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Abstract. From among the many techniques currently available to solve
multi-objetive optimization problems (MOPs), an alternative is the use of
multi-objective artificial immune systems (MOAISs). This sort of meta-
heuristic emulates immune processes using computational resources, with
the aim of solving MOPs. MOAISs have mechanisms such as the clonal
selection principle as well as positive and negative selection, that make
them powerful search tools. In recent years, there have been proposals
of MOAISs that adopt selection schemes that are more appropriate to
deal with many-objective problems (i.e., problems having more than 3
objectives), from which decomposition has been a popular choice. We
propose here a new MOAIs called “Multi-objective Artificial Immune
System based on Decomposition” (MOAISDX). The performance of our
proposed approach is compared with respect to that of NSGA-II and
MOEA/D, as well as with respect to four recent MOAISs. The results
obtained from this comparative study show that MOAISDX outperforms
NSGA-II and obtains results similar to those of MOEA/D in most of the
adopted test instances. Furthermore, MOAISDX has better performance
than that of the other MOAISs compared, particularly as we increase
the number of objectives.

Keywords: Multi-objective optimization · Artificial immune systems ·
Decomposition

1 Introduction

Multi-objective optimization involves the solution of problems that consist of
two or more (often conflicting) objective functions. Assuming minimization, a
multi-objective optimization problem (MOP) is defined as:

minimize f⃗(x⃗) := [f1(x⃗), f2(x⃗), . . . , fk(x⃗)] , (1)

subject to:
gi(x⃗) ≤ 0 i = 1, 2, . . . ,m (2)

hi(x⃗) = 0 i = 1, 2, . . . , p (3)
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where x⃗ = [x1, x2, . . . , xn]
T is known as the decision vector, fi : IRn → IR,

i = 1, ..., k are the objective functions and gi, hj : IRn → IR, i = 1, ...,m, j =
1, ..., p are the constraint functions. The goal in multi-objective optimization is
to find a set of solutions that represent the best trade-offs among the objective
functions. To identify the quality of such solutions we utilize the concept of
Pareto dominance. Given two vectors x⃗, y⃗ ∈ IRn, x⃗ is said to dominate y⃗, denoted
as x⃗ ≺ y⃗, if f⃗(x⃗) ≤ f⃗(y⃗) and f⃗(x⃗) ̸= f⃗(y⃗) (given that x⃗ ≤ y⃗ if xi ≤ yi for
i = 1, ..., n). A vector x⃗ is said to be nondominated with respect to X ⊂ IRn if
there is no other vector y⃗ such that y⃗ ≺ x⃗. We say x⃗ is a Pareto optimal solution,
if x⃗ is nondominated with respect to the feasible region F ⊂ IRn. The set of all
Pareto optimal solutions is known as the Pareto optimal set. The set of all f⃗(x⃗)
such that x⃗ is in the Pareto optimal set is called Pareto front.

Multi-objective artificial immune systems (MOAISs) are a metaheuristic in-
spired on our biological immune system. MOAISs emulate immune processes us-
ing computational resources and are oriented to the solution of multi-objective
problems. Akin to a multi-objective evolutionary algorithm (MOEA), a MOAIS
maintains a population of potential solutions (called antibodies) along the op-
timization process. The aim is to simulate the immune response subjecting the
antibodies to a series of immune operators. In general, a MOIAS undergoes a
series of common steps with an indistinct model [14]:
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Fig. 1. Steps of a generic MOIAS.

– Antigen recognition: The multi-objective problem is recognized as an anti-
gen; in constrained problems the constraint functions are sometimes identi-
fied as antigens.
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– Initialization: A set of randomly initialized potential solutions are desig-
nated as the main population, known as antibodies in decision space.

– Affinity calculation: The affinity between a pair of antigens and antibod-
ies is calculated at each generation.

– Clonal selection: The antibodies with the highest affinities among the
population are selected to undergo a proliferation process. In other words,
to speed up the convergence of the population, more resources are allocated
to more promising areas in the search space.

– Update: The parents with the lowest affinities are replaced by antibodies
with higher affinities and the resulting population becomes the parents for
the next generation.

When the termination criterion is met, the output of a MOAIS is the final
population, which contains an approximation of the Pareto optimal set.

MOAISs are called hybrid algorithms when the design includes non immuno-
logical operators (e.g., a crossover operator). Hybrid MOAISs are far more pop-
ular than pure MOAISs because the lack of crossover severely limits their ex-
ploitation capabilities.

MOAISs based on the clonal selection principle [19] aim to identify antibodies
with high affinities (i.e., the antibodies that are able to bind with a certain
antigen with a high precision) and propagate them, producing a (pre-defined)
number of identical copies or clones. The clones are then mutated according to a
specific metric, which is normally based on their affinity [4]. This allows to guide
the search, changing at higher rates antibodies which are not suitable potential
solutions, while keeping or slightly changing the ones that are. In this way, there
is no need for an explicit control of the relationship between exploration and
exploitation in the search.

Most of the currently available MOAISs are based on Pareto optimality.
These approaches use a procedure called nondominated sorting to rank solu-
tions such that all the Pareto optimal solutions found at a certain generation
have the same probability of being selected [6]. These approaches normally adopt
an additional mechanism (called density estimator) that allows them to maintain
diversity in the population over time. This sort of approach quickly loses effec-
tiveness as we increase the number of objectives, which makes them unsuitable
for problems having more than three objectives (the so-called many-objective
optimization problems). In recent years, there has been some research on the
use of decomposition-based approaches into MOAISs [14], obtaining good re-
sults. In a decomposition-based approach, the main idea is to transform a MOP
into several single-objective problems, which are then solved simultaneously and
in a collaborative manner using neighborhood search [21]. A set of search direc-
tions (weighted vectors) are used together with a scalarizing function to guide
the search [18]. These approaches can be used to solve MOPs with any number
of objectives. Although the effectiveness of decomposition-based approaches is
based on the scalarizing function adopted, there are several choices which are
normally very effective.
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Here, we propose a new decomposition-based MOAIS, adopting a cloning op-
erator and a selection mechanism for sub-problem optimization. Our proposed
approach is called Multi-objective Artificial Immune System based on Decom-
position (MOAISDX).

2 Previous related work

Here, we will briefly review some MOAISs representative of the state of the art
in the area.

The Nondominated Neighbor Immune Algorithm (NNIA) [9] draws inspira-
tion from the clonal selection principle. The decision of which individuals are to
be selected for cloning is made according to the value of their crowding distances.
Because of this mechanism, the resulting approximation sets have a good distri-
bution along the Pareto front because the focus is on selecting the nondominated
antibodies that lie in less populated areas of the Pareto front. NNIA also main-
tains an external archive with nondominated solutions found during the search.
However, it tends to lose population’s diversity and deteriorates its convergence
when increasing the number of objectives due to the use of a selection mecha-
nism based on Pareto optimality. NNIA was originally tested on problems with
only two and three objectives. Its computational complexity is O(N2), where N
is the population size.

The Novel Immune Clonal Algorithm (NICA) [20] uses an approach similar to
NNIA, and it also adopts Pareto optimality to filter out solutions in the popula-
tion. However, unlike NNIA, NICA incorporates Pareto optimality in its cloning
mechanism, since only nondominated solutions undergo the cloning process. In
this MOAIS, the number of clones assigned to each selected solution is the same
regardless of its affinity. NICA also employs the crowding distance to suppress
a nondominated individual at each generation in order to maintain a good dis-
tribution in the resulting set. NICA has the same limitations as NNIA because
it is also based on Pareto optimality. NICA was evaluated on problems with
three objectives, obtaining competitive results. Its computational complexity is
O(N3), where N is the population size.

A Hybrid Evolutionary Immune Algorithm for multiobjective optimization
problems (HEIA) [16] is a hybrid framework for artificial immune systems ori-
ented to solve MOPs. HEIA combines immune mechanisms with evolutionary
operators to improve the search capabilities of a pure MOAIS. It adopts recom-
bination and mutation schemes in different randomly generated sub-populations
trying to find a compromise between proximity and diversity in the final approxi-
mation set. Its selection strategy involves categorizing the solutions as dominated
and nondominated, as well as removing dominated solutions and sorting the re-
maining solutions according to their crowding distances. HEIA also keeps an
external archive with the nondominated solutions found so far. HEIA is also
based on Pareto optimality. HEIA was tested on the ZDT [24], WFG [10], UF
[22] and DTLZ [7] test suites. It was tested on bi-objective and three-objective
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problems yielding competitive results. It was also reported that HEIA has a
computational complexity of O(N2), where N is the population size.

A Multi-objective Immune Algorithm with Dynamic Population Strategy
(MOIAS-DPS) [17] is a hybrid MOAIS which includes a mechanism to dynami-
cally control the population size based on the current state of its external archive
of nondominated solutions. The aim is to intensify the exploration capacity by
gradually rising the population size when the archive is not full, and decreas-
ing it when it is. MOIAS-DPS was tested on problems having two and three
objectives. MOAIS-DPS is also based on Pareto optimality. Its computational
complexity was not provided.

The Multi-Objective Immune Algorithm with a Decomposition-based Clonal
Selection (MOIA-DCSS) [13] is based on decomposition, so the solutions are as-
sociated to a sub-problem and a weighted vector. The number of clones assigned
to each individual depends on the improvement of the associated sub-problem
through generations. To update the population, the largest relative improvement
with regard to the scalarizing function is used to determine if a new solution re-
places the current solution. MOIA-DCSS was validated using the F [11], UF and
WFG test suites with two and three objectives. Its computational complexity
was not provided.

The Vertical Distance-based clonal selection mechanism for MOIAs (VD-
MOAI) [12] utilizes a decomposition approach coupled with the Tchebychev
scalarizing function. The algorithm makes use of clonal selection based on the
vertical distance between a solution and the weighted vector associated to a sub-
problem. This method assigns the number of clones to each solution proportional
to the vertical distance and it promotes convergence, focusing also on preserving
diversity by assigning more clones to solutions with lower vertical distances.
VD-MOAI also uses a differential evolution crossover operator. VD-MOAI was
originally tested only with problems having two and three objectives. VD-MOIA
was tested on the WFG, UF and F test suites. Its computational complexity was
not provided.

The Balancing Convergence and Diversity in Multiobjective Immune Algo-
rithm (BCD-MOIA) [15] is a hybrid MOAIS which introduces a cloning opera-
tor to balance population convergence and diversity throughout the search. The
cloning operator has two parts. Convergence is maintained taking into account
the individual’s relative improvement. Diversity is kept by establishing which
individuals are closer to the associated weighted vector. Both metrics are then
combined with a penalty factor which aims to regulate the effect that each value
has on the search. BCD-MOIA was tested on the UF and F test suites, which
consist of bi-objective and three-objective problems. Its computational complex-
ity was not provided.

3 Our proposal

Here, we present the details of our proposed algorithm called Multi-objective Ar-
tificial Immune System based on Decomposition (MOAISDX). The main focus
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in the design of the algorithm is the role of the clonal selection principle com-
bined with additional mechanisms used to regulate the population’s state. Thus,
selection is divided into positive selection and negative selection.

Decomposition The design of our proposed MOAISDX follows the MOEA/D
framework [21]. At each generation, MOAISDX maintains:

– a population of antibodies (Ab) of size n, which represent potential solutions,
– a set of weighted vectors (λ1, λ2, · · · , λn)
– a scalarizing function gtch(·)
– a neighborhood B(·) of size T
– a population of NC of clones C
– an affinity function Aff(·)

In MOEA/D, each sub-problem is solved in a simultaneous and collaborative
manner with the sub-problems within its neighborhood. From the neighboring
solutions, parents are chosen for crossover. The offspring y is then mutated and
used to update the neighborhood or the general population. The criteria used to
decide if the offspring y will replace the current solution x associated to a sub-
problem relies on their scalarizing function values. That is if gtch(y) > gtch(x),
y will replace x as the solution associated to a sub-problem. To avoid filling the
entire population with the same solution, a number of replacements is fixed by
the user. MOAIS keeps a population of clones along the optimization process.
The clone population is being continuously filled with clones, which are copies of
antibodies with the highest affinities. Once this population is full, clones undergo
somatic mutation. The mutation scheme used in MOAISDX is polynomial-based
mutation [5].

Keeping a population of clones is a recurrent mechanism in MOAIS’ designs,
but the clones are used as a pool of parents that are adopted for crossover [14].
Instead of using a single solution (offspring) for the update process, MOAIS uses
the whole population of clones to perform a local or global update. This way, we
take advantage of all mutated clones and, to a lesser extent, of identical clones.
If gscl(ci) < gscl(Abi) then a clone ci replaces the solution Abi associated to the
sub-problem i.

Cloning operator Given that we are aiming to keep a solution set with good
convergence and diversity at each generation, we are faced with the challenge of
selecting solution members that will reflect it. In a decomposition approach, we
select solutions with the lowest possible agregation value given a reference vector
and a scalarizing function. This selection method alone will ensure that we keep
good solutions (according to the scalarizing function of our choice). To make
sure that we build a good repertoire of candidate solutions for the selection,
we propagate solutions that are close to the related weighted vector. In this
paper, we use cosine similarity as an affinity measure. The cosine similarity of
two vectors x⃗ and y⃗ is given by:
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cos(α) =
x⃗ · y⃗√
||x⃗||||y⃗||

(4)

The cosine similarity value of two vectors reflects how close they are in terms
of the angle between them. This value is in the range [0, 1] where 1 indicates
the two vectors are in the same direction and 0 that they are orthogonal to each
other. Cosine similarity is invariant to scale and works well in higher dimensional
spaces.

Linge Li et. al. [12] used the following expression to assign clones to each
individual:

ci =

⌈
|C| × affinity∑|C|

j=0 affinity

⌉

where ci is the number of assigned clones, |C| is the size of the clone population
and affinity is the affinity measure used. In our case, we adopt the value of
cosine similarity of the indivual and its corresponding weighted vector as the
affinity measure, to propagate individuals closely related. Once the number of
clones is calculated, the cloning operator is applied to the selected antibodies.
The cloning operator is given by:

C =

T⋃
i=1

[Abi ⊗ ci]

where ⊗ is the cloning operation, that is, the process used to generate or to
replicate an antibody keeping all of its characteristics intact.

Positive and negative selection Once clones are generated, the population
of clones undergoes mutation. The role of the affinity function is to generate mu-
tation percentages that correspond to the affinities. Namely, the goal is that the
least fit antibodies are subject to a more intensive mutation rate than those who
are more fit according to the following expression pm = exp(−5.0∗affinity value)
[4]. To avoid loss of diversity, MOAISDX inspects all clones to identify which
ones are identical (clones that have not been mutated) and make them can-
didates to be removed from the population. This is called Negative Selection.
The identical clones can be either ignored (become anergic) or replaced by new
randomly generated antibodies. The goal is to keep the population of clones as
diverse as possible and to take care of convergence by setting a limit on the
number of discarded clones.

Positive selection can be interpreted as the process of local/global improve-
ment. That is, each active element in the population of clones C is a candidate
to replace elements of the neighborhood or the main population. A clone can
become the associated solution to a sub-problem if gscl(ci) < gscl(Abj) and
affinity(ci) ≥ affinity(Abj) for i = 1, 2, · · · , |C| and j = 1, 2, · · · , N .
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3.1 Our proposed algorithm

MOAISDX begins with the initialization where the T closest sub-problems to
each sub-problem are computed (neighborhood). At this stage, the main popu-
lation is initialized by randomly generating N antibodies Ab and their objective
values are calculated. In the main loop, we start by updating the reference vec-
tor z∗. Subsequently, cloning takes place by selecting antibodies with the highest
affinities. For each selected antibody, a fixed number of clones is produced ac-
cording to its affinity. When cloning is finalized, the clones are mutated. The
mutation rate is inversely proportional to their affinity value. Negative selection
is then triggered to decrease the number of identical clones, replacing some of
them by new randomly generated antibodies. The last stage is related to lo-
cal/global improvement, where highly fit clone population members take the
place of the associated solution to a particular sub-problem. The whole pro-
cess can be viewed in Algorithm 1. In MOAISDX, recombination is included in
a straightforward way: the parents are chosen from the neighborhood and the
offspring are incorporated in the population of clones. The computational com-
plexity of MOAISDX depends on the main loop; cloning, negative selection, and
mutation each take O(C), where C is the size of the clone population, and the
update takes O(CT ) where T the size of the neighborhood. The computational
complexity of MOAISDX is O(NCT ) in each generation, where N is the size of
the population.

4 Validation of our proposed approach

The performance of our proposed MOAISDX was compared with respect to that
of other state-of-the-art MOAISs and with respect to two MOEAs.

4.1 Experimental settings

16 test problems were used in our experiments, including 7 problems from the
DTLZ test suite (DTLZ1-DTLZ7) and 9 problems from the WFG test suite
(WFG1-WFG9). The number of variables for each problem are given in Table 1.
In the first experiment, all 16 instances were tested with 3 objectives. In the
second experiment, only DTLZ1 was used to explore the capabilities of the al-
gorithm in a high dimensional objective space. Four recent MOAISs were used
in our experiments: BCD-MOIA, HEIA, MOIA-DCSS and VD-MOIA. The pa-
rameters for each algorithm are those suggested in their original articles. For
the MOAISs based on decomposition, the niche size and other decomposition
related parameters are given in Table 1. For MOAISDX, Nc was set equal to the
niche size and NR was set to one. The weighted vectors were generated using the
Das-Dennis approach [3] for 3, 4 and 7 objectives. For 5, 6, 8, 9 and 10 objectives,
the weighted vectors were generated using the Riesz s-Energy method [2].

We adopted the hypervolume indicator [23] to assess performance:

IHV (A : ⃗zref ) =
{
∪volume(v : z⃗ref )|v ∈ A

}
(5)
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Input: MOP, a stopping criterion, N : number of sub-problems, set of
weighted vectors uniformly distributed λi, · · · , λN , T : size of the
neighborhood, Nc : or |C| clone population size , NR : maximum
number of replacements

begin
Initialization;
EP = ∅;
Compute Euclidean distances between any two weighted vectors and
determine the T closest ones for each vector. For each i = 1, · · · , N , find
B(i) = {i1, · · · , iN}, where λi1 , · · · , λiT are the T closest weighted
vectors to λi ;

Randomly generate an initial population Ab1, · · · , AbN or by a problem
specific method. FV i = F (xi);

Update;
while termination criterion not met do

for i = 0 to N do
Reference point update z∗: for each j = 1, · · · , k if zj < fj(y),
then zj = fj(y);

Clone ;
Mutate ;
Negative selection;
Local/global update (positive selection): For each
i = 1, · · · , NC and for each index j ∈ B(i), if
gscl(Ci|λ, z) ≤ gscl(Abj |λ, z) and affinity(Ci) > affinity(Abj)
then Abj = Ci y FV j = F (Ci);

EP update;
end

end
end

Algorithm 1: MOAISDX algorithm

where A is the approximation set and zref is a reference point. For DTLZ1-
DTLZ2, DTLZ4-DTLZ6, the reference point was set to (2, 2, · · · , 2), for DTLZ3
(4, 4, · · · , 4), for DTLZ7 (2, 2, · · · , 2, 8) and for the WFG test suite, it was set to
(3, 5, · · · , 2 ∗ k + 1).

For each experiment, we performed 20 independent runs for each algorithm,
test instance and number of objectives. MOAISDX, MOEA/D and NSGA-II
were implemented in C/C++ in the EMO project framework [1], while BCD-
MOIA, HEIA, MOIA-DCSS and VD-MOIA were implemented in Java in the
jMetal framework [8].

4.2 Experimental results

The results of all our experiments were assessed using the Wilcoxon rank sum
test with a 95% confidence. In the first experiment, we investigated the per-
formance of MOAISDX with respect to 4 recent MOAISs: BCD-MOIA, HEIA,
MOIA-DCSS and VD-MOIA. BCD-MOIA, MOIA-DCSS and VD-MOIA are
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Table 1. Parameters values chosen for the experiments

Parameters/ Number of objectives 3 4 5 6 7 8 9 10
Population size (N) 136 166 175 203 210 240 270 290

Niche size 27 33 35 40 42 54 58 60
SBX parameters pc = 1.0, ηc = 20, ηm = 20

decomposition-based algorithms while HEIA is a hybrid framework which uses
sub-populations, each of which is evolved with a different evolutionary strategy.
BCD-MOIA, HEIA and VD-MOIA require fixed mutation rates which were set
at 1/n, where n is the number of variables. BCD-MOIA, MOAI-DCSS and VD-
MOIA use differential evolution in the optimization process, while MOAISDX
uses SBX and polynomial-based mutation.

In Table 2, we show the comparison of results between our proposed
MOAISDX and the other MOAISs and MOEAs adopted for both test suites
with three objectives. For the DTLZ test suite, MOAISDX outperformed BCD-
MOIA, MOIA-DCSS and VD-MOIA in four out of seven instances and it per-
formed slightly better than HEIA in three out of seven instances. BCD-MOIA,
MOIA-DCSS and VD-MOIA outperformed MOAISDX in three out of seven
instances and HEIA outperformed MOAISDX in three out of seven instances.
MOAISDX shows better perfomance when dealing with problems with multi-
modal and disconnected Pareto fronts, while other MOAISs tend to perform
better when solving uni-modal problems.

When comparing results with respect to MOEAs in the DTLZ test suite,
our proposed MOAISDX outperformed MOEA/D and NSGA-II in 5 and 4 out
of 7 instances. NSGA-II outperformed MOAISDX in 3 out of 7 instances, and
MOEA/D perfomed similarly to MOAISDX in 2 out of 7 instances. In the WFG
test suite, MOAISDX outperformed MOEA/D in 4 out of 9 instances, and it out-
performed NSGA-II in 4 out of 9 instances. MOEA/D outperformed MOAISDX
in 2 out of 9 instances and NSGA-II outperformed MOAISDX in 3 out of 9
instances. MOAISX shows that it is able to deal with different problem charac-
teristics with moderate success, although its performance is best when dealing
with concave, non-separable, parameter-dependent problems.

In the second experiment, as shown in Table 3, we studied the performance
of our proposed MOAISDX with respect to other MOAISs and with respect to
MOEAs in a high dimensional objective space. Although we performed experi-
ments using the same test problems as before, due to space limitations, we will
present here only one test instance with 3 to 10 objectives, but these results
are representative of the behavior of the algorithms adopted in our experimen-
tal study. We selected DTLZ1. The parameters settings for this experiment are
shown in Table 1.

With three, five, six and seven objectives, our proposed MOAISDX out-
performed all the other algorithms in the comparasion. With four objectives,
MOAISDX outperformed all but one algorithm (HEIA), with respect to which
it had a similar performance. With eight and ten objectives, MOAISDX outper-
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formed 5 out of 6 algorithms, showing a similar performance to that of MOEA/D.
With nine objectives, MOAISDX outperformed BCD-MOIA, HEIA, MOIA-
DCSS, VD-MOIA and NSGA-II. MOAISDX was outperformed by MOEA/D.
In general, MOAISDX performs better when dealing with problems with more
than 3 objectives in the test problem selected.

Table 2. Comparison of the hypervolume values obtained by MOAISDX and four
recent MOIASs and two MOEAs using the DTLZ and WFG test suites with three
objectives. The symbols +,−,∼ indicate whether a result is better, worse or similar.

Test problem/
Algorithm

BCD-MOIA HEIA MOIA-DCSS VD-MOIA MOEA/D NSGA-II MOAISDX

DTLZ1 7.64E+00 - 7.97E+00 ∼ 7.72E+00 - 7.74E+00 - 7.97E+00 ∼ 7.97E+00 + 7.97E+00
1.05E+00 5.40E-04 9.17E-01 8.20E-01 1,40E-04 6.07E-04 2,61E-04

DTLZ2 7.42E+00 + 7.39E+00 - 7.42E+00 + 7.42E+00 + 7.39E+00- 7.37E+00- 7.39E+00
4.47E-04 3.47E-03 5.61E-04 4.73E-04 1.15E-03 2,16E-02 2,11E-03

DTLZ3 5.06E+01 - 6.32E+01 - 4.90E+01 - 4.98E+01 - 6.34E+01 - 6.34E+01 - 6.34E+01
2.37E+01 9.59E-01 2.40E+01 2.32E+01 9,42E-03 1,10E+00 1.79E-03

DTLZ4 7.42E+00 + 7.39E+00 + 7.42E+00 + 7.42E+00 + 6.47E+00- 7.38E+00 + 7.15E+00
7.43E-04 4.26E-03 1.41E-02 1,33E+00 1,06E-02 1.42E-02 4.34E-01

DTLZ5 6.08E+00 - 6.10E+00 + 6.08E+00 - 6.08E+00 - 6.09E+00 ∼ 6.10E+00 + 6.09E+00
7.37E-05 3.27E-04 7.82E-05 1.03E-04 1,87E-04 3,88E-04 2.07E-03

DTLZ6 6.08E+00 + 6.11E+00 + 6.08E+00 + 6.08E+00 + 5.79E+00 - 5.51E+00 - 5.88E+00
9.14E-06 5.43E-05 1.17E-05 1.13E-05 7,58E-02 2,55E-01 9.23E-02

DTLZ7 1.70E+01 - 1.72E+01 - 1.67E+01 - 1.50E+01 - 1.73E+01 - 1.73E+01 - 1.73E+01
9.88E-01 7.16E-01 1.48E+00 2.79E+00 2,14E+00 3,27E-02 1.37E-02

WFG1 4.30E+01- 8.03E+01 + 4.31E+01 - 4.34E+01 - 5.42E+01 ∼ 5.19E+01 - 5.41E+01
1.02E+00 2.57E+00 1.02E+00 9.65E-01 1,49E+00 1,82E+00 1.47E+00

WFG2 9.67E+01 - 9.97E+01+ 9.64E+01- 9.65E+01 - 9.67E+01 - 9.96E+01 + 9.75E+01
5.39E-01 2.78E-01 6.44E-01 5.81E-01 1,04E+00 2,45E-01 6.68E-01

WFG3 7.20E+01 - 7.46E+01 + 7.15E+01 - 7.16E+01 - 7.35E+01 - 7.49E+01 + 7.39E+01
6.51E-01 2.70E-01 7.42E-01 5.50E-01 6,27E-01 3,15E-01 5.54E-01

WFG4 6.98E+01 - 7.36E+01 - 6.96E+01 - 6.98E+01 - 7,37E+07 - 7.35E+01 - 7.39E+01
6.99E-01 4.07E-01 6.81E-01 2,47E+09 4,09E-01 6.13E-01 2.63E-01

WFG5 7.03E+01 - 7.24E+01+ 7.02E+01- 7.04E+01- 7.07E+01 - 7.20E+01 + 7.09E+01
5.34E-01 3.04E-01 5.87E-01 5.44E-01 2,92E-01 3,79E-01 4.21E-01

WFG6 7.15E+01- 7.14E+01- 7.16E+01- 7.17E+01- 7.16E+01 - 7.15E+01 - 7.17E+01
4.52E-01 1.14E+00 3.65E-01 7.83E-01 6,16E-01 6,54E-01 4.78E-01

WFG7 7.24E+01- 7.42E+01 ∼ 7.21E+01 - 7.23E+01 - 7.42E+01 ∼ 7.42E+01 ∼ 7.42E+01
3.66E-01 2.49E-01 4.22E-01 3.39E-01 1,22E-01 3,29E-01 2.21E-01

WFG8 6.58E+01 - 6.94E+01 - 6.52E+01 - 6.55E+01 - 7.12E+01∼ 7.00E+01 - 7.12E+01
6.94E-01 4.39E-01 9.41E-01 9.21E-01 5,26E-01 4,42E-01 2.54E-01

WFG9 6.99E+01 - 6.92E+01 - 6.92E+01 - 6.88E+01 - 7.14E+01 + 7.08E+01 + 7.03E+01
1.82E+00 9.07E-01 1.04E+00 1.04E+00 1,63E+00 1,18E+00 1.21E+00

5 Conclusions

In this work, we introduced a new multi-objective artificial immune system al-
gorithm based on decomposition (MOAISDX), in which we preserved the im-
mune components through specialized operators and mechanisms. Our proposed
cloning operator uses cosine similarity to compute the number of clones or repli-
cas assigned to each member of the population, aiming to produce more copies of
those with the highest affinities, that is, the ones that are close to the reference



12 Aguilar Arroyo and Coello Coello

Table 3. Comparison of the hypervolume values between MOAISDX and four recent
MOAISs and two MOEAs on DTLZ1 with three to ten objectives. The symbols +,−,∼
indicate whether a result is better, worse or similar.

Dimensionality/
Algorithm

BCD-MOIA HEIA MOIA-DCSS VD-MOIA NSGA2 MOEA/D MOAISDX

3D 7.64E+00 - 7.97E+00 ∼ 7.72E+00 - 7.74E+00 - 7.97E+00 + 7.97E+00 ∼ 7.97E+00
1.05E+00 5.40E-04 9.17E-01 8.20E-01 6.07E-04 1.40E-04 2,61E-04

4D 9.46E+00 - 1.60E+01 ∼ 1.12E+01 - 9.46E+00 - 1.55E+01 - 1.60E+01 - 1.60E+01
5.22E+00 2.45E-02 4.33E+00 5.22E+00 2.19E-02 4,82E-05 9,85E-04

5D 2.70E+01 - 3.17E+01 - 2.93E+01 - 2.77E+01 - 0.00E+00 - 3.19E+01 - 3.19E+01
6.96E+00 2.15E+00 4.95E+00 5.96E+00 0.00E+00 4,28E-02 2,15E-02

6D 4.46E+01 - 5.73E+01 - 5.63E+01 - 4.34E+01 - 0.00E+00 - 6.32E+01 - 6.37E+01
1.58E+01 1.29E+01 1.07E+01 1.26E+01 0.00E+00 4,23E-01 1,32E-01

7D 3.85E+01 - 9.28E+01 - 1.18E+02 - 3.54E+01 - 0.00E+00 - 1.27E+02 - 1.28E+02
4.20E+01 4.21E+01 1.73E+01 4.15E+01 0.00E+00 1,07E+00 1,99E-01

8D 1.77E+02 - 1.19E+02 - 2.40E+02 - 2.03E+02 - 0.00E+00 - 2.56E+02 ∼ 2.56E+02
6.65E+01 9.25E+01 2.61E+01 5.80E+01 0.00E+00 4,82E-01 2,14E-01

9D 3.12E+02 - 1.14E+02 - 4.45E+02 - 3.19E+02 - 0.00E+00 - 5.12E+02 + 5.11E+02
1.32E+02 1.53E+02 8.76E+01 1.36E+02 0.00E+00 7,34E-02 2,74E-01

10D 5.78E+02 - 2.72E+02 - 8.94E+02 - 6.54E+02 - 0.00E+00 - 1.02E+03 ∼ 1.02E+03
2.61E+02 3.09E+02 1.76E+02 2.49E+02 0.00E+00 2,18E-01 1,65E-01

vectors when filling up the population of clones. Positive and negative selection
attempt to overcome the loss of diversity that cloning introduces by regulating
the number of identical individuals along the search.

Our experimental results showed that our proposed MOAISDX is capable
of dealing with complex test problems. MOAISDX shows, in general, a similar
or even better performance than NSGA-II and MOEA/D and it outperforms
state-of-the-art MOAISs in most of the test problems adopted.

As part of our future work, we are interested in exploring different cloning
schemes in which we take into consideration other metrics for clone assignment.
We are also interested in studying the role of negative selection in the context
of available clone solutions. The role of mutation in MOAISDX is clearly, very
important, since it is the main source of diversity in the algorithm and, there-
fore, studying alternative mutation schemes is also an interesting path for future
research.
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