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ABSTRACT
In recent years, quality indicators (QIs) have been employed to

design selection mechanisms for multi-objective evolutionary al-

gorithms (MOEAs). These indicator-based MOEAs (IB-MOEAs)

generate Pareto front approximations that present convergence

and diversity characteristics strongly related to the QI that guides

the selection mechanism. However, on complex multi-objective

optimization problems, the performance of IB-MOEAs is far from

being completely understood. In this paper, we empirically ana-

lyze the convergence and diversity properties of five steady-state

IB-MOEAs based on the hypervolume, R2, IGD
+
, ϵ+, and ∆p . Re-

garding convergence, we analyze their speed of convergence and

the final closeness to the true Pareto front. The IB-MOEAs adopted

in our study were tested on problems having different Pareto front

shapes, and were taken from six test suites. Our experimental re-

sults show general and particular strengths and weaknesses of the

adopted IB-MOEAs. We believe that these results are the first step

towards a deeper understanding of the behavior of IB-MOEAs.
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1 INTRODUCTION
Many scientific and engineering problems can be formulated in

terms of the simulatenous optimization of several, often conflicting,
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objective functions. These are the so-called multi-objective opti-

mization problems (MOPs), which are formally defined as follows:

min

x⃗ ∈Ω

{
F⃗ (x⃗ ) = ( f1 (x⃗ ), f2 (x⃗ ), . . . , fm (x⃗ ))

}
(1)

where x⃗ is the vector of decision variables, Ω ⊆ Rn is the feasible

region set and F⃗ (x⃗ ) is the vector of m ≥ 2 objective functions

where fi : Rn → R for i = 1, . . . ,m. Due to the conflict among

the objective functions, solving an MOP involves finding the best

possible trade-offs among them. The particular set that yields the

optimum values, according to the Pareto dominance relation
1
, for

all the objective functions is known as the Pareto optimal set and

its image is known as the Pareto optimal front (PF ∗).

Multi-objective evolutionary algorithms (MOEAs) have become

an increasingly popular choice to tackle complex MOPs [5]. Due to

the wide variety of currently proposed MOEAs, an important issue

is how to assess their performance. In the early years of MOEAs, re-

searchers only performed qualitative comparisons of convergence

and diversity (distribution and spread) of the Pareto front approxi-

mations produced by an MOEA. However, in the late 1990s, quality

indicators (QIs) were proposed to compare the performance of

MOEAs in a quantitative way [20]. QIs are functions that assign a

real value to one or more approximated Pareto fronts, depending

on their specific preferences. In consequence, they impose a total

order between approximation sets [24]. Due to this order property,

QIs are especially noteworthy when the Pareto dominance relation,

which is the more general assumption of quality, is not enough to

discriminate approximation sets.

Throughout the years, some studies on QIs have been proposed.

Zitzler et al. [24] provided the first theoretical analysis of QIs, using
a mathematical framework to understand how QIs are related to a

set of outperformance relations and what type of conclusions can

be drawn from them. The authors emphasized that the choice of

QIs to compare MOEAs depends strongly on the type of statements

that one would like to make, attending the decision maker’s pref-

erences. Jiang et al. [15] empirically analyzed the preferences of a

set of QIs when assessing convex and concave Pareto fronts with

different distributions. The authors showed the consistencies and

contradictions between QIs, which was the first step to understand

their relationship. In order to get a more in-depth understanding of

the relationship between QIs, Liefooghe and Derbel [17] performed

a correlation analysis of the way in which QIs rank approximation

sets with different geometries. Due to the specific preferences of

1
Given x⃗, y⃗ ∈ Rn and F⃗ : Rn → Rm , we say that x⃗ Pareto dominates y⃗ (denoted as

F⃗ (x⃗ ) ≺ F⃗ (y⃗ )) if and only if ∀i = 1, . . . ,m, fi (x⃗ ) ≤ fi (y⃗ ) and there exists at least

an index j ∈ {1, . . . ,m } such that fj (x⃗ ) < fj (y⃗ ).
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each QI, no pair obtains the same ranking of Pareto front approx-

imations. Hence, their main result was to establish the degree of

compliance between the adopted QIs.

Recently, QIs have motivated the design of selection mechanisms

of MOEAs, giving rise to the so-called indicator-based MOEAs (IB-

MOEAs). From the plethora of QIs currently available (see [16, 18]),

those focused on assessing convergence have attracted particular

interest since finding a set of solutions that optimize their value

will produce an approximation set closer to PF ∗. The hypervol-

ume indicator (HV) [23] has been extensively used in IB-MOEAs

due to its nice mathematical properties. HV measures the volume

dominated by an approximation set, being the most remarkable

convergence QI because, from all the classical indicators, it is the

only one that is Pareto-compliant
2
. However, its computational

cost increases super-polynomially with the number of objectives.

In consequence, other less expensive convergence QIs such as R2

[2], Inverted Generational Distance plus (IGD
+
) [13], the additive

ϵ indicator (ϵ+) [24], and the averaged Hausdorff distance (∆p )
[19], have been employed to guide the selection mechanisms of IB-

MOEAs. Despite the wide variety of IB-MOEAs in the specialized

literature, there is no clear understanding of their convergence and

diversity properties when tackling MOPs with distinct Pareto front

geometries and difficulties. In this paper, we perform a comprehen-

sive empirical study of the convergence and diversity properties

of five steady-state IB-MOEAs based on HV, R2, IGD
+
, ϵ+, and

∆p . We aim to provide a first insight into the strengths and weak-

nesses of IB-MOEAs when tackling a wide variety of MOPs from

the test suites Deb-Thiele-Laumanns-Zitzler (DTLZ) [7], Walking-

Fish-Group (WFG) [12], Lamé Superspheres [8], Viennet problems

(VIE) [21], and the recently proposed DTLZ
−1

and WFG
−1

[14].

The remainder of this paper is organized as follows. Section 2

briefly introduces the selected QIs and the generic steady-state

IB-MOEA employed in our study. The convergence and diversity

analysis are described in Section 3. Finally, Section 4 presents the

conclusions of the paper and some possible future research paths.

2 BACKGROUND
In this section, we formally define the HV, R2, IGD

+
, ϵ+, and ∆p

indicators. In all cases, let A be an approximation set andZ be a

reference set.m is the dimension of the objective space. Addition-

ally, we introduce the generic steady-state IB-MOEA, based on the

framework of the S-Metric Selection Evolutionary Multi-Objective

Algorithm (SMS-EMOA) [1].

2.1 Quality indicators
Definition 1 (Hypervolume indicator). Given an anti-optimal

reference point r⃗ ∈ Rm , the hypervolume is defined as follows:

HV (A, r⃗ ) = L *.
,

⋃
a⃗∈A

{
b⃗ | a⃗ ≺ b⃗ ≺ r⃗

}+/
-
, (2)

where L (·) denotes the Lebesgue measure in Rm .

2
Let A, B ⊂ Rk , |A | = |B | = µ be two approximation sets and I : Rk → R be

a unary QI. Then, I is Pareto-compliant if A ≺ B ⇒ I (A) > I (B), supposing a

greater indicator value is better.

Definition 2 (Unary R2 indicator). The unary R2 indicator is
defined as follows:

R2(A,W ) = −
1

|W |

∑
w⃗ ∈W

max

a⃗∈A
{uw⃗ (a⃗)}, (3)

whereW is a set of weight vectors and uw⃗ : Rm → R is a scalarizing
function defined by w⃗ ∈ W that assigns a real value to each m-
dimensional vector.

Definition 3 (IGD
+
indicator). The IGD+, for minimization, is

defined as follows:

IGD+ (A,Z ) =
1

|Z |

∑
z⃗∈Z

min

a⃗∈A
d+ (a⃗, z⃗), (4)

where d+ (a⃗, z⃗) =
√∑m

k=1
(max{ak − zk , 0})

2.

Definition 4 (Unary ϵ+ indicator).

ϵ+ (A,Z) = max

z⃗∈Z
min

a⃗∈A
max

1≤i≤m
{zi − ai }. (5)

The unary ϵ+-indicator gives the minimum distance by which a

Pareto front approximation needs to or can be translated in each

dimension in objective space such that a reference set is weakly

dominated.

Definition 5 (Averaged Hausdorff Distance (∆p )). For a
given p > 0, the ∆p is defined as follows:

∆p (A,Z ) = max

{
GDp (A,Z ), IGDp (A,Z )

}
. (6)

∆p is defined on the basis of two indicators: GDp and IGDp which
are slight modifications of the indicators Generational Distance

(GD) [20] and Inverted Generational Distance (IGD) [4], respectively.

These are defined in the following:

Definition 6 (GDp indicator).

GDp (A,Z) = *.
,

1

|A|

∑
a⃗∈A

d (a⃗,Z)p+/
-

1/p

, (7)

where d (a⃗,Z) = minz⃗∈Z

√∑m
i=1

(ai − zi )2.

Definition 7 (IGDp indicator).

IGDp (A,Z) = GDp (Z,A) = *.
,

1

|Z|

∑
z⃗∈Z

d (z⃗.A)p+/
-

1/p

, (8)

Definition 8 (Indicator contribution). LetI be any indicator
in the set {HV, R2, IGD+, ϵ+,∆p }. The individual contribution C of a
solution a⃗ ∈ A to the indicator value is given as follows:

CI (a⃗,A) = |I (A) − I (A \ {a⃗}) |. (9)

2.2 Steady-state IB-MOEAs
From the large spectrum of IB-MOEAs, the one that has received

particular attention is SMS-EMOA [1]. This is a steady-state MOEA

that employs Pareto dominance as its main selection criterion, and

it adopts a density estimator based on HV. Algorithm 1 shows the

general framework of SMS-EMOA that can be adapted to any of the

QIs defined in the previous section. The main loop of the generic

steady-state IB-MOEA is in lines 2 to 11. At each iteration, a single
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solution is created from the population P using genetic operators.

This solution is then temporarily added to P to form the population

Q in line 4, Then, Q is divided into a set of layers R1, . . . ,Rt , using
the nondominated sorting algorithm [6], where Rt contains the

worst solutions according to the Pareto dominance relation. If Rt
has more than one solution, an indicator-based density estimator

(IB-DE) is executed. First, an IB-DE calculates the individual indica-

tor contributions of all solutions in a given set using Eq. (9), and,

finally, it deletes the solution having the minimum contribution.

Regarding SMS-EMOA, its IB-DE calculates the individual contri-

butions to HV. Finally, the IB-MOEA returns the population P as

the approximation to the Pareto front. Based on the SMS-EMOA

framework, other IB-MOEAs using the indicators R2 and IGD
+

have been proposed, i.e., the R2-EMOA [3] and the IGD
+
-based

Many-Objective Evolutionary Optimizer (IGD
+
-MaOEA) [10], re-

spectively.

Algorithm 1 Generic steady-state IB-MOEA

Require: Indicator I
Ensure: Pareto front approximation

1: Randomly initialize population P
2: while stopping criterion is not fulfilled do
3: Generate offspring q⃗ from population P
4: Q ← P ∪ {q⃗ }
5: Obtain z⃗∗ and z⃗nad from Q and normalize it

6: {R1, . . . , Rt } ← NDsor tinд (Q )
7: if |Rt | > 1 then
8: r⃗worst ← argminr⃗ ∈Rt CI (r⃗, Rt )
9: else
10: r⃗worst is the single solution in Rt
11: P ← Q \ {r⃗worst }
12: return P

3 EXPERIMENTAL RESULTS
In this section, we empirically analyze the convergence and diver-

sity properties of five steady-state IB-MOEAs, following the frame-

work of Algorithm 1, based on the indicators HV, R2, IGD
+
, ϵ+, and

∆p . In other words, we compare SMS-EMOA [1], R2-EMOA [3],

IGD
+
-MaOEA [10], and we propose ϵ+-MaOEA and ∆p -MaOEA.

We adopted the DTLZ, WFG, VIE, Lamé superspheres, DTLZ
−1
,

and WFG
−1

test suites with two and three objective functions. Ta-

ble 1 describes the MOPs employed in the study, emphasizing their

Pareto front geometry and whether PF ∗ is correlated with the

shape of a simplex formed by a set of convex weight vectors
3
. In all

cases, we performed 30 independent executions of each algorithm

with each test instance.

3.1 Parameters settings
For a fair comparison, in all the experiments, the IB-MOEAs used

the same population size µ = CH+m−1

m−1
which is equal to the number

of convex weight vectors employed by R2-EMOA. H is a parameter

that controls the number of convex weight vectors [22]. Hence, µ
is equal to 100 and 105 for two and three objectives, respectively.

We adopted a maximum number of function evaluations as the

3
A vector w⃗ ∈ Rm is a convex weight vector if and only if

∑m
i=1

wi = 1 and wi ≥

0, ∀i = 1, . . . ,m

Table 1:MOPs adopted in our study. For each case, the Pareto
front geometry is described, indicating whether it is corre-
lated or not with the shape of a simplex.

MOP
Pareto front

shape Simplex-like

DTLZ5 Degenerate %

DTLZ5
−1

Convex %

DTLZ7 Disconnected %

DTLZ7
−1

Disconnected %

WFG1 Mixed !

WFG1
−1

Mixed %

WFG2 Disconnected !

WFG2
−1

Slightly concave %

WFG3 Degenerate %

WFG3
−1

Linear %

Lamé γ = 0.25 Highly convex %

Lamé γ = 0.50 Convex !

Lamé γ = 1.00 Linear !

Lamé γ = 2.00 Concave !

Lamé γ = 5.00 Highly concave !

Mirror γ = 0.25 Highly concave %

Mirror γ = 0.50 Concave %

Mirror γ = 1.00 Linear %

Mirror γ = 2.00 Convex %

Mirror γ = 5.00 Highly convex %

VIE1 Convex %

VIE2

Mixed

(convex and degenerate)

%

VIE3 Degenerate %

stopping criterion which was set to 50,000 and 60,000 for two and

three objectives, respectively. All the IB-MOEAs employed sim-

ulated binary crossover and polynomial-based mutation as their

genetic operators [6]. For all the objectives, the crossover and mu-

tation probabilities were set to 0.9 and 1/n, respectively, where n
is the number of decision variables. Both the crossover and the

mutation distribution indexes were set equal to 20. At each itera-

tion, SMS-EMOA employs the vector of worst objective values of

the population as the reference point of HV and the layer R1 as

the reference set in {IGD+, ϵ+,∆p }-MaOEA. Regarding the MOPs,

the number of decision variables of problems DTLZ, DTLZ
−1
, and

Lamé superspheres is n =m + K − 1, where K = 10 for DTLZ5 and

DTLZ5
−1
; K = 20 for DTLZ7 and its minus version; and, K = 5 for

the Lamé and Mirror problems that are determined by a different γ
value in Table 1. Considering the WFG and WFG

−1
test instances,

n was set to 24 and 26 for two and three objective functions, respec-

tively. In both cases, the number of position-related parameters is

two. The decision space of the three VIE problems is of dimension

two.

3.2 Convergence analysis
The goals of our convergence analysis are twofold. First, investigate

the percentage of successful executions (denoted as “hit rate”) on
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which an IB-MOEA is sufficiently close (attending a specific cri-

terion) to PF ∗, and, on average, how many function evaluations

are required to fulfill this condition (convergence speed). Secondly,

evaluate the final Pareto front approximations generated by the

adopted IB-MOEAs, using multiple convergence QIs.

Regarding the former goal, we claim that an IB-MOEA is close

enough to a reference set
4 Z ⊂ PF ∗ if its population at some

iteration t meets the following criterion (called ϵ+-convergence):
ϵ+ (Pt ,Z) ≤ ϵ̄ , where ϵ̄ is a parameter set to 0.05 and 0.1 for two and

three objectives, respectively. If the IB-MOEA has ϵ+-convergence,
that execution is marked as successful; otherwise, the execution is

marked as failed. The hit rate (hr ) is the number of successful cases

divided by the total number of executions (30 in our experiments).

We take the speed of convergence as the mean value at which an

IB-MOEA reaches ϵ+-convergence. Table 2 shows the hit rate and
speed of convergence for each MOP of all IB-MOEAs. The fastest

IB-MOEA is shown in grayscale, and the symbol # is placed when

its speed of convergence is significantly better than the other IB-

MOEAs based on a one-tailed Wilcoxon test, using a significance

level of α = 0.05. From the table, it is possible to establish the

strengths andweaknesses of the IB-MOEAs.We express as a general

strength those test instances where all the IB-MOEAs have hr = 1.0

(denoted by the symbol!), and a general weakness is where all

the IB-MOEAs have the symbol%related to hr = 0.0.

On the one hand, Lamé and Mirror problems, DTLZ5 in both

objective dimensions, DTLZ7
−1

2D, WFG2
−1

2D, VIE2 and VIE3

are the general strengths of the adopted IB-MOEAs. On the other

hand, DTLZ5
−1

3D, DTLZ7 3D, all WFG1 and WFG1
−1

test in-

stances, WFG2 2D and WFG3
−1

3D are considered as the general

weaknesses. Figure 1 supports our claim of general weaknesses

since it shows the IB-MOEAs’ median ϵ+ convergence graphs for
all the above-mentioned problems. From this figure, we can see

that no IB-MOEA reaches the ϵ+-convergence condition because in

some cases (DTLZ5
−1

3D and DTLZ7 3D) the IB-MOEAs get stuck

in a higher ϵ+ value, or the algorithms’ behavior is particularly

chaotic (WFG1
−1

2D, WFG1
−1

3D and WFG
−1

3D). Considering

the 23 MOPs belonging to the DTLZ, DTLZ
−1
, WFG, WFG

−1
and

VIE test suites (which are more difficult problems than the Lamé

superspheres where all the IB-MOEAs achieved ϵ+-convergence),
IGD

+
-MaOEA ϵ+-converged in the largest number of MOPs (i.e.,

14 problems) although SMS-EMOA and ϵ+-MaOEA also showed

outstanding results since they ϵ+-converged in 12 and 13 test in-

stances, respectively. Taking into account the total number of MOPs

having hr = 0.0 and hr ∈ (0, 1), ∆p -MaOEA and R2-EMOA are the

worst IB-MOEAs, having a total of 13 and 15 MOPs under these

conditions, respectively. In general, SMS-EMOA presents the best

results regarding the speed of convergence because, considering all

the MOPs, it was the fastest in 20 out of 43 problems. Additionally,

SMS-EMOA and IGD
+
-MaOEA ϵ+-converged in a similar num-

ber of cases. Consequently, the latter IB-MOEA can be considered

to obtain ϵ+-convergence at a lower computational cost and ob-

taining similar results to SMS-EMOA. In terms of ϵ+-convergence,

4
For each MOP, we uniformly sampled its PF ∗ to generate the reference set. The

cardinality of the reference sets was set to 200 and 300 for two- and three-dimensional

MOPs.

R2-EMOA is the worst IB-MOEA when tackling MOPs having non-

simplex-like Pareto fronts. Although in Mirror problems it always

presents ϵ+-convergence, the diversity of solutions is not good,

since there is a strong bias to the boundaries of the Pareto fronts.

This bad performance is explained by the use of convex weight vec-

tors. Recently, Ishibuchi et al. [14] empirically showed that MOEAs

using convex weight vectors do not perform very well when tack-

ling MOPs whose Pareto front shapes are not correlated to the

geometry of a simplex. In our experiments, most of the problems

are not correlated with the simplex shape.

To analyze the final convergence quality of the IB-MOEAs, we de-

cided to employ the Hausdorff distance (HD) which is a well-known

metric as well as the QIs: HV, R2, IGD
+
, ϵ+, and ∆p . The reason to

use HD is due to its neutrality when assessing the IB-MOEAs, i.e.,

none of them employ HD in their selection mechanism. Consider-

ing the QIs, we opted for a neutral comparison. If we compare a set

of IB-MOEAs, using an indicator I, where one of the algorithms

uses I in its selection mechanism, the comparison will be biased

to this particular IB-MOEA. Hence, we leave aside that algorithm

when comparing withI. For example, if we compare the IB-MOEAs

using HV, SMS-EMOA does not take part in the comparison. Due to

space limitations
5
, we only present the numerical results for HD in

Table 3. However, we summarize in Fig. 2 the counting of the first

and second places obtained by the IB-MOEAs on the QIs. Based on

HD, ∆p -MaOEA and SMS-EMOA are the best IB-MOEAs because

they obtained very similar results: the former is the best in 16 MOPs

while the latter gets the first place in 15 test instances. ϵ+-MaOEA is

ranked as the worst algorithm since it only obtained the first place

in one MOP, namely WFG3 3D. It is worth noting that although

the behavior of ∆p -MaOEA was not very good with regard to the

hit rate and speed of convergence (as it is the case of ϵ+-MaOEA),

it obtains good results on the basis of HD. Based on this and the

complete analysis of final convergence, it is possible to see that

not always the fastest algorithm obtains the best final convergence

performance. Hence, we believe that the hit rate and convergence

speed can provide valuable insights about the exploration ability

of the corresponding IB-DEs, while the final convergence results

help us to determine what is the exploitation (or refinement of the

approximated Pareto fronts) ability associated with the IB-DEs. To

support this fact, from Figure 2, we observe that SMS-EMOA is the

best algorithm for IGD
+
, ϵ+, and ∆p ; while ∆p -MaOEA is the best

for HV and R2. Considering the second places on each QI, we have

IGD
+
-MaOEa for HV, SMS-EMOA for R2, ϵ+-MaOEA regarding

IGD
+
, IGD

+
-MaOEA for ϵ+, and, finally, R2-EMOA for ∆p . Due to

the high correlation between HV and ϵ+ [17], and HV with IGD
+

[10], it is clear why SMS-EMOA significantly outperforms the other

IB-MOEAs on these QIs. Additionally, the first place of SMS-EMOA

in ∆p is due to its good distribution of solutions (which is discussed

in the next section) in comparison to the uniformity of solutions

produced by R2-EMOA, IGD
+
-MaOEA, and ϵ+-MaOEA. On the

other hand, ∆p -MaOEA obtains the first place in HV because its

spread and uniformity of solutions are better than that of the other

IB-MOEAs, which is something rewarded by HV. The same argu-

ments hold for the case of R2, which is also highly correlated with

5
The complete study can be found in http://computacion.cs.cinvestav.mx:/~jfalcon/

IB-MOEAs/Study.html.

http://computacion.cs.cinvestav.mx:/~jfalcon/IB-MOEAs/Study.html
http://computacion.cs.cinvestav.mx:/~jfalcon/IB-MOEAs/Study.html
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Figure 1: Convergence graphs for MOPs which represent general weaknesses for all the adopted IB-MOEAs. The x-axis is
related to the number of iterations and the y-axis is the ϵ+ value.

Figure 2: Heat map that shows the number of times an IB-
MOEA was ranked first or second, according to the indica-
tors HV, R2, IGD+, ϵ+, ∆p , and s-energy.

HV although it prefers uniformly distributed solutions on linear

and concave Pareto fronts.

Based on the experimental results of both experiments, the fol-

lowing conclusions are drawn. The IGD
+
-based or the ϵ+-based

density estimators (DEs) can be plugged onto MOEAs to provide a

higher probability to obtain ϵ+-convergence although at a slower

rate. The HV-DE is better if we are interested in a faster conver-

gence. However, we have to consider that the cost of repeatedly

computing HV contributions is time-consuming since the cost of

HV increases super-polynomially with the number of objective

functions. In order to refine the Pareto fronts produced by the

recommended IB-DEs, we can choose ∆p -DE since it provided ex-

cellent final convergence results regarding HD, HV, and R2. On the

other hand, due to the use of convex weight vectors, R2-EMOA

arises as the worst option when the Pareto front of the MOP is not

correlated with the shape of a simplex. This result is supported in

[14]. The rest of IB-MOEAs are not strongly sensitive to the Pareto

front geometry.

3.3 Diversity analysis
To assess the diversity of solutions in the outcomes of IB-MOEAs,

we decided to employ two QIs: the Solow-Polasky Diversity indi-

cator (SPD) [9] and the Riesz s-energy indicator (Es ) [11]. Due to
space limitations, we only show the numerical results of SPD in

Table 4 and, in Fig. 2, we summarize the Es results. Both SPD and

Es values show evidence that ∆p -MaOEA produces Pareto front

approximations with high diversity. In the second place, we have

SMS-EMOA for both QIs as well. ϵ+-MaOEA has the worst diver-

sity results since it does not produce the best value in any of the

test cases adopted. The results of ϵ+-MaOEA can be explained by

the fact that ϵ+ exclusively assesses convergence while the other

indicators adopted in our study simultaneously assess convergence

and diversity. Hence, the ϵ+-based DE only promotes convergence.

On the other hand, from Table 4, it is easy to see that in most cases

where ∆p -MaOEA obtains the best value, such results are related

to MOPs with Pareto fronts not correlated with the form of a sim-

plex, such as DTLZ5 3D, DTLZ7 3D, WFG2
−1

3D and all the VIE

problems. Regarding the Lamé problems, SMS-EMOA has the best

results on the convex and linear instances, while R2-EMOA per-

forms better in concave Pareto fronts. This behavior holds on the

Mirror problems. In Figure 3, we show some Pareto fronts produced

by the IB-MOEAs to support our claims. For instance, no IB-MOEA

was able to generate the complete front of WFG1 2D (that is why

this problem was highlighted as a general weakness in the previous

section). Also, in the Lamé γ = 2.0 with three objectives, R2-EMOA

produces evenly distributed solutions while for its mirror version,

it fails to cover the entire Pareto front. For this latter problem, we
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Table 2: Hit rate and, in paretheses, the mean value at which IB-
MOEAs achieved ϵ+-convergence (NA means no convergence). The
symbols!and%denote hit rate values of 1.0 and 0.0, respectively.

MOP Dim. SMS-EMOA R2-EMOA IGD+-MaOEA ϵ+-MaOEA ∆p -MaOEA

DTLZ5

2
!

(1.7953e+03)

!
(1.7531e+03)

!
(1.7720e+03)

!
(1.7342e+03)

!
(1.9022e+03)#

3
!

(1.2437e+03)#

!
(1.1537e+03)

!
(1.1612e+03)

!
(1.2500e+03)

!
(1.2542e+03)

DTLZ5
−1

2
!

(4.6186e+03)

0.03

(2.2050e+02)

!
(4.7308e+03)

!
(4.6646e+03)

!
(4.8778e+03)

3
%
(NA)

%
(NA)

%
(NA)

%
(NA)

%
(NA)

DTLZ7

2
!

(6.9824e+03)

!
(7.0057e+03)

!
(7.1448e+03)

0.97

(6.7282e+03)

!
(7.3211e+03)#

3

0.93

(7.8334e+03)

0.90

(1.1067e+04)

0.87

(1.3126e+04)

0.87

(1.5227e+04)

0.93

(1.6307e+04)

DTLZ7
−1

2
!

(7.1510e+03)

!
(7.4723e+03)

!
(7.1924e+03)

!
(7.2936e+03)

!
(7.1836e+03)

3

0.93

(8.9018e+03)

!
(1.2634e+04)

0.97

(1.1393e+04)

0.93

(1.2545e+04)

0.93

(1.3663e+04)

WFG1

2
%
(NA)

%
(NA)

%
(NA)

%
(NA)

%
(NA)

3
%
(NA)

%
(NA)

%
(NA)

%
(NA)

%
(NA)

WFG1
−1

2
%
(NA)

%
(NA)

%
(NA)

%
(NA)

%
(NA)

3
%
(NA)

%
(NA)

%
(NA)

%
(NA)

%
(NA)

WFG2

2

0.27

(3.0219e+03)

0.33

(6.0751e+03)

0.43

(4.7089e+03)

0.37

(5.6407e+03)

0.37

(4.3414e+03)

3
!

(1.4918e+04)

0.70

(3.2334e+04)

!
(2.2177e+04)#

!
(2.3527e+04)#

%
(NA)

WFG2
−1

2
!

(4.3107e+03)

!
(4.4171e+03)

!
(4.4526e+03)

!
(4.5908e+03)#

!
(4.3400e+03)

3

0.93

(1.6933e+04)

0.43

(1.5769e+04)

!
(2.3580e+04)

!
(2.3414e+04)

%
(NA)

WFG3

2
!

(1.0974e+04)

0.13

(3.7698e+03)

!
(1.4113e+04)#

!
(1.3696e+04)#

!
(1.7184e+04)#

3
!

(2.4031e+04)#

%
(NA)

!
(1.6327e+04)

!
(1.6975e+04)

%
(NA)

WFG3
−1

2
!

(6.8804e+03)

0.13

(2.9965e+03)

!
(7.7343e+03)#

!
(8.5882e+03)#

!
(8.1575e+03)#

3
%
(NA)

%
(NA)

%
(NA)

%
(NA)

%
(NA)

VIE1 3
%
(NA)

%
(NA)

!
(9.6216e+02)#

!
(7.6183e+02)

%
(NA)

VIE2 3
!

(1.1300e+02)

!
(8.1733e+01)

!
(8.6866e+01)

!
(1.2800e+02)#

!
(1.1403e+02)#

VIE3 3
!

(5.3703e+02)#

!
(5.3556e+02)#

!
(4.4373e+02)

!
(4.9020e+02)#

!
(4.4970e+02)

LAME

γ = 0.25

2
!

(2.5740e+02)

!
(2.9206e+02)

!
(2.6496e+02)

!
(2.8333e+02)

!
(3.1156e+02)#

3
!

(7.7591e+02)

!
(7.9923e+02)#

!
(7.8209e+02)

!
(8.0177e+02)#

!
(8.0298e+02)#

LAME

γ = 0.50

2
!

(8.0370e+02)

!
(7.7716e+02)

!
(7.9970e+02)

!
(8.3353e+02)#

!
(8.1173e+02)

3
!

(6.3380e+02)#

!
(6.8466e+02)#

!
(5.8176e+02)

!
(6.4490e+02)#

!
(7.1123e+02)#

LAME

γ = 1.00

2
!

(1.1465e+03)

!
(1.1300e+03)

!
(1.1749e+03)

!
(1.1643e+03)

!
(1.2303e+03)#

3
!

(1.3446e+03)

!
(1.3694e+03)

!
(1.4573e+03)

!
(1.4124e+03)

!
(1.7711e+03)#

LAME

γ = 2.00

2
!

(1.2589e+03)

!
(1.3292e+03)

!
(1.2923e+03)

!
(1.2617e+03)

!
(1.3706e+03)

3
!

(1.6940e+03)

!
(1.8636e+03)#

!
(1.7630e+03)

!
(2.0713e+03)#

!
(2.2545e+03)#

LAME

γ = 5.00

2
!

(1.5477e+03)#

!
(1.3754e+03)

!
(1.2766e+03)

!
(1.4851e+03)

!
(1.3932e+03)

3
!

(1.8804e+03)

!
(2.0437e+03)

!
(2.1801e+03)

!
(1.9688e+03)

!
(2.3004e+03)#

MIRROR

γ = 0.25

2
!

(1.5231e+03)

!
(1.2931e+03)

!
(1.6226e+03)

!
(1.5719e+03)

!
(1.3624e+03)

3
!

(1.9233e+03)

!
(2.8885e+03)#

!
(2.0911e+03)

!
(3.8951e+03)#

!
(2.2205e+03)#

MIRROR

γ = 0.50

2
!

(1.0793e+03)

!
(1.1544e+03)

!
(1.1348e+03)

!
(1.1000e+03)

!
(1.3918e+03)#

3
!

(1.3298e+03)

!
(1.5272e+03)#

!
(1.7857e+03)#

!
(2.4530e+03)#

!
(3.0045e+03)#

MIRROR

γ = 1.00

2
!

(1.1329e+03)

!
(1.0767e+03)

!
(1.0744e+03)

!
(1.1544e+03)

!
(1.0866e+03)

3
!

(1.2397e+03)

!
(1.7526e+03)#

!
(1.5057e+03)#

!
(1.5364e+03)#

!
(1.6742e+03)#

MIRROR

γ = 2.00

2
!

(9.7663e+02)

!
(1.0505e+03)

!
(1.0823e+03)#

!
(1.0434e+03)

!
(1.0154e+03)

3
!

(1.2303e+03)

!
(1.3343e+03)

!
(1.3394e+03)

!
(1.3497e+03)

!
(1.3900e+03)#

MIRROR

γ = 5.00

2
!

(8.6050e+02)

!
(8.3893e+02)

!
(9.1160e+02)#

!
(9.0470e+02)

!
(8.6323e+02)

3
!

(9.3666e+02)

!
(9.5646e+02)#

!
(8.7250e+02)

!
(9.6340e+02)#

!
(9.1113e+02)

Table 3: Mean and, in parentheses, standard deviation of the
Hausdorff distance. The two best values are shown in gray
scale, where the darker tone corresponds to the best value.
A symbol # is placen when the best algorithm performed
significantly better than the others based on a one-tailed
Wilcoxon test, using a significance level of α = 0.05.

Problema Dim. SMS-EMOA R2-EMOA IGD+-MaOEA ϵ+-MaOEA ∆p -MaOEA

DTLZ5

2

3.077574e-02#

(1.815526e-03)

9.510878e-03

(1.521790e-04)

6.093201e-02#

(9.932257e-03)

5.993075e-02#

(1.089149e-02)

1.850188e-02#

(2.812982e-03)

3

3.216520e-02#

(1.796077e-03)

7.066692e-02#

(3.992978e-02)

5.988385e-02#

(1.002451e-02)

5.989544e-02#

(1.132659e-02)

1.874597e-02

(3.463474e-03)

DTLZ5
−1

2

7.843520e-02#

(4.729278e-03)

1.699884e+00#

(2.473119e-01)

4.344041e-01#

(1.048696e-01)

3.853122e-01#

(1.114517e-01)

6.256021e-02

(8.528846e-03)

3

3.829379e-01

(1.460900e-02)

1.444826e+00#

(2.827319e-01)

1.192761e+00#

(2.420971e-01)

1.156801e+00#

(2.427119e-01)

5.146270e-01#

(1.033163e-01)

DTLZ7

2

2.202549e-02

(2.005463e-03)

4.852905e-02#

(2.302330e-02)

3.065463e-02#

(5.417997e-03)

7.589137e-02#

(2.481287e-01)

3.470451e-02

(2.569990e-02)

3

5.261453e-01#

(4.365759e-01)

3.669089e-01

(3.613377e-01)

4.845426e-01#

(3.995423e-01)

5.441027e-01#

(5.347534e-01)

3.366100e-01

(2.958924e-01)

DTLZ7
−1

2

1.187580e-02

(1.004169e-03)

3.711496e-02#

(1.834241e-02)

1.761300e-02#

(6.396731e-03)

1.807463e-02#

(8.560824e-03)

1.302961e-02#

(4.361443e-03)

3

5.481802e-01#

(1.776795e-01)

4.797460e-01

(1.518527e-02)

5.339010e-01#

(1.174193e-02)

5.750645e-01#

(1.711356e-01)

5.522249e-01#

(1.795489e-01)

WFG1

2

2.213367e+00

(3.948808e-01)

2.830692e+00#

(4.206011e-01)

2.328385e+00#

(5.420895e-02)

2.202644e+00#

(4.914847e-01)

2.136225e+00

(4.735624e-01)

3

2.197492e+00

(4.125112e-01)

2.811781e+00#

(3.559170e-01)

3.085727e+00#

(2.095829e-01)

3.249765e+00#

(1.731195e-01)

3.072379e+00#

(2.837441e-01)

WFG1
−1

2

2.348346e+00#

(5.013607e-01)

3.560577e+00#

(1.614038e-01)

2.579248e+00#

(3.822815e-01)

2.587287e+00#

(3.687097e-01)

1.835583e+00

(7.891345e-01)

3

3.144431e+00

(4.566521e-01)

3.644217e+00#

(9.520948e-02)

3.640692e+00#

(5.683441e-02)

3.712366e+00#

(5.591896e-02)

3.574088e+00#

(1.509626e-01)

WFG2

2

7.505522e-01

(4.193102e-01)

7.315594e-01#

(3.822844e-01)

6.113520e-01

(4.534472e-01)

6.719010e-01

(4.426562e-01)

6.680274e-01

(4.464939e-01)

3

1.949492e+00#

(1.831101e-01)

1.972061e+00#

(8.818055e-02)

2.161069e+00#

(1.890187e-01)

2.107503e+00#

(1.540904e-01)

1.428000e+00

(3.529359e-01)

WFG2
−1

2

2.490296e-02

(1.333398e-03)

1.638632e-01#

(8.150410e-02)

4.685722e-02#

(8.561709e-03)

4.639651e-02#

(7.032178e-03)

4.923717e-02#

(8.955797e-03)

3

1.330635e+00#

(8.981255e-02)

7.730115e-01#

(6.995659e-02)

9.290884e-01#

(1.391188e-01)

9.289295e-01#

(8.444951e-02)

6.880378e-01

(7.977693e-02)

WFG3

2

2.707010e-02

(1.121240e-03)

4.011508e-01#

(1.575776e-01)

5.339123e-02#

(1.394259e-02)

5.038746e-02#

(1.123899e-02)

5.753183e-02#

(1.266287e-02)

3

2.108328e+00#

(4.214193e-02)

2.124371e+00#

(4.720215e-02)

1.490614e+00

(1.557406e-01)

1.445250e+00

(1.461410e-01)

1.723725e+00#

(1.199918e-01)

WFG3
−1

2

2.466026e-02

(1.343378e-03)

4.682168e-01#

(1.769721e-01)

5.507582e-02#

(1.385543e-02)

5.835986e-02#

(2.302785e-02)

6.257074e-02#

(1.894104e-02)

3

4.196883e-01

(2.153138e-02)

5.821841e-01#

(1.038923e-01)

4.439020e-01

(8.330356e-02)

5.805365e-01#

(1.639781e-01)

4.858140e-01#

(7.909681e-02)

VIE1 3

1.478014e+00#

(5.721134e-03)

1.118123e+00#

(2.293143e-01)

9.590722e-01

(4.065934e-01)

1.031676e+00

(3.252150e-01)

1.544479e+00#

(8.848777e-02)

VIE2 3

7.659238e-02#

(1.139953e-02)

4.321739e-01#

(1.981138e-01)

5.138187e-01#

(2.077573e-01)

5.449889e-01#

(2.015539e-01)

6.188452e-02

(1.909836e-02)

VIE3 3

3.597325e+01#

(2.535381e-03)

3.580163e+01#

(1.483174e-01)

3.570980e+01

(1.239652e-01)

3.580249e+01#

(1.644133e-01)

3.596517e+01#

(2.413054e-02)

LAME

γ = 0.25

2

7.231123e-02

(1.543747e-03)

7.627063e-01#

(9.379871e-02)

4.361314e-01#

(5.303411e-02)

4.347943e-01#

(7.209262e-02)

1.048069e-01#

(1.075039e-02)

3

3.030839e-01#

(6.199006e-02)

8.535220e-01#

(2.947354e-01)

7.241131e-01#

(2.688209e-02)

7.221472e-01#

(3.477759e-02)

1.995764e-01

(3.077426e-02)

LAME

γ = 0.50

2

2.530849e-02#

(1.564295e-03)

5.402476e-01#

(1.162890e-01)

1.272472e-01#

(3.749616e-02)

1.376205e-01#

(3.691710e-02)

1.778939e-02

(2.712181e-03)

3

1.101923e-01#

(6.031892e-03)

5.446090e-01#

(1.387246e-02)

4.659930e-01#

(6.140304e-02)

4.938630e-01#

(6.053914e-02)

8.932232e-02

(2.425611e-02)

LAME

γ = 1.00

2

7.589236e-03

(2.965523e-04)

1.007102e-01#

(5.897155e-02)

1.313399e-02#

(1.948516e-03)

1.329846e-02#

(1.638165e-03)

1.973800e-02#

(1.835242e-02)

3

7.173814e-02#

(3.872626e-03)

6.206041e-02

(4.862174e-03)

1.050844e-01#

(1.151115e-02)

1.179165e-01#

(1.197276e-02)

1.111155e-01#

(1.292641e-02)

LAME

γ = 2.00

2

3.186574e-02#

(1.316612e-03)

1.007065e-02

(3.261561e-04)

6.141609e-02#

(9.949159e-03)

5.921995e-02#

(8.479438e-03)

1.728853e-02#

(2.514175e-03)

3

1.621467e-01#

(4.555663e-03)

9.639930e-02

(2.367559e-04)

1.966129e-01#

(2.248088e-02)

1.876308e-01#

(2.027803e-02)

1.376867e-01#

(1.443447e-02)

LAME

γ = 5.00

2

1.409980e-01#

(3.315905e-03)

3.417753e-02

(1.948163e-04)

2.234118e-01#

(1.061329e-02)

2.127717e-01#

(1.603388e-02)

3.489903e-02#

(2.347631e-03)

3

3.577989e-01#

(7.878295e-03)

1.500669e-01

(2.526744e-04)

3.969645e-01#

(1.906622e-02)

3.821651e-01#

(1.966347e-02)

1.778417e-01#

(1.827104e-02)

MIRROR

γ = 0.25

2

1.685054e-01#

(3.830728e-03)

4.997593e-02#

(5.020421e-05)

2.907454e-01#

(1.526963e-02)

2.850196e-01#

(1.893000e-02)

4.843340e-02

(1.701295e-03)

3

2.413126e-01#

(4.093401e-03)

9.262397e-02#

(9.708269e-03)

3.422523e-01#

(1.479797e-02)

3.950458e-01#

(1.099417e-01)

4.999952e-02

(5.118307e-03)

MIRROR

γ = 0.50

2

3.741539e-02#

(2.082645e-03)

1.035331e-02

(4.401563e-05)

7.385466e-02#

(1.007731e-02)

7.193065e-02#

(1.092477e-02)

1.851470e-02#

(2.759508e-03)

3

9.976228e-02#

(4.064284e-03)

1.124747e-01#

(1.086035e-02)

1.379254e-01#

(1.743578e-02)

1.642352e-01#

(5.671047e-02)

8.372362e-02

(1.921881e-02)

MIRROR

γ = 1.00

2

7.641986e-03

(2.312297e-04)

9.860330e-02#

(5.241803e-02)

1.309680e-02#

(1.941996e-03)

1.331902e-02#

(1.416358e-03)

1.665265e-02#

(2.918066e-03)

3

9.906263e-02

(4.510345e-03)

1.451629e-01#

(1.909890e-02)

1.056237e-01

(1.339696e-02)

1.072790e-01#

(1.482283e-02)

1.079255e-01#

(1.363654e-02)

MIRROR

γ = 2.00

2

2.203991e-02#

(1.670770e-03)

4.544187e-01#

(7.917778e-02)

9.258290e-02#

(2.505483e-02)

1.040329e-01#

(3.609639e-02)

1.716760e-02

(2.927445e-03)

3

1.213664e-01

(4.470778e-03)

3.538615e-01#

(3.696266e-02)

3.368791e-01#

(4.317780e-02)

3.547486e-01#

(4.127689e-02)

1.458980e-01#

(1.747558e-02)

MIRROR

γ = 5.00

2

5.878550e-02

(1.711243e-03)

6.881999e-01#

(6.701582e-02)

3.174689e-01#

(4.997798e-02)

3.425114e-01#

(4.141809e-02)

6.861973e-02#

(4.090946e-03)

3

3.402385e-01#

(3.222692e-03)

7.875241e-01#

(1.882810e-02)

7.533097e-01#

(3.185327e-02)

7.785876e-01#

(5.575465e-02)

2.116174e-01

(3.172115e-02)
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can see from the figure that the distributions of both IGD
+
-MaOEA

and ϵ+-MaOEA are not too uniform and their spread is deficient.

4 CONCLUSIONS AND FUTUREWORK
In spite of the broad spectrum of currently available IB-MOEAs,

there is still no clear understanding of their convergence and di-

versity behavior when tackling complex MOPs. In this paper, we

performed an empirical analysis of the convergence and diversity

properties of five steady-state IB-MOEAs based on the indicators:

hypervolume, R2, IGD
+
, ϵ+, and ∆p , i.e., we analyzed the behav-

ior of SMS-EMOA, R2-EMOA, IGD
+
-MaOEA, ϵ+-MaOEA, and ∆p -

MaOEA. Our study highlights essential insights into the perfor-

mance of the adopted IB-MOEAs related to their convergence speed,

convergence quality of the final Pareto front approximations as well

as the uniformity of solutions when tackling MOPs with different

Pareto front shapes. The study revealed that, in general, SMS-EMOA

speeds up convergence to the Pareto front. However, IGD
+
-MaOEA

provides convergence results more consistently since it was the

IB-MOEA that was able to converge in most of the adopted test

instances, although it has a slower convergence than SMS-EMOA.

Considering the final convergence quality of the IB-MOEAs, SMS-

EMOA is the best algorithm, having the best values in four out six

convergence QIs. Regarding diversity, ∆p -MaOEA produces well-

diversified approximation sets in most forms of the Pareto front. In

summary, our experimental results allowed us to outline some of

the strengths and weaknesses of the IB-MOEAs of our study. As

part of our future work, we are interested in studying the effect of

the IB-MOEAs on MOPs with several difficulties and on problems

with many objective functions, i.e., MOPs with more than three

objectives.
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1.477297e+01
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2
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(4.902078e-02)

3
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(3.684369e-02)

2.706497e+01#

(6.640911e-01)

2.126063e+01#

(1.065545e+00)

2.087369e+01#

(1.212016e+00)

2.952776e+01#

(5.195778e-01)

MIRROR

γ = 5.00

2

8.713909e+00#

(4.863761e-02)

2.961759e+00#

(3.079325e-01)

6.252545e+00#

(3.950805e-01)

6.073869e+00#

(3.581654e-01)

9.810047e+00

(5.141206e-02)

3

2.442199e+01#

(1.206717e-01)

1.850840e+01#

(8.730292e-01)

1.260572e+01#

(1.243608e+00)

1.200266e+01#

(1.300137e+00)

3.611698e+01

(7.843774e-01)
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Figure 3: Approximated Pareto fronts produced by all the adopted IB-MOEAs. Each approximation set corresponds to the
median of the Solow-Polasky Diversity indicator.
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