Assessing the Positional Values of Chess Pieces by Tuning
Neural Networks’ Weights with an Evolutionary Algorithm

Eduardo Vazquez-Fernandez, Carlos A. Coello Coello aldi . Sagols Troncoso

Abstract—Finding a method that can automatically set the Probably the last component is the most important one. b thi
weights of the evaluation function of a chess engine is anwork, we compute the positional values of the pieces through

important research topic, since the use of manual settings ,nqpervised neural networks whose weights are adjusted
requires a significant amount of time and expertise, which ag . . .
using an evolutionary algorithm.

not always available. The specialized literature reports averal ’ X]]
works in which the weights of the positional values of the ches Th.e remalnder. of this paper is organlzed as follows. In
pieces are evolved based on values stored in tables. Hereplaver, Section Il, we review the relevant previous related workutbo

we propose to use a neural network architecture to obtain the adjusting the evaluation function of a chess engine. Ousshe
positional values of the chess pieces based on specific featiof engine and the evaluation function adopted for the purposes

each position. The neural networks that we adopt for this sa& f thi d ibed in Section III. In Section IV
are relatively small and we argue that they constitute a robst Or this paper are described in section 1il. In section IV, we

way of obtaining the positional values of the chess piecesh& Show the methodology that we adopted to obtain the positiona
adjustment of weights of such neural networks was done throgh values of the pieces. Our experimental results are repamted
the use of an evolutionary algorithm, producing an increaseof ~ Section VI. Finally, in Section VII, we provide our conclasis

433 points of the ranking of our chess engine (from 745 to 2178 and some possible paths for future work

points, reaching a value close to that of a chessmaster).)

Il. PREVIOUS RELATED WORK
I. INTRODUCTION

In 1947, Alan Turing [22] designed the first program to The manual adjustment of the weights used by the eval-

| h dt later. Claude Sh 191 brd uation function of a chess engine is a task that usually
play chess, and two years fater, Llaude shannon [19] prapo gquires a significant amount of time. This has motivated the
two different strategies to implement a chess program. T

first was the “Type A" strategy, which considered all possiblth velopment of automated methods for this task, from which

; fixed denth of th ht d th main ones are briefly described next.
moves 1o a fixed depth of Ine search tree, an € SeconGp developed in1995 the programNeuroChesg21]

was the “Type B” strategy, which used chess knOWIedi?hhich learns to play chess from the final outcomes of games

:ﬁ e1>(9p5lgre tEe most promising l:;nesl to Ia gretater depéh. d uses artificial neural networks to adjust the weightssof i
€ s, Chess programs could only piay at a very basig ., aiion function. Fogel et al. [7] used a coevolutiorsrst-
level, and by the end of th&960s, chess programs could

. egy in which a set of virtual players confronted one another
occasionally defeat amateur chess players. The develdpm piay

of chess programs during 1170 was characterized by thes veral times allowing the survival of only the most sucfidss
2 . virtual players. This program adjusted the weights of tleeei
use of heuristics to choose the best moves in the searchrire play prog) 9 .

the fly, and more specialized hardware. In the mid-1980955<:hesauare tables (values stored in tables) and the weights of

. . ree neural networks to improve its performance above the
programs based on microprocessors started to win tourrtamen

involving both human players and other chess programs ba% ster level (around00 rating points). This program was
on supercomputers. In the990s, chess programs based on Ived alongr462 generations by Fogel et al. [8], reaching a

| tors b hallenai d {199 rating of2650. Kendall and Whitwell [14] proposed a method
Fheéslgrll/? c(z)?:;ﬁe%ieSgglﬂe%e?e;gnv?/ogr{gr::hrggss (?hampio r}‘or tuning the weights of the evaluation function of a chess
Garry Kasparov with a final score G5 to 2.5. Deep blue engine using an evolutionary algorithm. They showed how

was capable of evaluatin2)0 million positions per second the outcome of the game (win, loss or draw) can be used
P) P P " . to develop such an evaluation function. Nasreddine et @J. [1

b Ir;hgenf?ra}l, the sftrtingth of a chess; en?r:ned|s Sheterm'ggl%posed an evolutionary algorithm to adjust the weights of
y the €efliciency ol the move generator, the depih reac evaluation function of a chess engine. The charadterist

along the search tree and the function to evaluate pOS"t“’B? this method is that the weight interval boundaries are

Eduardo Vazquez-Fernandez is with CINVESTAV-IPN (Evimnary d)/”am'c; BOSkO\{IC et al'_[4]* proposeq a method based on
Computation Group), Departamento de Computacion, Av. R 2508, differential evolution to adjust the material values of thess

Col. San Pedr(_) Zacatenco, México, D.F., 07360, MEXICO (emad- pieces, being able to reproduce their “theoretical” Va[llﬂ.
uardovf@hotmail.com).

Carlos A. Coello Coello is with CINVESTAV-IPN (EvolutiomarCompu- Ha_-Uptman and Sipper [11] S_OIVed maFe'in'N_ prOblemS With‘?Ut
tation Group), Departamento de Computacion, Av. IPN 2808, San Pedro using the alpha-beta algorithm. David-Tabibi et al. [6]lbui

Zacatenco, México, D.F., 07360, MEXICO (email: ccoellg@ivestav.mx). g grandmaster-level chess program based on Supervised and
Felit D. Sagols Troncoso is with CINVESTAV-IPN, Departarte de

Matematicas, Av. IPN No. 2508, Col. San Pedro Zacatencexitd, D.F., unSUperV'Sed leam'ng' In this case, chess was learnt rmiyf
07360, MEXICO (email: fsagols@math.cinvestav.edu.mx). a database of games played by humans.

The main difference between our approach and other meth-
ods lies on the way in which the positional values of the chess
pieces are obtained. In other works (see for example [7], [8]

5| K _
" ; 7 ¥ 3

[3]) the positional values of the pieces are representeday v Z p
ues stored in tables. Positional values of the pieces defined 6
tables have the disadvantage of being static and do not depen 7
directly on the characteristics of the position. For exampl %
let's imagine that a bishop o#5 always has the same value; 4 7
this is generally incorrect because its positional valysedels, 7
among other things, from the pawn’s structure [18], [10]. In 3%
our method, however, the positional values are dynamic and 7 w
depend on the characteristics of the position such as @tati 2 & v
mobility, center control and so on. 1%

I1l. OUR CHESS ENGINE a b ¢ d e f g h

To carry out our experiments, we developed a chess engine

with the following features: alpha-beta search algorittirs] [Fig. 1. Example diagram to illustrate feature extraction.

[16] with iterative deepening, stabilization of positichsough
the quiescence algorithm [2] (which considers the exchange

of material and checks to the king), hash tables [23], [1] aqd ihe output layer. The decision to use three layers wasthase
move generator through thiex 88 hexadecimal metholl. o the demonstration of Hecht-Nielsen [12], which estéiais
The evaluation function used to determine (in a heuristiCiat any function can be approximated by a three-layer heura
way) the relative value of a position with respect to one siqgnyork. The decision to use nine nodes in the hidden layer
(white or black pieces) is given by the following expression,,q hased on Kolgomorov's theorem [20] which established

r q that the number of nodes in the hidden layer should be at
f= Zmi + Zq X P; (1) least(2i + 1), wherei denotes the number of nodes in the
i1 i1 input layer. As part of our future work, we intend to evolve
where: the_number of hidd_en_ units. '_I'he hidden nodes used a sigmoid
r is the number of pieces in the side under evaluation withofifned by the logistic functiorf(y;) = 1/(1 + exp(—y;)),
considering the king. wherey; was the product Qf the incoming features frqm the
q is the number of pieces in the side under evaluation. c_hessboard and the assouate_d weights betvyeen the _mput and
m; is the material value of the piede hlqlden nodes, offset by each .h|dder-1 nodg’s bias termy;i.e.
¢; is the adjustment of the weight (c; = 0.5 x my). ,Zizl fi x Wi; +0;, wheref; is the mcommg feature., Wi
p; is the positional value of the piece p; € [0,1] (0 IS the weight betwegn the nodeand nodej, andd; is thg .
represents the worst adjustment of weights ancpresents Pias term of the nodg. The output node also used the logistic
a best adjustment of weights). function and its value is iMo, 1], Wher_e() and1 denqtes the
worst and the best adjustment of weights, respectively.

The material value of a piece_is stat_ic, and it is00, 300, B. King’s positional value
300, 500 and900 for the pawn, knight, bishop, rook and queen,
respectively; these values agree with the “theoreticaliem OUr architecture used a neural network to obtain the posi-
considered for the chess pieces [19]. Fhusitional value of tional value of the king. Its four input signals correspond t
a piece is dynamic, and it depends on many factors suchthg features that we considered important to get the pasitio
location, mobility, center control and so on. value of the king.

« Attacking material It refers to the material value of the
pieces that are attacking the opposite king. By this, we
A. Neural network architecture mean those pieces whose movements act on its opposite

Our architecture is composed of six neural networks that KiNg's square or on its opposite king’s adjacent squares
we use to calculate the positional values of the chess pieces (in this case, the movements of the pieces can jump to
of our chess engine, as defined in equation (). Each neural Other pieces, regardless of the pawns). For example,
network was fully connected and consisted of four nodes in In Figure 1, the queen orf6 attacks the king oryl;

the input laye? nine nodes in the hidden layer and one node therefore, the attacking material corresponding to the
white king is900.

IV. OUR PROPOSED METHODOLOGY

Ihttp://wwv. ci s. uab. edu/ hyat t / boar dr ep. ht ni

2The fact that all neural networks have four nodes in the idpyér is 3Jumping other pieces allows to detect indirect attacks. é@mple, in
mere coincidence, and this number can vary depending onhtraateristics Figure 1 the bishop on6 will attack the white king when the pawn ait
chosen to obtain the positional value of a chess piece. moves to another square.

tional value of the rook. Its four input signals corresponthie
features that we considered important to obtain the positio
value of the rook.

TABLE |

» Defending materiallt refers to the material value of the \weisrirs or sLack Pawns THAN OBSTRUCT THE BLACK BISHOPS MOVEMENT.

pieces that are defending its king. By this, we mean those
pieces whose movements act on its king’s square or on its

king's adjacent squares (also, the movements of the pieces

can jump to other pieces, regardless of the pawns). For
example, in Figure 1, the queen g8, the rook onal,

the rook onf1, the bishop ory4 and the knight oni2 all
defend the white king; therefore, the defending material
corresponding to the white king 500 (900 + 500 +

500 + 300 + 300).

« Castling It is a binary value. It is one if and only if the
king is castled. In Figure 1 this value is one for the white
king.

o Pawns It is the number of pawns located on its king’s
adjacent squares. In Figure 1 this value is two for the
white king.

C. Queen’s positional value

Our architecture used a neural network to obtain the posi-

tional value of the queen. Its four input signals correspond
to the features that we considered important to obtain the

positional value of the queen.

o Queen mobility It is the number of movements of the
queen. In Figure 1 this value is ten for the white queen.

o Column typeltis 0 if on the queen’s column there are nq
pawns, it isl if on the queen’s column there are adversar,
pawns and the queen is on front of its pawns (if any),
and it is2 if on the queen’s column there are pawns at
both sides and the queen is behind any of its pawns. In
Figure 1 this value id for the white queen.

o Row It refers to the row occupied by the queen. In
Figure 1 this value is three for the white queen.

o Column It refers to the column occupied by the queen.
In Figure 1 this value is seven for the white queen.

D. Rook’s positional value
Our architecture used a neural network to obtain the posi-

« Rook mobility It is the number of movements of the rook.
In Figure 1 this value is four for the rook arl.

o Column type See the definition of the column type for
the queen. In Figure 1 this valuedsand1 for the rooks
onal and f1, respectively.

« Seventh rowlt is a binary value. It isl if and only if
the rook is on the seventh row. In Figure 1 this value is
0 for the rook onal.

« Seventh row foldedt is a binary value. It isl if and
only if there are at least two rooks on the seventh row.
In Figure 1 this value i9 for the rook onal.

8 0 0 0 0 0 0 0 0
7 2 4 4 8 8 4 4 2
6 2 4 8 16 | 16 8 4 2
5 2 4112 | 24 | 24 | 12 4 2
4 2 4 4 4 4 4 4 2
3 2 2 2 2 2 2 2 0
2 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0

a b c d e f g h

TABLE 1l

WEIGHTS OF THE WHITE PAWNS THAN OBSTRUCT THE BLACK BISHORS MOVEMENT.

8 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0
6 0 1 1 1 1 1 1 0
5 0 1 2 2 2 2 1 0
4 0 1 2 2 2 2 1 0
3 0 1 1 1 1 1 1 0
2 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0

a b c d e f g h

0 the features that we considered important to obtain the
ositional value of the bishop.

« Bishop mobility It is the number of movements of the

bishop. In Figure 1 this value is five for the bishop on
f4.

o Pawn’s mobility It is the number of movements of its

pawns which obstruct the movement of the bishop. In
Figure 1 this value is five for the bishop é6.

Ahead It is the number of pawns which are in front of
its bishop and obstructing its movement. In Figure 1 this
value is one for bishop oh6, because the pawn aft
obstructs its movement.

Weight Any chess expert will notice in Figure 1 that the
pawn ond4 obstructs more the movement of the bishop
on b6 than the pawn om7. Each square on the board
is assigned a numeric value that reflects the degree of
obstruction of a pawn on the bishop’s movement. Table |
shows the weights of black pawns than obstruct the black
bishop’s movement (these values were taken from [10]),
and Table Il shows the weights of the white pawns that
obstruct the black bishop’s movement (these values have
been assigned by an expert in chess). The weights of
the white pawns and the black pawns that obstruct the
white bishop’s movement are the mirror of Tables I and II,
respectively. In Figure 1, the weight for the bishopign
iS26 (2+4+ 16+ 4).

F. Knight's positional value

E. Bishop’s positional value

Our architecture used a neural network to obtain the posi-

Our architecture used a neural network to obtain the posienal value of the knight. Its four input signals corresgon

tional value of the bishop. Its four input signals corregporto the features that we considered important to obtain the

positional value of the knight. Begin

« Knight mobility It is the number of movements of the

knight. In Figure 1 this value is four for the knight on Initialize population
d2.

o Periphery It is a binary value. It isl if and only if the n virtual players
knight is on the periphery of the board (first row, eighth Y | ‘
row, first column or eight column). In Figure 1 this value —» Features extraction Features Neura ngtwgr
is 0 for the knight ond2. for the piece:

« Supportedlt is a binary value. It isl if and only if the n virtual players
knight is supported by one of its pawns. In Figure 1 this v
value is0 for the knight ond2. |~ plav tournament

« Operations baselt is a binary value. It isl if and only y
if the knight is on aroperations baseA knight is on an
operations baséf it cannot be evicted from its position
by an opponent pawn. In Figure 1 this valudigor the
knight ond2.

" Positional value of the piece

n virtual players
Y

Selection

n/2 mutated virtual players
+
Top n/2 virtual players

G. Pawn’s positional value
Our architecture used a neural network to obtain the posi- Y

Top n/2 virtual players

tional value of the pawn. Its four input signals correspond L Mutation
to the features that we considered important to obtain the
positional value of the pawn. Top n/2 virtual players
o Doubled It is a binary value. It isl if and only if there
are at least two pawns located in the same column. In End

Figure 1 this value id for the pawn ond6.

« Isolated It is a binary value. It id if and only if a pawn
cannot be defended by another pawn. In Figure 1 this
value is0 for the pawn ond6.

o Central It is a binary value. It isl if and only if the
pawn is on any of the following squarest, c5, d4, db,
ed, e5, f4 or f5. In Figure 1 this value ig for the pawn

oned. . . o . described in Section IIl.

« Past Itis a binary value. It isl if and only if th? PaWN after finishing the tournament, the “Selection” module
cannof[be stopped by an opponent pawn. In Figure 1 tQ'ﬁooses then/2 virtual players having the highest number
_vaIue IS0 fgr .the pawn oned.]] of points, and in the module “Mutation” these virtual plager

It is worth noticing that the values obtained with our neurg|,e mutated to generate the remaining virtual players.

network architecture are conceived to correspond to theschgina”y’ the evolutionary algorithm (based on evolutignar

pieces’ positional values of a mid-game. programming [9]), continues running f&0 generations.
H. Use of an evolutionary algorithm

Figure 2 outlines the evolutionary algorithm adopted to
adjust the neural networks’ weights in order to compute the The experiments were carried out on a PC witli4abits
pieces’ positional values. The first module, called “idiga architecture, having two cores running at 2.8 GHz each and
population”, assigns initial random weights to the neurtt n 3 GBytes in RAM. The programs were compiled usigg+
works and the weights of the pawns that obstruct the bishop’sthe OpenSuse 11.1 operating system. For the experiments
mobility. The features of the position (inputs of the neurdeported next, we used the opening bddkmpiad.abkboth
network) are obtained in the module “Features extraction”. for the virtual players and for the chess engine Rybka 2.3.2a

The module “Play tournament” coordinates a tournament =~
betweenn virtual players (in our case = 20). Each virtual A. Initialization
player is allowed to play:/2 games with randomly chosen The initial population of our evolutionary algorithm con-
opponents. The side (either black or white) is also chosensidted ofn = 20 (10 parents and 0 offspring in subsequent
random. Games are executed until one of the virtual playegenerations) virtual players whose weights were randomly
receives checkmate or a draw condition arises. Dependingioitialized within their allowable bounds using a uniform
the outcome of the game, a virtual player obtains one poiriistribution. The weights and biases of the neural networks
half a point or zero points for a win, tie or loss, respectivelwere initialized in the rangé-15, 15] and the weights of the
Draw conditions are given by the rule 60 moves (after a pawns which obstruct the bishop’s mobility were initiatizie

Fig. 2. Flowchart of the evolutionary algorithm adopted lirstwork.

pawn’s move there ar80 moves to pose a checkmate to the
opponent), by the third repetition of the same position aynd b
the lack of victory conditions (e.g., in the fight of a king and
a bishop against a king). This module uses the chess engine

V. EXPERIMENTAL DESIGN

the rangg0, 20] (we carried out different experiments, and wavas carried out with the best virtual player for the ten runs
found that the ranges of these weights fall into these iatejvy in Table Ill. This virtual player was calleglayersy, and
i corresponds to the third run in this table. The results again

B. Mutation the chess engine Rybka 2.3.2a are shown in Figure 4. In this

One offspring was created from each surviving parent lsigure we can see thatayerso won, drew and losfi4, 10
mutating all weights and biases by adding a Gaussian randant36 respectively against Rybka 2.3.2a2800 rating points;
variable with zero mean and a standard deviatio®.66 as playerso won, drew and los26, 22 and12 respectively against
Chellapilla and Fogel did in [5]. If, after mutating a weight Rybka 2.3.2a a2100 rating points.
value falls outside the range, this value is re-set to theasta Based on these played games, we used the Bayeselo
extreme of its range. tool* to estimate the ratings of players using a minorization-
maximization algorithm [13]. The obtained ratings are show
in Table IV. In this table we can see that the rating for the
A. Experiment A virtual player playery was 1745, and the rating for virtual

This experiment consisted of performing ten runs, and Rlayer playerso was 2178, representing an increase 683
each of them we had0 virtual players that were evolved ating points between Fhe non-evolv_ed and the evolvedalirtu
during 50 generations. The weights of the virtual p|ayergla_yers aft_eBO_generatlons for the third run of Table IR2{78
were randomly initialized within the allowable bounds witffatings points is a value close to a chessmaster level [7]).

a different seed for each run. At the end of each run, we!n this experiment we used a search depth of six plies for
carried out200 games between the best virtual player i€ chess engine Rybka2.3.2a, as well as fryero and
generation50 and the best virtual player in generation Playerso.

Table 11l shows these results. For example, in futhe best It is worth noticing that Thrun [21] employed one neural
player in generatior50 won 180, drew 14 and lost6 games network with 175 input nodes,165 hidden nodes and75
against the best player in generation(the percentage of output nodes within his prograrhleuroChessNeuroChess
games won by the best player in generationwas 93.50%). successfully won11% of the games versus the program
The best result corresponds to the third run, in which the b&snuChesgabout2300 rating points), and our chess program
virtual player in generatios0 won 185, drew 12 and lost3 Won 31.6% of the games versus Rybka 2.3.2a2800 rating
games against the best player in generatidthe percentage points. In another previous related work, Fogel et al. [7]
of games won by the best player in generafionvas95.50%). e€mployed three neural networks, each one havifignput

In this experiment we used a search depth of four pliegly nodes,10 hidden nodes and output node. The strength of

V1. EXPERIMENTAL RESULTS

corresponds to the movement of one side), their program was abo@®550 rating points.
TABLE Il TABLE IV
NUMBER OF GAMES WON DRAWN AND LOST FOR THE BEST VIRTUAL PLAYER IN RATINGS ON THE THIRD RUN AGAINSTRYBKA 2.3.2A.
GENERATION 50 AGAINST THE BEST VIRTUAL PLAYER IN GENERATION 0. Rank | Name Elo P Games | Score | Oppo. | Draws
Run | Wins | Draws | Losses| Wins% (%0) (*0)
1 180 14 6 93.50% 1 Rybkaz3o0 | 2309 | 64 | 59 | 120 83% 1961 11%
> 71 % 3 92.00% 2 Playerso 2178 | 38 | 37 | 240 69% 1997 18%
3 Rybkaz100 | 2097 | 51 | 50 | 120 63% 1961 23%
3 185 | 12 3 95.50% 4 Rybkarooo | 1883 | 51 | 52 | 120 | 41% | 1961 | 16%
4 169 28 3 91.50% 5 Playerq 1745 | 40 | 41 | 240 25% 1997 12%
5 174 25 1 93.25% 6 Rybkai7o0 | 1699 | 56 | 60 | 120 25% 1961 9%
6 176 | 19 5 92.75%
7 182 | 16 2 95.00% . . .
B T ERE 5 95.25% In the previous expgrlments each virtual player was allowed
9 s 18 1 93.50% to play n/2 games with randomly chosen opponents. Also
0 165 | 28 1 91.00% noteworthy that these experiments were repeated allovéoky e
virtual player to play against the remaining virtual plag/éin
total n — 1 games), and in this case, the best virtual player
_ with n — 1 games was only three points higher than the best
B. Experiment B virtual player withn/2 games.
In this experiment, the best virtual player in generatipn
was calledplayero and played60 games against the chess VII. CONCLUSIONS AND FUTURE WORK
engine Rybka 2.3.2a using each of the following ratirage, In this paper we introduced an approach in which we

2100, 1900 and 1700. The histogram of results is shown ingptained the positional values of chess pieces through mheu
Figure 3. For exampleplayero won, drew and lost, 3 and network architecture based on unsupervised learning. The

57 respectively against Rybka 2.3.2a 2800 rating points; eights of this neural network architecture were evolvedgis
playerg won, drew and lostt, 6 and 50 respectively against

Rybka 2.3.2a at2100 rating points. The same experiment “http://remi.coulom.free.fr/Bayesian-Elo/

to pursue graduate studies at the Computer Science Depart-
ment of CINVESTAV-IPN. The second author acknowledges

Games 3 Win
[Draw
I |oss
0-3-57 4-6-50 14-10-36 28-9-23
60
o —
40 (1
30
(2]
20
10 [3]
2300 2100 1900 1700 Rating]
Fig. 3. Histogram of wins, draws and losses for the best afirplayer at

generation0 (player0) against Rybka 2.3.2a.
(6]

Games C— Win
1 Draw [6]
I oss
14-10-36 26-22-12 47-9-4 57-2-1 [7]
60
50
40 (8]
30
20
* | N
2300 2100 1900 1700 Rating [0
Fig. 4. Histogram of wins, draws and losses for the best afirplayer at

generation50 (playerso) against Rybka 2.3.2a.
[11]

evolutionary programming. In some previous related work,
these values had been evolved with “piece-square tablés’. T12]
disadvantage of these methods is that the positional valiies
the pieces do not depend directly on the characteristicheof {13l
position. In contrast, our method by taking into accountéhei4]
characteristics to obtain these positional values.

We also believe that our architecture constitutes an alter-
native that is easy to implement and that is scalable (ths;
programmer only needs to add the inputs to the correspondin
neural network that is relevant to evaluate the chess piéce[]tfﬂ
interest). After adjusting the neural network’s weighténgs
our evolutionary algorithm, we increased the rating of oui7]
chess engine id33 points (from1745 to 2178). It is expected
that by adding the number of inputs to the neural networles, th
positional value of the chess pieces will be assessed in @ mor
precise manner and, consequently, the strength of the ch
engine will be increased (and certainly this is part of fatur
work). We are also interested in evolving the parameten [20]
our evaluation function and in evolving the number of nodq;l]
in the hidden layers of our neural network architecture theor
to obtain more accurate assessments of the positionalsvafue
the chess pieces. It is worth noticing that the evolutionhef t .,
parameter; will define the style of play of our chess engine.

ACKNOWLEDGEMENTS 23]

The first author acknowledges support from CINVESTAV-

IPN, CONACyT and the National Polytechnical Institute (PN

support from CONACyYT project no. 103570.

REFERENCES

D. Beal and M. C. Smith. Multiple probes of transpositi@ables.ICCA
Journal 19(4):227-233, 1996.

D. F. Beal. A generalised quiescence search algorithiutificial
Intelligence 43(1):85-98, April 1990.

D. F. Beal and M. C. Smith. Learning piece-square valussgitemporal
differences.Journal of The International Computer Chess Association
22(4):223-235, December 1999. .

B. Boskovi¢, S. Greiner, J. Brest, and Xumer. A differential evolution
for the tuning of a chess evaluation function.2006 IEEE Congress on
Evolutionary Computationpages 1851-1856, Vancouver, BC, Canada,
July 16-21 2006. |IEEE Press.

K. Chellapilla and D. Fogel. Evolution, neural networkgames, and
intelligence. Proceedings of the IEEB7(9):1471 —1496, Sept. 1999.
0. David-Tabibi, H. J. van den Herik, M. Koppel, and N. Sethnyahu.
Simulating human grandmasters: evolution and coevolufavaluation
functions. INGECCQ’'09 pages 1483-1490, 2009.
D. B. Fogel, T. J. Hays, S. L. Hahn, and J. Quon. A selfiazy
evolutionary chess programProceedings of the IEEE92(12):1947—-
1954, 2004.

D. B. Fogel, T. J. Hays, S. L. Hahn, and J. Quon. Furtherdutian
of a self-learning chess program. PRroceedings of the 2005 IEEE
Symposium on Computational Intelligence and Games (CIGf¥ges
73-77, Essex, UK, April 4-6 2005. |IEEE Press.

L. J. Fogel. Artificial Intelligence through Simulated EvolutionJohn
Wiley, New York, 1966.

M. Guid, M. Mozina, J. Krivec, A. Sadikov, and |. Bratkd_earning
positional features for annotating chess games: A casg.stidCG
'08: Proceedings of the 6th international conference on @otars and
Games pages 192-204. Springer. Lecture Notes in Computer Sgsenc
Vol. 5131, Heidelberg, Germany, 2008.

A. Hauptman and M. Sipper. Evolution of an efficient staalgorithm
for the mate-in-n problem in chess. Proceedings of the 10th European
conference on Genetic programmijriguroGP’07, pages 78-89, Berlin,
Heidelberg, 2007. Springer-Verlag.

R. Hecht-Nielsen.Neurocomputing / Robert Hecht-NielseAddison-
Wesley Pub. Co., Reading, Mass., 1990.

R. Hunter. Mm algorithms for generalized bradleyyemodels. The
Annals of Statistics32:2004, 2004.

G. Kendall and G. Whitwell. An evolutionary approach the tuning of
a chess evaluation function using population dynamicsPrbceedings
of the 2001 Congress on Evolutionary Computation CEC206tLime 2,
pages 995-1002. IEEE Press, May 2001.

D. E. Knuth and R. W. Moore. An analysis of alpha-betanimg.
Artificial Intelligence 6(4):293-326, 1975.

T. A. Marsland and M. Campbell. A survey of enhancementghe
alpha-beta algorithm. IRroceedings of the ACM '81 conferend&CM
‘81, pages 109-114, New York, NY, USA, 1981. ACM.

H. Nasreddine, H. Poh, and G. Kendall. Using an Evohdry
Algorithm for the Tuning of a Chess Evaluation Function Bhes a
Dynamic Boundary Strategy. Proceedings of 2006 IEEE international
Conference on Cybernetics and Intelligent Systems (CO8Rpages 1—
6. IEEE Press, 2006.

L. Pachman Estrategia moderna en ajedreZoleccion escaques, 1972.
C. Shannon. Programming a computer for playing chBdlosophical
Magazine 7(41):256-275, 1950.

K. Swingler. Applying neural networks: A practical guideAcademic
Press, London, 1996.

S. Thrun. Learning to play the game of chess. In G. Tesaur
D. Touretzky, and T. Leen, editorgdvances in Neural Information
Processing Systems (NIPS)pages 1069-1076, Cambridge, MA, 1995.
MIT Press.

] A. Turing. Digital Computers Applied to Games, of Faster than Thought

chapter 25, pages 286-310. Pitman, 1953.

A. Zobrist. A new hashing method with application fornga playing.
Technical Report 88, The University of Wisconsin, Madisoh, WSA,
1970. Reprinted (1990) in ICCA Journal, Vol. 13, No. 2, pp-%&®

