’s function. We compare our 2 models ( � / and � F ) with respect to the 6 topologies
studied in [13].

Algoritmos 1  � * Median Range
� / 4539.0 (706.06) 4550.2 [2882.2:6534.1]
� F 4762.1 (509.36) 4797.8 [3395.3:5863.1]
� � 4496.9 (707.83) 4451.5 [2862.3:6356.5]
�A/ 4535.6 (722.33) 4510.8 [2803.1:6179.5]
�+F 4634.0 (642.22) 4609.5 [2329.4:6219.5]
� � 4273.4 (565.86) 4333.1 [2664.9:5449.1]
� / 1498.9 (304.60) 1500.2 [1498.9:1498.9]
� F 1832.9 (192.00) 1255.2 [1305.2:11390.]

In general, we can see from the results presented that our
two PSO models presented a highly competitive performance.
It is also worth noticing that such a performance improved

when dealing with more complex functions (e.g., Rastrigin’s
and Schwefel’s functions), where the 6 PSO topologies stud-
ied by Peer et al. [13] presented a much poorer performance.



We believe that this good performance of our two models
is mainly due to the exploratory power of our non-uniform
mutation operator, which avoids that PSO gets easily trapped
in local optima. This is particularly important when deal-
ing with highly multimodal functions such as those studied
in this paper and therefore the better behavior of our two ap-
proaches. It is also important to indicate that in the study con-
ducted by Peer et al. [13], at least one of the topologies com-
pared (von Neumann’s topology) requires a more complex
implementation. This additional implementation complexity
was compensated by a better performance with respect to the
other 5 topologies analyzed by Peer et al. [13]. However, in
this paper we have shown that the simple addition of a mu-
tation operator can considerably improve on the performance
of a PSO algorithm even without using a complex topology,
at least when dealing with multimodal functions.

7 Conclusions and Future Work

In this paper, we have addressed the use of particle swarm op-
timization in multimodal optimization. There is evidence in
the literature related to the fast convergence properties of PSO
[9]. However, such a fast convergence can sometimes be-
come premature convergence, because PSO approaches may
get trapped in local optima from which they cannot escape.
This undesirable behavior seems to be evident mainly in mul-
timodal function where many false attractors (i.e., local op-
tima) exist and there is only one global optimum that we wish
to reach.

In this paper, we have proposed the use of two simple PSO
models (based on neighborhoods) hybridized with a non-
uniform mutation operator taken from the evolutionary algo-
rithms literature. Our main hypothesis revolved around the
fact that mutation is a powerful diversity maintenance mech-
anism and thus, we thought that adding it to PSO would im-
prove its performance particularly when dealing with multi-
modal functions.

To validate our hypothesis, we compared our two PSO
models with respect to the 6 PSO models studied by Peer et
al. in a recent paper [13]. Our results indicate that our hybrid
PSO models outperform the other highly competitive (and in
some cases more complex) PSO topologies studied by Peer et
al. [13]. We could see that our local best model ( � �����;	 ) had
the best overall performance of all the approaches compared.
Our local best model outperformed our global best model (ex-
cept in Ackley’s function in which both models achieved per-
fect convergence), which seems to indicate that local neigh-
borhoods may be more useful for multimodal optimization
than global neighborhoods.

As part of our future work, we intend to extend our two
PSO models to non-stationary environments (i.e., dynamic
functions) [3]. In order to do that, we will certainly need
to use additional mechanisms that allow PSO to better track
a moving target. For that sake we also intend to use some
of the mechanisms that have been developed for evolutionary

algorithms [4].
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