
An Overview of Pair-Potential Functions for
Multi-Objective Optimization?
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Abstract. Recently, an increasing number of state-of-the-art Multi-ob-
jective Evolutionary Algorithms (MOEAs) have incorporated the so-
called pair-potential functions (commonly used to discretize a manifold)
to improve the diversity within their population. A remarkable example
is the Riesz s-energy function that has been recently used to improve
the diversity of solutions either as part of a selection mechanism as well
as to generate reference sets. In this paper, we perform an extensive
empirical study with respect to the usage of the Riesz s-energy func-
tion and other 6 pair-potential functions adopted as a backbone of a
selection mechanism used to update an external archive which is inte-
grated into MOEA/D. Our results show that these pair-potential-based
archives are able to store solutions with high diversity discarded by the
MOEA/D’s main population. Our experimental results indicate that the
utilization of the pair-potential-based archives helps to circumvent the
known MOEA/D’s performance dependence on the Pareto front shapes
without meddling with the original definition of the algorithm.

Keywords: Pair-potential functions · diversity · manifold discretization
· selection mechanism.

1 Introduction

The area of Evolutionary Multi-objective Optimization (EMO) involves the de-
sign of population-based Multi-objective Evolutionary Algorithms (MOEAs).
Given that evolutionary algorithms use a population which is a set of solutions to
a given problem, MOEAs are suited in a natural way for solving Multi-objective
Optimization Problems (MOPs) since they can generate multiple trade-offs a-
mong the (conflicting) objective functions (i. e., solutions in which an objective
cannot be improved without worsening another) in a single run [1]. MOPs with
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four or more objective functions are commonly named Many-objective Optimiza-
tion Problems (MaOPs) [1].

Well established MOEAs have two basic principles driven by selection. First
of all, the goal is to push the current population close to the “true” Pareto front.
The second goal is to “spread” the population along the front such that it is well
covered. The first goal is usually achieved by using selection mechanisms based
on the Pareto dominance relation3, decomposition techniques, or indicator-based
selection [1]. The second goal involves the use of diversity mechanisms to promote
the spread of the different solutions along the Pareto front.

In general, providing an adequate balance between selection pressure and di-
versity is one of the main challenges when designing state-of-the-art MOEAs.
These efforts have provided many methodologies, algorithms and techniques
whose main goal is to improve the performance of MOEAs on MOPs [1]. On
the one hand, the selection pressure of Pareto-dominant MOEAs dilutes when
tackling MaOPs. This is due to the increasing number of non-dominated solu-
tions found during the evolutionary process that yields to an inefficient random
selection process [1]. On the other hand, due to the inherent methods embed-
ded in MOEAs (mutation, crossover, selection, diversity mechanisms, etc.), the
search may be biased into choosing a population with a specific distribution,
which may favor a certain geometrical shape on the Pareto front.

In this paper, we focus our attention into the latter problem by introducing
the usage of the so-called pair-potential functions as density estimators in an
external population (archive). These functions are commonly used to distribute
points on a manifold (or discretizing a manifold) [2]. Given a d-dimensional
manifold A in the search space Rm (d ≤ m) with a given distribution X and
described by some geometric property or by some parametrization, the goal is to
generate a large number of N points in A such that they are well-separated and
have (nearly) distribution X. In other words, the aim is to generate the smallest
population possible that describes the distribution of the full set of elements
in A.

One example of such pair-potential functions used in EMO is the Riesz s-
energy function, which has been recently used to improve the diversity of so-
lutions [3,4,5]. We contribute to this line of work by performing an extensive
empirical study on the usage of not just the Riesz s-energy function, but also 6
other pair-potential functions on an external population as an updating rule.

Our goal is twofold. Firstly, we want to show that even if a MOEA by itself
is not able to maintain a well-distributed set of points during its execution (e. g.,
due to constraints of its selection mechanism or population size constraints,
among others), the pair-potential functions will maintain solutions in the archive
with high diversity. This implies that the total energy value of the system (the
Pareto front approximation) is minimized. Consequently, the diversity will be
improved for a longer period of time compared to the regular execution of the
MOEA, and without meddling with its original definition. Second, we would

3 Given x,y ∈ Rm, x is said to Pareto dominate y (denoted as x ≺ y) if and only if
xi ≤ yi for all i = 1, . . . ,m and ∃j ∈ {1, . . . ,m} such that xi < yi.
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like to explore the usage of several pair-potential functions in isolation as an
alternative to improve the distribution of the solutions provided by MOEAs. We
would like to observe the difference of the diversity achieved between a MOEA
and the Pareto front approximation stored in the pair-potential-based archive.
This study should provide insights into the performance dependence of a MOEA
and the pair-potential functions with respect to the shape of the Pareto front on
different MOPs.

The remainder of this paper is organized as follows. In Section 2, we introduce
the problems of our interest and the definitions of the pair-potential functions
analyzed in this paper. Sections 3 and 4 establish the algorithmic framework used
throughout our experimental analysis and the results obtained from the such
experiments, respectively. Finally, we finish with some discussion and concluding
remarks in Section 5.

2 Preliminaries

In this paper, we consider, without loss of generality, the minimization of func-
tions F (x) = (f1(x), f2(x), . . . , fm(x)), where x is the vector of decision vari-
ables that belongs to Ω ⊆ Rn, which is the decision space. F (x) is the vector of
m ≥ 2 objective functions such that fi : Ω → R for i ∈ {1, 2, . . . ,m}. As there is
no single point that minimizes all functions simultaneously, the goal is to find a
set of so-called Pareto-optimal solutions that represent the best possible trade-
offs among the objective functions. A decision vector x ∈ Ω is Pareto optimal if
there is no other y ∈ Ω such that F (y) ≺ F (x). The set of all Pareto-optimal
decision vectors P ∗ is called Pareto set and its image in the objective space,
given by PF ∗ = F (P ∗), is known as the Pareto front.

2.1 Pair-Potential Functions

Used to distribute points on a manifold (or discretizing a manifold), the pair-
potential functions [2] are of the form K : Rm × Rm → R that model the in-
teraction between two given particles. The total energy U of a system with N
particles is given as follows:

U(A) =

N∑
i=1

N∑
j = 1
j 6= i

K(ai,aj), (1)

where A = {a1, . . . ,aN} is an approximation set, and aj ∈ Rm, j = 1, . . . , N .
In the following, we describe the pair-potential functions which are of interest

in this paper. For all cases, u = F (x),v = F (y) ∈ Rm and ‖·‖ represents the
Euclidean distance.

Riesz s-energy [2]: Given a parameter s > 0, it is defined as follows:

KRSE(u,v) =
1

‖u− v‖s
. (2)
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Gaussian α-energy [2]: Given a parameter α > 0, this pair-potential is
defined in the following:

KGAE(u,v) = e−α‖u−v‖
2

. (3)

Coulomb’s law [6]: it is given by:

KCOU(u,v) =
q1q2
4πε0

· 1

‖u− v‖
, (4)

where we set q1 = ‖u‖ and q2 = ‖v‖, and 1
4πε0

is the Coulomb’s constant.
Pöschl-Teller Potential [7,8]: Given V1, V2, α > 0, it is given by:

KPT(u,v) =
V1

sin2(α ‖u− v‖)
− V2

cos2(α ‖u− v‖)
. (5)

Modified Pöschl-Teller Potential [7,8]: Given D,α > 0, this function is
as follows:

KMPT(u,v) = − D

cosh2(α ‖u− v‖)
. (6)

General form of Pöschl-Teller Potentials [7,8]: Given A,B > 0, it is
given by:

KGPT(u,v) =
A

1 + cos(‖u− v‖)
+

B

1− cos(‖u− v‖)
(7)

Kratzer Potential [8,9]: Given V1, V2, α > 0, the Kratzer potential is given
as follows:

KKRA(u,v) = V1

(
‖u− v‖ − 1/α

‖u− v‖

)2

+ V2. (8)

3 Pair-Potential-based Archives

Following the approaches described in [3,4], we use an iterative selection mech-
anism based on the calculation of individual contributions to the total energy
of a system of N particles (see Eq. (1)). Hence, given an approximation set
A = {a1, . . . ,aN ,aN+1}, the individual contribution C of any a ∈ A is calcu-
lated as follows:

C(a,A) =
1

2
[U(A)− U(A \ {a})], (9)

where the term 1/2 is used since for the adopted pair-potential functions in
Eqs. (2) to (8), K(u,v) = K(v,u). Since U is to be minimized, the solution to
be deleted from A such that |A| = N is the one with the maximum contribution
value, i. e., aworst = arg maxa∈A C(a,A). Using this selection mechanism, we
can iteratively reduce the cardinality of a given approximation set A.
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In this paper, we aim to show that the incorporation of an external popula-
tion (or archive) based on a pair-potential function to a given MOEA, improves
its diversity of solutions. Consequently, we selected the MOEA based on de-
composition (MOEA/D) [10] as our baseline algorithm since it is known that
its performance depends on the Pareto front shape [11]. The underlying idea is
to employ the original MOEA/D algorithm (see Algorithm 1) and every time
a new solution y is generated, it should be inserted in the archive A (which is
initialized in Line 4) as shown in Lines 9 and 10, respectively. It is worth noting
that the archive is only utilized to store solutions, which implies a unidirectional
communication from MOEA/D to it. The use of the archive allows MOEA/D
to keep solutions that would be possibly deleted due to its design principles.
Once the algorithm reaches its stopping criterion, the main population and the
archive are returned as two Pareto front approximations.

Algorithm 1 MOEA/D with external archive

Require: N : population size; T : neighborhood size; K: pair-potential function;
Amax: maximum archive size

Ensure: Main population and archive as Pareto front approximations
1: Initialize N weight vectors λ1, . . . , λN

2: Determine the T nearest neighbors of each λj

3: Initialize the main Population P = {x1, . . . ,xN}
4: Initialize archive A equals to P .
5: Initialize the reference point z∗

6: while Stopping criterion is not satisfied do
7: for j = 1 to N do
8: Select mating parents from the neighborhood of xj

9: Generate a new solution y by using variation operators.
10: Insert(A,y,K, Amax).
11: Update the reference point z∗

12: Evaluate new solutions via scalarizing function
13: Update main population P
14: return {P,A}

Algorithm 2 describes the process used to insert a new solution y in A. First,
y is compared with all the elements in the archive, using the Pareto dominance
relation. If y Pareto dominates any a ∈ A, the latter is deleted from A. However,
if any element in the archive weakly Pareto dominates y, then y is not inserted
andA is returned. In case that y survives the Pareto-based criterion, it is inserted
in the archive. If the maximum archive size Amax is exceeded, we execute the
steady-state selection (prior normalization of the archive) where the solution
with the worst contribution to the total energy U , using K as pair-potential
function, is iteratively deleted until the desired Amax size is reached.

Regarding the computational complexity of Algorithm 2, it is Θ
(
m|A|2

)
due

to the usage of the fast computation of individual contributions proposed in [4].



6 Falcón-Cardona, Covantes Osuna and Coello Coello.

Smaller terms consist of the for-loop of Lines 1 to 5 and the normalization
procedure in Line 7 with complexity Θ(m|A|).

Algorithm 2 Insert

Require: A: archive; y: solution to be inserted; K: pair-potential function; Amax: max-
imum archive size

Ensure: Updated archive A
1: for all a ∈ A do
2: if y ≺ a then
3: A = A \ {a}
4: else if a � y then
5: return A
6: A = A ∪ {y}
7: Normalize A
8: while |A| > Amax do
9: aworst = arg maxa∈A CK(a,A)

10: A = A \ {aworst}
11: return A

4 Experimental Results

This section is devoted to comparing the convergence and diversity properties of
the main population returned by MOEA/D and the content of the archive based
on the seven selected pair-potential functions4 which gives rise to MOEA/DRSE,
MOEA/DGAE, MOEA/DCOU, MOEA/DPT, MOEA/DMPT, MOEA/DGPT, and
MOEA/DKRA. MOEA/D with each external archive is tested on several MOPs
from the DTLZ, WFG, DTLZ−1, and WFG−1 test suites with two and three ob-
jective functions. Regarding the DTLZ and DTLZ−1 test problems, the number
of variables was set to n = m+K − 1, where m is the number of objective func-
tions, and K = 5 for DTLZ1, K = 10 for DTLZ2 and DTLZ5, and K = 20 for
DTLZ7. Their inverted counterparts have the same value of K. Concerning the
WFG and WFG−1 problems, n was set to 24 and 26, with the position-related
parameters equal to 2 and 4 for two and three objective functions, respectively.
For a fair comparison, the population size and the maximum archive size are
set to N = Cm+H−1

m−1 = 120, where H = 119 and 14 for MOPs with two and
three objective functions, respectively. N corresponds to the cardinality of the
set of weight vectors (constructed by the Das and Dennis method employed by
the MOEA/D [10]. For all cases, the stopping criterion was set to 49,920 func-
tion evaluations which corresponds to 416 generations. We set the neighborhood
size T of MOEA/D equal to 20 and we employed the achievement scalarizing

4 The source code is available at http://computacion.cs.cinvestav.mx/~jfalcon/

PairPotentials/.

http://computacion.cs.cinvestav.mx/~jfalcon/PairPotentials/.
http://computacion.cs.cinvestav.mx/~jfalcon/PairPotentials/.
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function for all the test instances. For each test instance, we performed 30 inde-
pendent executions and the MOEA/D variants used the same random seeds. We
selected the Inverted Generational Distance (IGD) [12] and the Pure Diversity
(PD) [13] indicators to assess convergence-diversity and diversity, respectively.
In order to have statistical confidence of our results, we adopted the one-tailed
Wilcoxon rank-sum test, with a significance level of α = 0.05 with null hypothesis
as follows: ’‘is MOEAA statistically different than MOEAB?”. Where MOEAA

is the one having the best indicator value and MOEAB is each one of the re-
maining algorithms. This selection was used for all the tables in this paper with
the exception of Table 1 because the latter is a summary of results. In Tables
3 and 4, a symbol # is placed when the best algorithm performs significantly
better than the others.

Table 1: Average ranking values obtained by all the Pair-Potential-based selec-
tion mechanisms for the IGD and PD indicators.

QI MOP Dim. KRSE KGAE KCOU KPT KMPT KGPT KKRA

IGD

DTLZ1
2 4.2864 5.4296 5.0005 1.4291 7.0007 2.1432 2.7143

3 3.5713 2.1432 2.0001 4.5714 5.5717 5.0005 5.1436

DTLZ2
2 3.8574 6.0006 1.2861 2.2862 7.0007 3.2863 4.2865

3 3.2862 1.5711 4.2864 5.2867 5.0006 4.4295 4.1433

DTLZ5
2 4.0004 5.8576 1.2861 2.2862 7.0007 3.2863 4.2865

3 1.5711 5.2865 5.2866 2.5712 6.8577 3.5714 2.8573

DTLZ7
2 4.1434 6.0006 4.5715 1.4291 7.0007 2.4292 2.4293

3 2.7142 4.0005 5.4296 3.7144 6.2867 3.2863 2.5711

WFG1
2 5.2865 5.2866 2.4292 1.8571 6.4297 2.8573 3.8574

3 3.5713 3.1432 1.0001 4.5714 6.1437 5.0006 4.5715

WFG2
2 3.4293 5.5716 4.2865 1.5711 7.0007 2.5712 3.5714

3 3.8574 3.4292 1.2861 3.7143 6.4297 4.5715 4.7146

WFG3
2 4.2864 5.5716 5.0005 2.1432 7.0007 2.1433 1.8571

3 2.2862 5.7146 5.1435 2.1431 7.0007 2.2863 3.4294

PD

DTLZ1
2 3.8574 5.1436 3.5712 4.2865 5.7147 3.5713 1.8571

3 3.4292 4.4296 2.2861 3.8574 6.2867 4.2865 3.4293

DTLZ2
2 4.2865 2.8571 3.7143 3.7144 3.0002 4.7146 5.7147

3 4.4295 1.0001 5.4297 4.0003 5.1436 3.8572 4.1434

DTLZ5
2 4.2865 2.5712 4.0003 4.0004 2.1431 5.0006 6.0007

3 3.5713 3.8574 2.0001 4.5715 3.0002 5.5717 5.4296

DTLZ7
2 3.5713 5.7146 3.5714 2.5711 6.0007 3.5715 3.0002

3 2.1431 4.4295 4.8576 3.1433 6.1437 3.0002 4.2864

WFG1
2 2.8572 3.8575 3.1433 2.7141 7.0007 3.7144 4.7146

3 2.4292 4.5714 2.1431 3.4293 6.1437 4.7146 4.5715

WFG2
2 3.2863 6.7147 4.0005 1.8571 5.4296 2.8572 3.8574

3 3.4292 3.4293 2.5711 4.2865 6.4297 4.4296 3.4294

WFG3
2 3.2863 5.8576 3.2864 3.8575 6.1437 2.5711 3.0002

3 3.7143 3.7144 3.2862 4.8576 4.8577 4.7145 2.8571

4.1 Pair-Potential Functions Parameters Setting

The pair-pontential functions introduced in this paper require the definition of
some parameter values. Hence, prior to use the functions in the external archive
of MOEA/D, it is mandatory to determine such values. To this aim, we have per-
formed a trial-and-error experimentation to determine good parameter values.
Based on the true Pareto fronts of problems DTLZ1, DTLZ2, DTLZ5, DTLZ7,
WFG1, WFG2, and WFG3 with two and three objectives, we performed a car-
dinality reduction, using the seven pair-potential functions, to obtain subsets of
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size 20, 50, 100, 200, 300, 400, and 500, following the approach described in [4].
The generated subsets were then assessed using IGD and PD. Table 1 shows the
statistical average ranking values obtained by the seven selection mechanisms
using the parameter values that we found, where a value closer to one is better.
Based on the several comparisons performed, we found out that the parameter
values in Table 2 allow to produce approximation sets having good IGD and PD
values. In contrast to the quality of Riesz s-energy-based reference sets in [4], the
IGD and PD results of Table 1 show that the utilization of other pair-potential
functions led to better diversity results.

Table 2: Parameter values found by trial-and-error.
Pair-potential function Parameter values

KRSE s = m− 1

KGAE α = 512

KPT V1 = 5.0, V2 = 3.0, α = 0.02

KMPT D = 1.0, α = 10.0

KGPT A = 1.0, B = 1.0

KKRA V1 = 5.0, V2 = 3.0, α = 10.0

Fig. 1: Comparison of three-objective approximation sets between the 1st and
2nd places in the PD comparison with the resulting main population. The ap-
proximation sets correspond to the PD median.
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4.2 Improving Diversity Results

According to Ishibuchi et al. [11], the performance of MOEA/D strongly depends
on the Pareto front shape. This is because the weight vectors that MOEA/D uses,
cannot completely intersect irregular Pareto front geometries. To overcome this
issue, we propose to aggregate a pair-potential-based archive to store solutions
found throughout the evolutionary process with a high diversity degree.

Fig. 2: IGD and PD values of the main population and the Pair Potential-based
archives throughout the evolutionary process.

Tables 3 and 4 show IGD and PD comparisons, respectively, between the
MOEA/D’s main population and the final content of the archives. Regarding
IGD, it is clear that the main population had the worst IGD values for almost
all the test instances. In contrast, MOEA/DKRA and MOEA/DCOU obtained the
best IGD values in 7 problems each. These results are followed by MOEA/DGAE,
MOEA/DRSE, MOEA/DPT, MOEA/DMPT, and MOEA/DGPT. Hence, these re-
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Table 3: Mean and, in parentheses, standard deviation of the IGD indicator. The
two best values are shown in gray scale, where the darker tone corresponds to
the best value.

MOP Dim. MOEA/D MOEA/DRSE MOEA/DGAE MOEA/DCOU MOEA/DPT MOEA/DMPT MOEA/DGPT MOEA/DKRA

DTLZ1
2

4.186999e-027#
(2.019772e-02)

1.838323e-034#
(1.803998e-04)

3.427025e-035#
(2.446102e-04)

1.806034e-032#
(1.068795e-04)

1.811718e-033#
(1.022404e-04)

7.119547e-036#
(5.464629e-04)

4.411732e-028#
(2.421894e-02)

1.775810e-031

(7.145302e-05)

3
7.997173e-027#
(4.846696e-02)

2.406357e-023

(8.422861e-03)
2.374639e-022

(1.129116e-02)
2.444074e-024

(8.995911e-03)
2.458800e-025#
(8.711923e-03)

3.200721e-026#
(2.119001e-02)

2.490695e-018#
(7.984856e-02)

2.159021e-021

(4.484577e-03)

DTLZ1−1 2
4.247163e+021

(1.882771e-04)
4.247174e+022#
(5.132721e-04)

4.247217e+026#
(8.742813e-04)

4.247179e+025#
(9.144372e-04)

4.247176e+023#
(7.484851e-04)

4.247396e+027#
(3.931103e-03)

4.251433e+028#
(9.760655e-01)

4.247176e+024#
(7.470171e-04)

3
3.686450e+028#
(1.962899e-01)

3.664744e+023#
(2.303456e-02)

3.665353e+025#
(4.116766e-02)

3.664645e+021

(1.869585e-02)
3.664716e+022

(2.278402e-02)
3.665501e+026#
(2.876059e-02)

3.667952e+027#
(5.769143e-01)

3.664745e+024#
(2.200036e-02)

DTLZ2
2

6.455514e-036#
(1.804195e-03)

3.960807e-035#
(5.226221e-05)

6.730226e-037#
(2.991417e-04)

3.874658e-033

(6.399753e-05)
3.864961e-032

(7.340550e-05)
1.256876e-028#
(5.880958e-04)

3.883124e-034

(6.726117e-05)
3.849461e-031

(7.525377e-05)

3
5.332670e-028#
(9.806807e-03)

5.071447e-023#
(5.839869e-04)

4.936519e-021

(5.739893e-04)
5.030090e-022#
(9.189512e-04)

5.071447e-024#
(5.839869e-04)

5.245941e-027#
(5.824351e-04)

5.076878e-025#
(4.894479e-04)

5.093289e-026#
(6.223211e-04)

DTLZ2−1 2
5.402829e-027#
(5.182328e-04)

1.367666e-021

(3.730898e-04)
2.348546e-025#
(1.375046e-03)

1.639473e-024#
(4.920727e-04)

1.374464e-022

(2.698812e-04)
4.518382e-026#
(2.905080e-03)

1.453378e-018#
(7.632037e-02)

1.374481e-023

(2.697314e-04)

3
2.350967e-018#
(5.952031e-04)

1.753651e-013#
(1.822728e-03)

1.739527e-011

(1.839368e-03)
1.778182e-015#
(2.010126e-03)

1.753703e-014#
(1.831097e-03)

1.790863e-016#
(1.910148e-03)

2.334478e-017#
(2.950725e-02)

1.748156e-012#
(1.762841e-03)

DTLZ5
2

6.452047e-036#
(1.831733e-03)

3.916495e-035#
(6.321257e-05)

6.685997e-037#
(2.849174e-04)

3.865443e-031

(7.191131e-05)
3.900809e-033#
(6.945329e-05)

1.289695e-028#
(5.815969e-04)

3.888459e-032

(6.241348e-05)
3.904549e-034#
(8.187004e-05)

3
1.822996e-028#
(2.699169e-04)

4.416289e-033

(1.117496e-04)
6.693661e-035#
(3.234754e-04)

4.681299e-034#
(1.379174e-04)

4.383775e-031

(1.055094e-04)
1.119680e-026#
(7.429022e-04)

1.351939e-027#
(1.690910e-03)

4.399935e-032

(9.744893e-05)

DTLZ5−1 2
7.500461e+007#
(1.071153e-05)

7.499904e+001

(5.876507e-06)
7.499982e+005#
(1.388855e-05)

7.499921e+004#
(8.378681e-06)

7.499905e+003

(6.337627e-06)
7.500288e+006#
(5.105165e-05)

7.505455e+008#
(7.036907e-03)

7.499905e+002

(6.348228e-06)

3
8.114210e-017#
(8.743495e-04)

7.988213e-012

(7.192821e-04)
7.993381e-015#
(1.022766e-03)

7.990976e-014#
(6.887294e-04)

7.988213e-013

(7.192821e-04)
8.013794e-016#
(1.040173e-03)

8.454652e-018#
(3.533821e-02)

7.987934e-011

(7.816305e-04)

DTLZ7
2

8.474668e-026

(2.242291e-01)
1.284701e-017

(2.808858e-01)
1.573122e-018

(2.993187e-01)
7.898999e-024

(2.261259e-01)
7.892329e-022

(2.261302e-01)
7.002963e-021

(1.836990e-01)
8.231452e-025

(2.250786e-01)
7.894461e-023

(2.261645e-01)

3
4.508531e-018#
(3.193705e-01)

3.481312e-012

(3.550939e-01)
4.169200e-016

(3.722431e-01)
3.511664e-013

(3.536501e-01)
3.683843e-014

(3.830220e-01)
4.194404e-017

(3.674776e-01)
3.052841e-011

(3.367699e-01)
4.115675e-015

(3.405298e-01)

DTLZ7−1 2
5.654288e-028#
(2.472440e-02)

1.530213e-026#
(6.816794e-02)

2.847986e-027#
(1.268466e-01)

2.843677e-033#
(1.179169e-04)

2.813414e-032#
(8.125426e-05)

8.698850e-035#
(9.486018e-04)

8.241541e-034#
(1.007504e-02)

2.774438e-031

(8.787205e-05)

3
2.077316e-018#
(2.168927e-01)

1.232987e-016

(2.746663e-01)
9.900515e-024

(1.965103e-01)
8.226984e-021

(1.790202e-01)
8.341971e-022

(1.787632e-01)
1.190623e-015#
(2.051520e-01)

1.601192e-017#
(1.954057e-01)

9.827485e-023

(1.968313e-01)

WFG1
2

9.401449e-018

(2.191233e-02)
9.376123e-015

(1.565996e-02)
9.386727e-016#
(1.580819e-02)

9.353662e-013

(1.943095e-02)
9.369655e-014

(1.486310e-02)
9.307542e-011

(1.794458e-02)
9.397481e-017

(1.536942e-02)
9.345871e-012

(1.592324e-02)

3
1.027225e+003

(1.682408e-02)
1.032064e+004

(2.049699e-02)
1.025523e+002

(1.986368e-02)
1.023816e+001

(2.376911e-02)
1.032064e+005

(2.049699e-02)
1.032592e+007

(2.375301e-02)
1.032260e+006

(2.619221e-02)
1.032960e+008#
(1.777136e-02)

WFG1−1 2
2.038353e-018#
(1.666237e-01)

9.865750e-022

(5.922766e-03)
1.026224e-013#
(1.396817e-02)

9.741371e-021

(6.332477e-03)
1.081140e-015

(4.019717e-02)
1.092692e-016#
(7.891856e-03)

1.307802e-017#
(4.813635e-02)

1.081132e-014

(4.019772e-02)

3
3.268161e-018#
(6.953720e-03)

1.942082e-012

(9.043183e-03)
1.946992e-015

(8.637045e-03)
1.942754e-014

(8.420551e-03)
1.942082e-013

(9.043183e-03)
2.109872e-016#
(7.488072e-03)

2.373561e-017#
(3.868627e-02)

1.927049e-011

(7.845998e-03)

WFG2
2

3.551643e-018#
(1.704628e-01)

3.135232e-014

(1.222467e-01)
3.217534e-015

(1.342997e-01)
2.932231e-013

(1.400955e-01)
2.884977e-012

(1.166928e-01)
3.274172e-016#
(1.215664e-01)

3.286668e-017

(1.753714e-01)
2.884977e-011

(1.166928e-01)

3
6.086625e-018#
(2.409889e-01)

5.419541e-011

(2.424612e-01)
5.850965e-016

(2.961699e-01)
5.782103e-015

(1.792989e-01)
5.419541e-012

(2.424612e-01)
5.950589e-017#
(2.050419e-01)

5.644249e-014

(1.513871e-01)
5.513425e-013

(2.186715e-01)

WFG2−1 2
3.952074e-028#
(3.178202e-02)

1.113291e-025#
(2.228394e-04)

1.582865e-026#
(5.977065e-04)

1.030592e-021

(1.987543e-04)
1.060899e-022#
(2.035732e-04)

2.099910e-027#
(1.352693e-03)

1.067472e-024#
(1.999304e-04)

1.062263e-023#
(2.010447e-04)

3
3.086424e-018#
(4.515396e-03)

2.272615e-013#
(3.108107e-03)

2.218605e-011

(3.165435e-03)
2.308400e-016#
(3.572903e-03)

2.272615e-014#
(3.108107e-03)

2.345887e-017#
(2.906680e-03)

2.285305e-015#
(8.686979e-03)

2.265846e-012#
(2.896747e-03)

WFG3
2

1.882592e-025

(1.222206e-02)
1.949911e-026

(1.017810e-02)
2.067928e-027#
(3.835263e-03)

1.565673e-021

(5.160110e-03)
1.877287e-024

(1.230404e-02)
3.407575e-028#
(4.363392e-03)

1.594662e-022

(8.794198e-03)
1.877046e-023

(1.230560e-02)

3
2.807902e-018#
(7.107544e-02)

1.350266e-012#
(3.408787e-02)

1.198084e-011

(2.105833e-02)
1.525024e-015

(7.142128e-02)
1.350266e-013#
(3.408787e-02)

1.652181e-017#
(4.028171e-02)

1.432406e-014

(6.519973e-02)
1.535460e-016#
(8.419368e-02)

WFG3−1 2
1.091209e-024

(1.181551e-04)
1.097571e-026#
(2.084019e-04)

1.851377e-027#
(8.190213e-04)

1.096048e-025#
(2.379506e-04)

1.085211e-021

(1.491887e-04)
4.007145e-028#
(2.636346e-03)

1.085248e-022

(1.483458e-04)
1.085248e-023

(1.483458e-04)

3
2.475717e-018#
(7.343098e-04)

1.592187e-014#
(4.859861e-03)

1.544698e-011

(2.368049e-03)
1.574239e-012#
(3.281979e-03)

1.592187e-015#
(4.859861e-03)

1.771357e-017#
(5.028710e-03)

1.634088e-016#
(1.606381e-02)

1.586122e-013#
(3.844772e-03)

sults show that it is possible to tackle the MOEA/D’s performance dependence
on the Pareto front shape by using a pair-potential-based archive. During the
evolutionary process, some solutions with high diversity created by MOEA/D
are not added to its main population because of its design principles but the
pair-potential-based archives could store such deleted solutions to increase the
diversity quality. In this light, the PD values in Table 4 indicate that the approx-
imation sets stored in the archive are better than those of the main population
in terms of diversity. Concerning PD, MOEA/DGAE presents a more dominant
performance since it generated the best diversified approximation sets in 15 out
of 28 test instances. The second best results are generated by MOEA/DRSE,
creating 9 of the best approximation sets. In this case, the main population of
MOEA/D was ranked as the worst one. In Figure 1, we compared the main pop-
ulation and the approximation sets having the best and second best PD value.
From the figure, it is clear the lack of diversity of MOEA/D’s main population
when dealing with irregular Pareto front geometries (three-objective DTLZ2−1,
WFG1−1, and WFG2). In contrast, the use of pair-potential-based archives helps
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to circumvent such an issue. Additionally, Figure 25 indicate that, in general, the
use of the pair-potential-based archives help to increase the diversity through-
out the evolutionary process. In consequence, this supports the claim that these
archives store solutions that were possibly discarded by the main population
even though they have a high diversity.

Table 4: Mean and, in parentheses, standard deviation of the PD indicator. The
two best values are shown in gray scale, where the darker tone corresponds to
the best value.

MOP Dim. MOEA/D MOEA/DRSE MOEA/DGAE MOEA/DCOU MOEA/DPT MOEA/DMPT MOEA/DGPT MOEA/DKRA

DTLZ1
2

5.952998e+028#
(1.567214e+02)

9.819786e+021

(1.646415e+02)
9.752486e+022

(1.884763e+02)
8.179121e+027#
(5.079579e+01)

9.415797e+023

(1.273846e+02)
8.941377e+024#
(1.503196e+02)

8.893690e+026#
(5.122440e+02)

8.920221e+025#
(1.001645e+02)

3
3.894113e+047#
(1.687247e+04)

7.949559e+042#
(1.074164e+04)

8.090461e+041

(1.020890e+04)
7.308939e+045#
(1.163954e+04)

7.941942e+043#
(7.317877e+03)

5.570146e+046#
(1.358686e+04)

2.772268e+048#
(6.117830e+04)

7.898577e+044#
(6.570989e+03)

DTLZ1−1 2
9.829245e+057

(2.304527e+05)
1.095819e+061

(1.261983e+05)
1.062928e+062

(2.245031e+05)
8.127116e+058#
(5.435064e+04)

9.842686e+056#
(1.158998e+05)

1.019312e+063#
(1.732922e+05)

9.994363e+054#
(1.722732e+05)

9.844474e+055#
(1.158242e+05)

3
1.042068e+078#
(1.625627e+06)

6.120604e+073#
(3.951464e+06)

6.838680e+071

(4.135194e+06)
6.221416e+072#
(5.160296e+06)

6.081194e+074#
(3.932779e+06)

4.635094e+077#
(4.612712e+06)

5.666907e+076#
(7.222818e+06)

5.883329e+075#
(3.875243e+06)

DTLZ2
2

1.291604e+038#
(9.071074e+01)

1.733441e+031

(2.035760e+02)
1.682569e+033

(3.354642e+02)
1.666750e+034

(1.813600e+02)
1.654943e+035

(2.123469e+02)
1.648889e+036

(3.204995e+02)
1.616164e+037#
(1.935316e+02)

1.683851e+032

(1.588133e+02)

3
1.949957e+052

(1.643671e+04)
1.650157e+053#
(9.689496e+03)

1.997165e+051

(1.076623e+04)
1.575865e+057#
(7.379285e+03)

1.650157e+054#
(9.689496e+03)

1.565059e+058#
(9.949892e+03)

1.608530e+056#
(8.977004e+03)

1.628639e+055#
(6.897749e+03)

DTLZ2−1 2
3.460118e+038#
(1.447837e+02)

5.677262e+034#
(5.377094e+02)

6.295488e+032

(1.501710e+03)
6.623736e+031

(1.405020e+03)
5.668957e+036#
(5.186942e+02)

5.682854e+033#
(1.350085e+03)

4.242075e+037#
(4.710251e+02)

5.669005e+035#
(5.187033e+02)

3
3.860403e+058#
(2.221565e+04)

5.177377e+053#
(3.165070e+04)

6.040356e+051

(3.459380e+04)
5.720838e+052#
(3.754927e+04)

5.177362e+054#
(3.164902e+04)

4.650628e+057#
(2.956968e+04)

4.706842e+056#
(4.209004e+04)

5.139558e+055#
(1.992277e+04)

DTLZ5
2

1.291604e+038#
(9.071074e+01)

1.733441e+031

(2.035760e+02)
1.682569e+033

(3.354642e+02)
1.666750e+034

(1.813600e+02)
1.654943e+035

(2.123469e+02)
1.648889e+036

(3.204995e+02)
1.616164e+037#
(1.935316e+02)

1.683851e+032

(1.588133e+02)

3
5.881850e+048#
(5.702902e+03)

7.711397e+042#
(1.114531e+04)

7.251771e+046#
(9.428644e+03)

8.303132e+041

(1.131798e+04)
7.661495e+043#
(1.050952e+04)

7.322066e+045#
(1.224087e+04)

6.869597e+047#
(9.700606e+03)

7.501115e+044#
(1.152780e+04)

DTLZ5−1 2
3.460118e+038#
(1.447837e+02)

5.677262e+034#
(5.377094e+02)

6.295488e+032

(1.501710e+03)
6.623736e+031

(1.405020e+03)
5.668957e+036#
(5.186942e+02)

5.682854e+033#
(1.350085e+03)

4.242075e+037#
(4.710251e+02)

5.669005e+035#
(5.187033e+02)

3
5.074794e+058#
(1.814572e+04)

6.458456e+054#
(3.138224e+04)

7.234121e+051

(2.971116e+04)
7.106961e+052#
(3.629466e+04)

6.457661e+055#
(3.150492e+04)

6.075672e+056#
(2.984732e+04)

5.094598e+057#
(4.981328e+04)

6.536891e+053#
(3.806468e+04)

DTLZ7
2

1.658939e+033

(4.982475e+02)
1.703469e+031

(6.169178e+02)
1.571216e+036

(5.838278e+02)
1.572009e+035

(4.203846e+02)
1.595144e+034

(4.414085e+02)
1.536629e+037#
(3.978827e+02)

1.512220e+038#
(4.334773e+02)

1.659590e+032

(4.641080e+02)

3
6.086815e+048#
(1.228435e+04)

1.105173e+052

(3.395800e+04)
1.184883e+051

(3.705969e+04)
1.096011e+053

(3.272136e+04)
1.095923e+054

(3.571369e+04)
7.822746e+046#
(1.720284e+04)

7.605433e+047#
(2.245271e+04)

9.947854e+045#
(3.143508e+04)

DTLZ7−1 2
6.601662e+028#
(4.527766e+01)

9.241120e+021

(1.776790e+02)
8.281332e+026#
(2.052206e+02)

8.697297e+023#
(1.165725e+02)

8.704665e+022#
(1.097159e+02)

7.470244e+027#
(1.274952e+02)

8.500112e+025#
(1.333475e+02)

8.554335e+024#
(1.130821e+02)

3
1.477186e+048#
(5.663068e+03)

5.307180e+045#
(1.817877e+04)

5.944595e+041

(2.091486e+04)
5.713357e+042#
(1.617265e+04)

5.475668e+043#
(1.521980e+04)

3.871680e+046#
(1.558153e+04)

2.227547e+047#
(1.409303e+04)

5.462697e+044#
(1.877514e+04)

WFG1
2

3.156553e+038#
(6.227043e+02)

4.591890e+031

(6.341935e+02)
4.355820e+033

(6.088311e+02)
4.196410e+037#
(5.728016e+02)

4.286319e+035#
(4.124380e+02)

4.349743e+034

(7.376629e+02)
4.204975e+036#
(4.414066e+02)

4.356841e+032

(4.564431e+02)

3
4.599881e+057#
(3.509304e+04)

5.184674e+053#
(1.929072e+04)

5.297481e+051

(2.155747e+04)
5.203680e+052#
(2.863031e+04)

5.184674e+054#
(1.929072e+04)

4.461624e+058#
(3.114678e+04)

5.156971e+055#
(1.528391e+04)

5.153043e+056#
(2.276938e+04)

WFG1−1 2
4.634857e+032

(1.046707e+03)
4.235804e+034#
(3.806378e+02)

4.744780e+031

(8.040138e+02)
4.150133e+038#
(4.060752e+02)

4.214520e+035#
(4.438223e+02)

4.324686e+033#
(7.944825e+02)

4.158365e+037#
(4.841233e+02)

4.199205e+036#
(4.117834e+02)

3
7.715876e+048#
(8.352894e+03)

3.141305e+053#
(2.194826e+04)

3.461392e+051

(1.599937e+04)
3.073141e+055#
(1.906281e+04)

3.141413e+052#
(2.194225e+04)

2.270112e+056#
(1.736704e+04)

2.111147e+057#
(5.681661e+04)

3.102097e+054#
(1.969159e+04)

WFG2
2

2.476658e+038#
(4.968231e+02)

2.790792e+035

(7.035403e+02)
2.843289e+031

(4.917881e+02)
2.701249e+036

(4.563455e+02)
2.828557e+033

(4.748070e+02)
2.600459e+037#
(6.143328e+02)

2.828184e+034

(5.581615e+02)
2.831176e+032

(4.774635e+02)

3
2.800111e+058#
(5.723262e+04)

3.777302e+052

(6.475809e+04)
3.888116e+051

(7.671066e+04)
3.485334e+056#
(4.423614e+04)

3.777302e+053

(6.475809e+04)
3.127121e+057#
(5.093723e+04)

3.676892e+055#
(5.223327e+04)

3.689925e+054#
(6.743403e+04)

WFG2−1 2
1.736248e+038#
(2.638803e+02)

2.333515e+033

(3.177426e+02)
2.337436e+032

(3.515560e+02)
2.353181e+031

(4.519447e+02)
2.254460e+037

(3.640165e+02)
2.306952e+035

(4.353679e+02)
2.331899e+034

(4.145174e+02)
2.266598e+036

(4.148807e+02)

3
3.810451e+058#
(1.557674e+04)

5.127600e+055#
(1.979390e+04)

5.715054e+051

(2.972391e+04)
5.192733e+052#
(3.908777e+04)

5.127600e+056#
(1.979390e+04)

4.945208e+057#
(2.548218e+04)

5.163662e+053#
(2.452925e+04)

5.131372e+054#
(2.160505e+04)

WFG3
2

4.737892e+037#
(1.212466e+03)

5.688289e+031

(9.195993e+02)
5.283769e+036#
(9.062012e+02)

4.598677e+038#
(4.967458e+02)

5.323202e+033#
(9.883039e+02)

5.300394e+035#
(8.054953e+02)

5.418351e+032

(8.187545e+02)
5.318340e+034#
(9.899779e+02)

3
3.530812e+058#
(4.627007e+04)

4.992648e+053

(4.028765e+04)
5.140610e+051

(3.330771e+04)
4.771445e+056#
(3.341461e+04)

4.992648e+054

(4.028765e+04)
4.505951e+057#
(5.602672e+04)

4.994122e+052

(4.829807e+04)
4.943398e+055#
(3.517098e+04)

WFG3−1 2
5.148218e+033

(9.435951e+02)
5.439409e+031

(6.812039e+02)
5.390651e+032

(8.899972e+02)
4.196157e+038#
(2.813812e+02)

5.065853e+036#
(6.770455e+02)

4.860643e+037#
(9.733448e+02)

5.077295e+034#
(6.643410e+02)

5.077295e+035#
(6.643410e+02)

3
2.293842e+058#
(2.498524e+04)

6.037343e+053#
(2.325666e+04)

6.442096e+051

(4.495150e+04)
5.977539e+055#
(2.421289e+04)

6.037343e+054#
(2.325666e+04)

5.228685e+057#
(2.540989e+04)

5.912077e+056#
(2.997981e+04)

6.046485e+052#
(2.531948e+04)

5 Conclusions and Future Work

In physics, the total potential energy of a system of N particles plays an impor-
tant role in macroscopic and in molecular fields. To measure the potential energy
due to the interactions of pairs of particles, pair-potential functions are employed.

5 All the IGD and PD graphs are available at http://computacion.cs.cinvestav.

mx/~jfalcon/PairPotentials/.

http://computacion.cs.cinvestav.mx/~jfalcon/PairPotentials/.
http://computacion.cs.cinvestav.mx/~jfalcon/PairPotentials/.
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In this paper, we used several pair-potential functions (Riesz s-energy, Gauss-
sian α-energy, Coulomb’s law, Pöschl-Teller and Kratzer potential) to increase
the diversity of MOEAs. To this aim, we adopted the pair-potential functions
as the backbone of a selection mechanism to update an external archive which
is coupled to MOEA/D. Our experimental results based on the IGD and PD in-
dicators showed that the pair-potential-based archives store solutions with high
diversity that otherwise would be discarded by MOEA/D’s main population.
Hence, the utilization of the pair-potential-based archives helps to circumvent
the known MOEA/D’s performance dependence on the Pareto front shapes. As
part of our future work, we aim to mathematically analyze the selected pair-
potential functions in order to design better selection mechanisms and test them
on MaOPs.
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