
An Adaptive Recombination-Based Extension of the
iMOACOR Algorithm

Ashraf M. Abdelbar
Dept. of Math. & Comp. Sci.

Brandon University
Manitoba, Canada

Email: abdelbara@brandonu.ca

Khalid M. Salama
School of Computing

University of Kent
Canterbury, United Kingdom

Email: kms39@kent.ac.uk

Jesús Guillermo Falcón-Cardona, Carlos A. Coello Coello
CINVESTAV-IPN

Evolutionary Computation Group
Mexico City, Mexico

Email: jfalcon@computation.cs.cinvestav.mx,
ccoello@cs.cinvestav.mx

Abstract—Commonly, Ant Colony Optimization algorithms
have been applied to the solution of single- and multi-objective
optimization problems (MOPs). However, in recent years, a
number of approaches have been proposed to solve problems
with continuous search spaces. One remarkable proposal is the
indicator-based Multi-Objective Ant Colony Optimizer for con-
tinuous search spaces (iMOACOR) which is based on the ACOR
algorithm and the R2 performance indicator, aiming to solve
continuous many-objective optimization problems (i.e., MOPs
having more than three objective functions). In previous work,
we presented an extension of iMOACOR, called iMOACOR-R,
in which a recombination operator is employed for solution
construction with a fixed, externally-specified probability. In the
present work, we introduce a further adaptive variation, called
iMOACOR-AR, in which the frequency of applying recombina-
tion is dynamically adapted based on the recent past perfor-
mance of the recombination operator. Our proposal is compared
to iMOACOR and iMOACOR-R using 64 standard problems
from the multi-objective optimization literature with number
of objectives ranging from 3 to 10. Experimental results show
that iMOACOR-AR outperforms iMOACOR and iMOACOR-R in
most of the test problems.

I. INTRODUCTION

The constant study of animals and insects and their social
structures has been a promising source for the design of
methods applied in the engineering, industrial and scientific
fields. Researchers have observed that simple actions made by
individuals (e.g., ants, birds, bacteria) encourage the develop-
ment of a more sophisticated global behavior [1]. In some
cases, the global behavior exhibits interesting optimization
properties. One outstanding example is related to ant colonies
whose foraging behavior tends to find the shortest path from
the nest to a source of food by using pheromone as an indirect
communication method. Ant Colony Optimization (ACO) [2]
is a metaheuristic that draws ideas from real ants in order to
solve hard optimization problems, mainly combinatorial ones.

Real-world problems often involve the simultaneous opti-
mization of several objective functions which are mutually
in conflict. These problems are the so-called multi-objective
optimization problems (MOPs). Due to the inner conflict, the
solution of a MOP is a set of points that represent the best pos-
sible trade-offs among the objectives. Such solutions cannot be
improved in one objective without being worsened in another
one. Different mathematical programming techniques have

been proposed for tackling MOPs [3]. However, these methods
present numerous limitations (e.g., continuity of the objective
functions is required, most of them generate a single solution
per execution). Consequently, Multi-Objective Evolutionary
Algorithms, that are population-oriented methods based on
the principles of natural selection, have been proposed to
solve these highly complex problems [4]. However, other bio-
inspired metaheuristics such as ACO have been also applied
to solve MOPs.

In recent years, the ACO metaheuristic has been extended to
solve single-objective optimization problems with continuous
search spaces. To the authors best knowledge, ACOR [5] is
currently the best ACO-based algorithm for these kind of
problems. The underlying idea of ACOR is the use of a
pheromone structure, similar to an archive, that keeps track
of the best solutions found so far. Moreover, the decision
space is modeled by means of multimodal Gaussian functions.
In 2017, Falcón-Cardona and Coello Coello [6] introduced
iMOACOR, an extension of ACOR, that carries out multi-
objective optimization [4] in continuous search spaces, and is
designed specifically for problems with four or more objectives
because of the use of a quality indicator to increment the
selection pressure.

In previous work [7], we introduced a variation,
iMOACOR-R, that incorporates recombination of solutions
from the iMOACOR solution archive, with the probability of
deployment of recombination determined by a fixed, externally
specified probability Pr. In the present work, we present a
further adaptive extension, called iMOACOR-AR, in which
the frequency of deployment of recombination is dynamically
adapted during the algorithm’s execution, instead of being
determined by a fixed probability Pr. We evaluate our proposal
using 64 problems from the DTLZ [8] and WFG [9] test
suites, with number of objectives ranging from 3 to 10, and
use the hypervolume indicator to assess performance. Our
experimental results show that iMOACOR-AR outperforms
iMOACOR and iMOACOR-R in most of the test problems.

The remainder of this paper is organized as follows. Section
II introduces the mathematical background of multi-objective
optimization. An introduction to iMOACOR is briefly sketched
in Sect. III. The proposed approach is outlined in Sect. IV.
Section V is devoted to establish the experiment methodology,

while the results are presented in Sect. VI. Finally, Sect. VII
concludes with some final remarks.

II. PRELIMINARIES

The general multi-objective optimization problem1 is for-
mulated as:

min
~x∈Rn

~F (~x) := [f1(~x), f2(~x), . . . , fm(~x)]
T (1)

subject to:

gi(~x) ≤ 0 i = 1, 2, . . . , k (2)

hj(~x) = 0 j = 1, 2, . . . , p (3)

where ~x = (x1, x2, . . . , xn)
T is the n-dimensional vector of

decision variables; fi : Rn 7→ R, i = 1, . . . ,m are the
objective functions and gi, hj : Rn 7→ R, i = 1, . . . , k,
j = 1, . . . , p are the constraint functions of the problem which
define that feasible region Ω.

When solving a MOP, the aim is to find in Ω a subset of
solutions ~x∗ that yield the optimum values of all objective
functions. In other words, the particular set that represents the
best possible trade-offs among the objective functions. In fur-
therance of determining which solutions are optimal, the most
common order relation used in multi-objective optimization is
the Pareto dominance relation.

Definition 1 (Pareto Dominance): Given two vectors
~u,~v ∈ Rn, we say that ~u dominates ~v (denoted by ~u ≺ ~v)
if ui ≤ vi for i = 1, . . . , n and there exists at least an index
j ∈ {1, . . . ,m} such that uj < vj .

Definition 2 (Weak Pareto Dominance): Given two vectors
~u,~v ∈ Rn, we say that ~u weakly dominates ~v (denoted by
~u � ~v) if ui ≤ vi for all i = 1, . . . , n.

Definition 3 (Pareto Optimality): We say that a vector of
decision variables ~x∗ ∈ Ω is Pareto optimal if there does
not exist another ~x ∈ Ω such that ~F (~x) ≺ ~F (~x∗).

Definition 4: The Pareto Optimal Set P∗ is defined by:

P∗ = {~x∗ ∈ Ω | ~x is Pareto optimal}

Definition 5: The Pareto Front PF∗ is defined by:

PF∗ = {~F (~x∗) ∈ Rm | ~x∗ ∈ P∗}

The ideal objective vector and the nadir objective vector are
two especial reference points that bound PF∗.

Definition 6: The Ideal Objective Vector (~z∗ ∈ Rm) is
constructed using the minimum of each of the objective
functions, considered separately. Each ith-component of the
ideal vector is defined as z∗i = min~x fi(~x).

1Without loss of generality, we will assume only unconstrained minimiza-
tion problems. To transform a minimization problem into a maximization one,
we can use: max f = −min(−f)

Definition 7: The Nadir Objective Vector (~znad ∈ Rm)
is constructed using the worst values of PF∗. Each ith-
component is defined as znadi = max~x∈P∗ fi(~x).

In order to assess the perfomance of MOEAs, a wide
variety of quality indicators have been proposed in the
specialized literature [10]. Let A be a finite set of points
that approximate PF∗ and Ψ be the set of all approximation
sets. Mathematically, a k-ary quality indicator I is a function
I : Ψk → R, which assigns to each vector (A1,A2, · · · ,Ak)
of k approximate Pareto fronts a real value I(A1, · · · ,Ak).

Definition 8 (Unary R2 indicator): The unary R2 indicator
is defined as follows:

R2(A,W) = − 1

|W |
∑
~w∈W

max
~a∈A
{u~w(~a)}, (4)

where W is a set of m-dimensional weight vectors and u~w :
Rm 7→ R is a scalarizing function, parameterized by ~w ∈W ,
that assigns a real value to each solution vector.

III. PREVIOUS RELATED WORK

In 2017, Falcón-Cardona and Coello proposed the indicator-
based Many-Objective Ant Colony Optimizer for continuous
search spaces (iMOACOR) [6] based on the ACOR [5] search
engine. The most important element of every ACO-based
algorithm is the design of the pheromone matrix since it
stores knowledge through the search process to solve the
optimization problem [2]. The pheromone matrix of ACOR
stores the best N solutions found so far and it sorts them
according to the quality of the objective function. However,
this scheme cannot be directly implemented in iMOACOR
since the Pareto dominance does not establish a total order.
Hence, Falcón-Cardona and Coello proposed to use the R2
indicator [11] to transform the multi-objective problem into a
single-objective one and, thus, impose a total order. For this
purpose, the R2-ranking algorithm [12] was employed to rank
the population in a similar fashion to the nondominated sorting
[13] and, then, store the best N solutions according to the rank
assigned. Figure 1 shows the pheromone matrix of iMOACOR.
For each solution ~xj , j = 1, . . . , N , auxiliary fields store its
vector of objective values, the rank assigned and a weight
value wj . Moreover, all kth components of the N solutions
are employed to define a Gaussian-Kernel Probability Density
Function Gk as follows:

Gk(y) =

N∑
j=1

wjg
k
j (y) =

N∑
j=1

wj
1

σjk
√

2π
e
− (y−µjk)

2

2σ
j
k

2

, (5)

where k = 1, . . . , n and Gk(y) depends on three parameter
vectors: ~w is the vector of weights associated with the indi-
vidual Gaussian functions, ~µk is the vector of means, and ~σk
is the vector of standard deviations. ~µk = {µ1

k, µ
2
k . . . , µ

N
k } =

{x1k, x2k, . . . , xNk }, and each σjk ∈ ~σk is computed as follows:

σjk = ξ

N∑
l=1

|xlk − x
j
k|

N − 1
(6)

w1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.
.

.

.

.

F (xN)

F (xj)

F (x2)

F (x1)

.

.

.

.

.

.

.

.

.

.

.

.

x1
i x1

nx1
2x1

1

x2
i x2

nx2
2x2

1

xj
n

xN
ixN

1 xN
n

GnGiG2

xj

x2

x1

xN

xj
ixj

2xj
1

xN
2

G1

rank(x1)

rank(x2)

rank(xj)

rank(xN)

wj

wN

w2

.

Fig. 1. Pheromone matrix employed by iMOACOR. The solutions are sorted
according to its rank generated by the R2-ranking algorithm, where 1 is the
better rank. Ranks can be repeated.

where ξ > 0 is a parameter that controls the convergence rate,
simulating the evaporation of pheromones.

At each iteration, the weights wj , j = 1, . . . , N are com-
puted using the following formula:

wj =
1

qN
√

2π
e
− (rank(xj)−1)

2

2q2N2 (7)

where q > 0 is a parameter that controls the diversification
process of the search. It is worth noting that q and ξ controls
exploration and exploitation, respectively. Then, each of the M
ants performs n construction steps to create a new solution
~xnew, where each component xnew

k is drawn by sampling
the rth Gaussian function that is part of Gk. The index
r ∈ {1, . . . , N} is selected with probability

Pr(select r) =
wr∑N
l=1 wl

. (8)

Finally, the M newly created solutions compete with the ones
in the pheromone matrix to be part of the pheromone matrix
in the next iteration. Hence, iMOACOR implements a (µ+λ)
selection scheme, where µ = N and λ = M , using the R2-
ranking algorithm [12].

IV. PROPOSED APPROACH: INCORPORATING
RECOMBINATION

Recombination is a standard component of Evolutionary
Algorithms (EA), and its use within discrete ACO mod-
els has been explored [14]. In this paper, we introduce
iMOACOR-AR, an extension of iMOACOR in which solutions
are constructed either by recombination of members of the
solution archive or by ACOR’s usual solution construction
mechanism (Eqs. 5-8), with the relative frequency of applying
recombination dynamically adapted during the algorithm’s
execution. In previous work [7], we proposed iMOACOR-R,
an earlier non-adaptive variation in which recombination was
deployed with a fixed externally-specified probability Pr. In
iMOACOR-R, the w-weights are calculated at the start of each
iteration according to Eq. (7) in the usual way, and each ant

starts each solution construction step by applying Eq. (8) in the
usual way. Let ~xa refer to the solution selected according to
Eq. (8). With probability (1−Pr), Eqs. (5-6) are then applied
in the usual way to complete solution construction.

On the other hand, with probability Pr, recombination
is applied: a second solution ~xb is randomly selected from
the archive with a uniform distribution, and a recombination
operator is applied to ~xa and ~xb to produce an offspring
solution ~xc. At present, we use uniform crossover (also known
as N -point crossover) as the recombination operator, although
other recombination operators can also be used. Uniform
crossover means that for two N -dimensional solutions ~xa and
~xb, the offspring ~xc is produced as follows:
• For each i = 1, . . . , N :

– xci takes the value of xai with probability 0.5, and
otherwise takes the value of xbi .

Finally, after each ant has constructed its solution, the newly
created solutions compete for a place in the archive against
the existing members of the population.

In iMOACOR-AR algorithm, solution construction is made
by one of the following modes:

1) mode m1 represents ACOR’s standard solution construc-
tion mechanism,

2) mode m2 represents recombination.
Every member of the archive has an associated additional
field φ which records which mode was used to generate
that solution. When the solution archive is first initialized
with random solutions at the start of the computation, the
φ field is initialized to mode m1 for all solutions. In other
words, the initial random solutions are treated as if they
were constructed using ACOR’s standard solution construction
mechanism (represented by m1).

The relative utility of each of the two modes of solution
construction can be indirectly assessed by the number (and
relative rank) of elements in the population constructed by that
mode. The idea is that good solutions will survive for longer in
the archive before being displaced, and will occupy a higher
place (lower rank) in the archive. The first step in solution
construction is to probabilistically select a mode. This decision
is made probabilistically based on the relative representation
of each mode in the population archive. Let the set of modes
be denoted M , where

M = {m1,m2} (9)

The utility u of a mode m ∈M is defined as:

u(m) =
∑

~xj∈A,φ(~xj)=m

[
N − rank(~xj)

]
(10)

where A denotes the solution archive, N is the number of
solutions in the archive, rank(~xj) denotes the rank of ~xj (with
a rank of 1 representing the best archived solution). Thus,
u(m) is the sum of the rank-complements of all solutions in
the archive whose φ field is equal to m. A solution with a
rank of 1 (the best solution in the archive) will have a rank-
complement of N − 1, and a solution with a rank of N (the

worst solution) will have a rank-complement of 0. Intuitively,
u(m) is a measure of the representation of m in the archive.
Note that in general (ignoring the effect of repeated ranks):

u(m1) + u(m2) =

N−1∑
i=0

i ≡ 1

2
(N − 1)N (11)

We would like the probability of selecting each mode m ∈
M to be proportional to its utility, which would suggest the
following simple roulette wheel formula:

Pr(select m) =
u(m)∑
s∈M u(s)

(12)

However, this formula has the drawback that the probability
of selecting a mode can be a hard-zero, which is of course
undesirable. Therefore, instead of Eq. (12), we adopt the
following formula:

Pr(select m) =
u(m) + eN∑

s∈M [u(s) + eN]
(13)

where e > 0 is a constant. The term eN in the numerator
and denominator is meant to play a role similar to a Laplace
correction, i.e. to ensure that each mode can never die out
completely. In the present work, we use e = 1. If the
population was entirely generated by a given mode m (as is
the case in the initial randomly-generated population, which
is treated as if it were entirely constructed using m1), then the
probability of selection of the other mode m′ will still be non-
zero. In fact, the probability of selection of the other mode m′

will generally be (again, ignoring the effect of repeated-ranks):

Pr(select m′) =
N

1
2 (N − 1)N + 2N

=
1

1
2 (N − 1) + 2

=
2

N + 3
≈ 2

N
(14)

which is small but still non-negligible.
Because the initial randomly-generated population is ini-

tialized to appear as if it were entirely constructed using m1,
the probability of selection of m2 in the very first iteration
will be as shown in Eq. (14). If the number of ants M is set
equal to N , which is a common setting in iMOACOR, then
mode m2 will be selected about twice in the first iteration. The
number of solutions constructed by m2 (recombination) in the
early iterations will therefore start small. If those solutions
are poor and fail to secure a place in the population, or
even secure a poorly-ranked position in the population, then
Pr(m2) will remain small. On the other hand, suppose that at
a particular point in the computation, recombination produces
solutions that are of a higher quality relative to those produced
by m1. Such m2-produced solutions will secure well-ranked
positions in the archive, and Pr(m2) will gradually increase.
Furthermore, depending on the problem, if there are regions of
the search space for which one mode is better suited than the
other, then Pr(m1) and Pr(m2) can fluctuate relative to each
other as the algorithm progresses through the search space.

Thus, to summarize, iMOACOR-AR differs from
iMOACOR as follows:

1) Each element in the population has an additional field
φ which stores the mode that was used to construct that
solution: either m1 (denoting ACOR’s usual solution
construction mechanism) or m2 (denoting recombina-
tion). For the initial randomly generated population, the
φ field is initialized to m1 for all population elements.

2) At the start of each iteration, the utility of each of the
two modes is calculated using Eq. (10).

3) The probability of selecting each mode is calculated
according to Eq. (13), and is not re-calculated until all
M ants have constructed their solutions and the next
iteration is about to start.

4) When each of the M ants starts to construct a solution,
it probabilistically chooses a mode according to the
probabilities calculated at the start of the iteration.

5) If mode m1 is selected, then Eqs. (5-6) are applied to
construct a solution in the usual ACOR way.

6) On the other hand, if mode m2 is selected, then one
solution ~xa is selected according to Eq. (8). Another
solution ~xb is selected from the archive with a uniform
distribution. Uniform crossover is applied to ~xa and ~xb

to produce a new solution ~xc. The new solution ~xc

becomes one of the M newly constructed solutions that
will compete for a place in the solution archive.

This adaptive approach, iMOACOR-AR, has several advan-
tages over iMOACOR-R:

1) There is no longer the need for a Pr parameter. The
frequency of deploying recombination is determined
based on Eq. (13).

2) A search process will typically go through different
phases. Different solution construction mechanisms will
be better suited for different phases of the search, but
it is of course not feasible to manually decide which
mechanism is better for any given point in the search.
iMOACOR-AR allows the mode that is more successful
at a given point in the search process to be deployed
more often, without any intervention from the user.

V. EXPERIMENTAL METHODOLOGY

Our experimental methodology is based on that of Falcón-
Cardona and Coello Coello [6]. Following [6], we use 7
problems (DTLZ1 through DTLZ7) from the Deb-Thiele-
Laummans-Zitzler (DTLZ) [8] suite and 9 problems (WFG1
through WFG9) from the Walking-Fish-Group (WFG) [9]
suite. For each problem, we use four values for the number
of objectives (3, 5, 7, and 10), for a total of 64 problem
instances. For each instance, we run each of the algorithms
under evaluation for 30 trials. We use the parameter settings of
Falcón-Cardona and Coello Coello [6], summarized in Table I.

In our comparison, performance is assessed with the hy-
pervolume (HV) indicator. We use the HV implementation
of [15], available in [16]. Computing the HV requires that
a reference vector be supplied by the user. We use the set
of reference vectors that were used in [6], which we repeat in
Table II for convenience. Occasionally, particularly for DTLZ1
and DTLZ3, the reference vector dominates all the solutions

TABLE I
PARAMETER SETTINGS.

Parameter Value

N , M 120/126/84/220 for 3/5/7/10 objectives
q 0.1
ξ 0.5
Gmax 416/396/595/227 for 3/5/7/10 objectives
α 0.5
ε 0.001
h 14/5/7/19 for 3/5/7/10 objectives

TABLE II
REFERENCE VECTORS USED WITH HYPERVOLUME INDICATOR.

problem vector problem vector

DTLZ1 (1, 1, . . .) DTLZ5 (4, 4, . . .)
DTLZ2 (2, 2, . . .) DTLZ6 (11, 11, . . .)
DTLZ3 (7, 7, . . .) DTLZ7 (1, 1, . . . , 21)
DTLZ4 (2, 2, . . .) WFG (all) (3, 5, 7, . . . , 2m+ 1)

returned by the algorithm under evaluation. Following the
approach of [6], HV is taken as zero in such cases.

We evaluate and compare three algorithms:
1) The original iMOACOR algorithm [6].
2) The iMOACOR-R algorithm which applies recombina-

tion with a fixed probability Pr. We use Pr = 0.2 based
on previous work [7] which found that setting to perform
well.

3) Our proposed iMOACOR-AR algorithm which adapts
the frequency of applying recombination based on the
recent performance of the recombination operators.

VI. RESULTS

We run each of the three algorithms (iMOACOR,
iMOACOR-R, iMOACOR-AR) for 30 trials on each of the
64 problem instances described in Section V, and compute
the value of the hypervolume (HV) indicator in each case.
Table III reports the mean and standard deviation of HV for
each of the algorithms for each problem instance. In each row,
the best value of mean HV is shown in boldface. The last row
shows the average rank for each algorithm. For each algorithm
a, the rank of a is first obtained individually for each problem
instance; in the case of ties, each of the tied algorithms is
given the average of the spanned ranks. The individual ranks
are then averaged across all 64 instances to obtain the average
rank for each algorithm. The lower the rank, the better. The
table indicates that the best rank is obtained by iMOACOR-AR
with a rank of 1.6, followed closely by iMOACOR-R with a
rank of 1.7, while iMOACOR has a rank of 2.7.

The results indicate the following:
• iMOACOR-AR performs slightly better than

iMOACOR-R, with 34 wins, 29 losses, and 3 ties.
• iMOACOR-AR also performs better than iMOACOR,

with 53 wins, 9 losses, and 2 ties.
• iMOACOR-R performs better than iMOACOR, with 56

wins, 7 losses, and 1 tie.

TABLE IV
RESULTS OF WILCOXON SIGNED-RANK STATISTICAL SIGNIFICANCE

TESTS.

Comparison W # z p sig.?

iMOACOR-AR vs iMOACOR-R 799 62 -1.245 0.215 no
iMOACOR-AR vs iMOACOR 249 62 -5.101 < 0.000 yes
iMOACOR-R vs iMOACOR 232 63 -5.313 < 0.000 yes

Table IV shows the results of applying Wilcoxon signed-
rank tests comparing each pairing of the three algorithms.
For each comparison, the table shows the computed value of
the W statistic, the number of samples (after excluding ties),
and the corresponding values of z and p. Conventionally, p-
values less than or equal to 0.05 are considered statistically
significant. As indicated in the last column of the table,
the improvement of iMOACOR-AR over iMOACOR-R is
not statistically significant. Of course, iMOACOR-AR still
has the advantage of not requiring a Pr parameter. On the
other hand, both iMOACOR-AR and iMOACOR-R have a
significant difference over iMOACOR.

The reasons iMOACOR-AR performs better than
iMOACOR-R are likely because of its adaptation mechanism.
iMOACOR-R uses a fixed probability of recombination Pr
that may not be the best setting for every problem instance,
whereas iMOACOR-AR determines the probability of
recombination automatically during the algorithm’s execution.
Furthermore, iMOACOR-AR allows the probability of
applying recombination to increase and decrease over the
course of the computation, to be better coupled to the
characteristics of different regions of the search space,
whereas in iMOACOR-R, Pr is fixed throughout the
computation.

However, one might ask the question: why are there in-
stances, such as DTLZ5 (for 5, 7, and 10 dimensions),
where the non-adaptive iMOACOR-R performs better than
iMOACOR-AR? We would postulate that these are problem
instances for which Pr = 0.2 happens to be a near-ideal set-
ting, and remains near-ideal throughout the computation. The
adaptive iMOACOR-AR will take time in order to discover a
good setting, because the probability of recombination starts
off at a very small value (as discussed earlier).

It should be emphasized that we are evaluating
iMOACOR-R using a setting of Pr that was determined
in previous work [7] through experimentation with different
possible values of Pr, and is therefore already known to be a
good general setting. In contrast, iMOACOR-AR is not given
any external insight and has to discover a good value of Pr
on its own.

The fact that iMOACOR-AR performs better than the origi-
nal iMOACOR algorithm is not surprising, since it was estab-
lished in previous work [7] that the non-adaptive iMOACOR-R
performs better than iMOACOR.

Figure 2 presents a comparison of Pareto fronts produced
by the three algorithms. For three objective functions, it is not
completely clear why iMOACOR-AR obtains the best hyper-

TABLE III
THE MEAN AND STANDARD DEVIATION OF HV FOR EACH OF THE THREE ALGORITHMS UNDER EVALUATION.

instance dim mean std. dev.

iMOACOR-AR iMOACOR-R iMOACOR iMOACOR-AR iMOACOR-R iMOACOR

DTLZ1 3 1.309731e-01 3.405737e-01 0.000000e+00 2.043084e-01 3.065881e-01 0.000000e+00
5 4.024716e-01 5.178174e-01 0.000000e+00 3.282377e-01 3.367047e-01 0.000000e+00
7 1.218345e-01 3.239936e-01 0.000000e+00 2.514043e-01 4.068167e-01 0.000000e+00

10 7.126941e-01 7.667274e-01 0.000000e+00 3.442033e-01 3.015299e-01 0.000000e+00
DTLZ2 3 7.421963e+00 7.421954e+00 7.420235e+00 1.135140e-04 1.749650e-04 3.140000e-04

5 3.166738e+01 3.166680e+01 3.164923e+01 7.674060e-04 6.929420e-04 1.955981e-03
7 1.273375e+02 1.276548e+02 1.272041e+02 2.022452e+00 1.761318e-01 1.376955e+00

10 1.019795e+03 1.021218e+03 1.013835e+03 1.149012e+01 3.755776e+00 3.038910e+01
DTLZ3 3 0.000000e+00 2.888276e+01 0.000000e+00 0.000000e+00 7.488256e+01 0.000000e+00

5 1.647957e+00 2.918011e+02 0.000000e+00 4.972835e+00 1.169783e+03 0.000000e+00
7 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

10 4.509804e+07 4.349740e+07 0.000000e+00 8.330747e+07 7.604062e+07 0.000000e+00
DTLZ4 3 7.420607e+00 7.420882e+00 7.418887e+00 7.651660e-04 8.386120e-04 9.160000e-04

5 3.166336e+01 3.166120e+01 3.163343e+01 2.049169e-03 2.905367e-03 5.217947e-03
7 1.277362e+02 1.276846e+02 1.265156e+02 4.432059e-02 1.786903e-01 4.154677e+00

10 1.015039e+03 1.021865e+03 1.003038e+03 2.039062e+01 2.153971e+00 4.235631e+01
DTLZ5 3 5.983700e+01 5.983868e+01 5.983854e+01 9.896603e-03 7.714740e-03 7.923007e-03

5 9.342031e+02 9.338535e+02 9.374394e+02 2.049481e+00 1.124213e+00 9.097390e-01
7 1.415837e+04 1.424640e+04 1.438291e+04 2.895692e+02 3.179964e+02 1.064769e+02

10 9.125468e+05 9.285390e+05 9.362118e+05 1.325129e+04 5.820858e+03 6.302014e+03
DTLZ6 3 1.318857e+03 1.318852e+03 1.316253e+03 8.089254e-03 6.675449e-03 1.324603e+00

5 1.588226e+05 1.589105e+05 1.567570e+05 2.620255e+02 5.152005e+01 1.004394e+03
7 1.869788e+07 1.858547e+07 1.734328e+07 2.840866e+05 2.195254e+05 1.914507e+06

10 2.504094e+10 2.529153e+10 2.386460e+10 2.911453e+08 1.558542e+08 1.446229e+09
DTLZ7 3 1.635495e+01 1.632627e+01 1.624761e+01 7.813830e-04 5.887169e-02 6.003250e-02

5 1.293432e+01 1.295728e+01 1.256260e+01 7.713103e-02 1.173998e-01 1.093206e-01
7 7.994842e+00 8.383287e+00 8.238742e+00 4.354401e-01 2.854881e-01 1.949213e-01

10 2.650328e+00 2.698024e+00 1.463875e+00 2.318165e-01 1.935057e-01 7.508288e-01
WFG1 3 5.672217e+01 5.049341e+01 4.416989e+01 1.681969e+00 9.528380e-01 6.970353e-01

5 4.800143e+03 4.536323e+03 3.923216e+03 1.957881e+02 6.561412e+01 9.186329e+01
7 1.012960e+06 8.453257e+05 6.693291e+05 4.657313e+04 7.355926e+03 3.308836e+04

10 4.655908e+09 4.267833e+09 3.968796e+09 2.520808e+07 1.379010e+07 2.069459e+07
WFG2 3 9.933827e+01 9.811442e+01 9.744023e+01 7.625626e-01 8.470477e-01 5.512647e-01

5 1.022450e+04 1.024813e+04 9.706916e+03 4.409717e+01 3.763713e+01 9.077778e+01
7 1.888481e+06 1.920465e+06 1.693878e+06 2.044528e+04 1.827917e+04 2.784520e+04

10 1.257257e+10 1.116778e+10 9.467046e+09 1.019488e+08 1.354532e+08 1.332691e+08
WFG3 3 7.466014e+01 7.417588e+01 7.245173e+01 2.356532e-01 3.109563e-01 2.456975e-01

5 4.957151e+03 5.126415e+03 5.390769e+03 4.152642e+02 1.383951e+02 2.499760e+02
7 6.557288e+05 7.474997e+05 7.839258e+05 1.106508e+05 7.243166e+04 1.962740e+04

10 4.570736e+09 4.574113e+09 4.799790e+09 1.590708e+08 1.344666e+08 2.360311e+08
WFG4 3 7.571198e+01 7.523355e+01 7.066606e+01 2.601592e-01 3.348561e-01 3.457368e-01

5 8.572311e+03 8.459619e+03 7.614682e+03 1.123784e+02 1.377473e+02 1.558473e+02
7 1.456661e+06 1.495149e+06 1.241569e+06 8.503477e+04 5.727180e+04 5.108251e+04

10 1.001431e+10 8.829287e+09 7.219131e+09 9.228356e+08 5.266028e+08 3.059377e+08
WFG5 3 7.103873e+01 7.084212e+01 6.830671e+01 3.614418e-01 4.554669e-01 7.109270e-01

5 6.993621e+03 6.903642e+03 4.786266e+03 2.783963e+02 3.414359e+02 1.682254e+02
7 1.153791e+06 1.166619e+06 6.938271e+05 1.219488e+05 6.249238e+04 3.439495e+04

10 7.798253e+09 5.487968e+09 4.326382e+09 4.842156e+08 2.896484e+08 2.108786e+08
WFG6 3 7.343451e+01 7.403118e+01 7.414183e+01 7.806236e-01 4.955407e-01 3.567494e-01

5 8.412675e+03 8.073424e+03 6.673660e+03 1.838619e+02 2.865328e+02 3.394313e+02
7 1.558772e+06 1.586780e+06 8.465877e+05 4.321214e+04 7.209466e+04 7.416890e+04

10 1.018512e+10 7.029743e+09 4.796231e+09 7.476273e+08 6.041572e+08 2.441963e+08
WFG7 3 7.708252e+01 7.571637e+01 7.522232e+01 1.262511e-01 3.778515e-01 2.566370e-01

5 8.896706e+03 8.658600e+03 7.214164e+03 3.554640e+01 8.293910e+01 2.731626e+02
7 1.727071e+06 1.694156e+06 1.085651e+06 2.311153e+04 3.419381e+04 5.986574e+04

10 1.145889e+10 8.953337e+09 6.961461e+09 3.337603e+08 2.475337e+08 2.715088e+08
WFG8 3 6.779437e+01 6.650534e+01 6.541337e+01 3.274858e-01 3.378578e-01 2.995898e-01

5 5.994972e+03 5.775872e+03 5.158155e+03 2.471690e+02 1.900633e+02 2.691419e+02
7 1.089499e+06 1.061901e+06 7.796808e+05 1.134469e+05 7.357747e+04 6.838321e+04

10 8.326035e+09 7.043867e+09 5.180671e+09 3.472185e+08 3.376537e+08 4.100537e+08
WFG9 3 6.609922e+01 6.603353e+01 6.594158e+01 1.695498e-01 2.174347e-01 1.833654e-01

5 6.180476e+03 6.385138e+03 5.851314e+03 5.625705e+02 2.152490e+02 4.018221e+02
7 8.483316e+05 8.942911e+05 7.113797e+05 1.286020e+05 1.701840e+05 1.049130e+05

10 5.688024e+09 5.206364e+09 4.161832e+09 9.999015e+08 7.231623e+08 3.453454e+08
rank (avg) 1.61 1.66 2.73

Comparison of Pareto fronts for WFG1

 0 1.5 3
 0 2.5 5

 0

 3.5

 7

iMOACOR-AR

 0 1.5 3
 0 2.5 5

 0

 3.5

 7

iMOACOR-R

 0 1.5 3
 0 2.5 5

 0

 3.5

 7

iMOACOR

 0

 2

 4

 6

 8

 10

 12

1 2 3 4 5
 0

 2

 4

 6

 8

 10

 12

1 2 3 4 5
 0

 2

 4

 6

 8

 10

 12

1 2 3 4 5

 0

 5

 10

 15

 20

 25

1 2 3 4 5 6 7 8 9 10
 0

 5

 10

 15

 20

 25

1 2 3 4 5 6 7 8 9 10
 0

 5

 10

 15

 20

 25

1 2 3 4 5 6 7 8 9 10

Fig. 2. Pareto fronts for WFG1 test problem for 3, 5 and 10 objective functions. Each column is related to one of the compared algorithms. The Pareto fronts
correspond to the hypervolume median.

volume value. However, this is related to a better coverage
of the Pareto front’s knee and better boundary solutions. This
fact is more clear for 5 and 10 objective functions, where
iMOACOR-AR obtains the better hypervolume value as well.
This observation is more evident when iMOACOR-AR is
compared to iMOACOR. Hence, based on these results and the
ones of the remaining problems, we claim that iMOACOR-AR
produces better point distributions than iMOACOR-R and
iMOACOR.

VII. CONCLUDING REMARKS

Multi-Objective Ant Colony Optimization (MOACO) for
continuous search spaces is a relatively new research area since
most of the MOACO effort has been focused on combinatorial
problems. However, two years ago, a new algorithm called
iMOACOR was introduced for solving continuous MOPs in
low- and high-dimensional objective spaces. One important
drawback of iMOACOR is related to the way that ants
create new solutions. Hence, a previous work [7], denoted
as iMOACOR-R, indicated that the iMOACOR algorithm
benefits from the inclusion of a mechanism which applies
recombination with some probability. In this work, we have
presented an adaptation mechanism that adjusts the probability
of applying recombination automatically based on the quality
of solutions constructed by recombination. The quality of
such solutions is judged indirectly based on how long the
solutions survive in the archive before being displaced, and
their relative rank in the archive. Our experimental results
suggest that this approach, called iMOACOR-AR is effective
in adapting the probability of recombination without external
input from the user. Moreover, the comparison based on the

hypervolume indicator shows that iMOACOR-AR outperforms
iMOACOR-R and iMOACOR in most of the adopted test
problems, making it, to the authors’ best knowledge, the
best MOACO for continuous search spaces in the literature.
However, there is still room for improvement. As part of our
future work, we are interested in studying new probability
density functions to generate better solutions in multifrontal
MOPs and an adaptive method for the parameters q and ξ is
required.

ACKNOWLEDGEMENTS

The partial support of a research grant from the Brandon
University Research Council (BURC) is gratefully acknowl-
edged. The authors wish to thank C.M. Fonseca, L. Paquete
and M. López-Ibáñez for making their tool for computing the
hypervolume indicator publicly available.

REFERENCES

[1] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From
Natural to Artificial Systems. New York, NY, USA: Oxford University
Press, Inc., 1999.

[2] M. Dorigo and T. Stützle, Ant Colony Optimization. MIT Press, 2004.
[3] K. Miettinen, Nonlinear Multiobjective Optimization. Kluwer Aca-

demic Publisher, 1999.
[4] C. A. Coello Coello, G. B. Lamont, and D. A. Van Veldhuizen,

Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd ed.
New York: Springer, September 2007, iSBN 978-0-387-33254-3.

[5] T. Liao, K. Socha, M. Montes de Oca, T. Stützle, and M. Dorigo, “Ant
colony optimization for mixed-variable optimization problems,” IEEE
Transactions on Evolutionary Computation, vol. 18, pp. 503–518, 2014.

[6] J. G. Falcón-Cardona and C. A. Coello Coello, “A new indicator-based
many-objective ant colony optimizer for continuous search spaces,”
Swarm Intelligence, vol. 11, pp. 71–100, 2017.

[7] A. M. Abdelbar and K. M. Salama, “Solution recombination in an
indicator-based many-objective ant colony oprimizer for continuous
search spaces,” in Proceedings IEEE Swarm Intelligence Symposium,
2017.

[8] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable multi-
objective optimization test problems,” in Proceedings CEC-2002, vol. 1,
2002, pp. 825–830.

[9] S. Huband, P. Hingston, L. Barone, and L. While, “A review of
multiobjective test problems and a scalable test problem toolkit,” IEEE
Transactions on Evolutionary Computation, vol. 10, pp. 477–506, 2006.

[10] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. da
Fonseca, “Performance assessment of multiobjective optimizers: An
analysis and review,” IEEE Transactions on Evolutionary Computation,
vol. 7, no. 2, pp. 117–132, April 2003.

[11] D. Brockhoff, T. Wagner, and H. Trautmann, “On the properties of
the R2 indicator,” in 2012 Genetic and Evolutionary Computation
Conference (GECCO’2012). Philadelphia, USA: ACM Press, July
2012, pp. 465–472, iSBN: 978-1-4503-1177-9.

[12] R. Hernández Gómez and C. A. Coello Coello, “Improved metaheuristic
based on the R2 indicator for many-objective optimization,” in 2015
Genetic and Evolutionary Computation Conference (GECCO 2015).
Madrid, Spain: ACM Press, July 11-15 2015, pp. 679–686, iSBN 978-
1-4503-3472-3.

[13] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, April 2002.

[14] A. Kalinli and F. Sarikoc, “A parallel ant colony optimization algorithm
based on crossover operation,” in Advances in Metaheuristics for Hard
Optimization. Berlin: Springer, 2008, pp. 87–110.

[15] C. M. Foncesca, L. Paquete, and M. López-Ibáñez, “An improved
dimension-sweep algorithm for the hypervolume indicator,” in Proceed-
ings CEC-2006, 2016, pp. 1157–1163.

[16] C. M. Fonsesca, M. López-Ibáñez, L. Paquete, and A. P. Guer-
reiro, “Computation of the hypervolume indicator,” http://iridia.ulb.ac.
be/∼manuel/hypervolume, accessed: May 2017.

