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Jesús Guillermo Falcón-Cardona
Computer Science Department

CINVESTAV-IPN
Mexico City, Mexico

jfalcon@computacion.cs.cinvestav.mx

Hisao Ishibuchi
Department of Computer Science and Engineering

Southern University of Science and Technology
Shenzhen, China

hisao@sustech.edu.cn

Carlos A. Coello Coello
Computer Science Department

CINVESTAV-IPN
Mexico City, Mexico

ccoello@cs.cinvestav.mx

Abstract—Recently, it has been stressed that multi-objective
evolutionary algorithms (MOEAs) should produce Pareto front
approximations with good diversity regardless of the Pareto front
geometry. In this light, the use of selection mechanisms based on
multiple quality indicators (QIs) is a promising approach due to
the exploitation of their strengths. In this paper, we propose
to exploit the trade-off between the IGD+ and the Riesz s-
energy indicators, which assess convergence and diversity of a
Pareto front approximation, respectively. Since the preferences
of both indicators are regularly in conflict due to their different
measure scope, it is possible to design a selection mechanism
that exploits such trade-off, aiming to generate Pareto front
approximations with a good degree of convergence and diversity
simultaneously. Our proposed density estimator is embedded in a
steady-state MOEA, denoted as PFI-EMOA, which is compared
with several state-of-the-art MOEAs. Our experimental results
based on the WFG and WFG−1 test problems show that PFI-
EMOA outperforms several state-of-the-art MOEAs, providing
outcomes having good convergence and diversity. Additionally,
the performance of PFI-EMOA does not depend on the Pareto
front shape.

Index Terms—Multi-objective optimization, combined quality
indicator, selection mechanism

I. INTRODUCTION

For almost 30 years, multi-objective evolutionary algorithms
(MOEAs) have been successfully applied to solve nonlinear
optimization problems involving two or more objective func-
tions, i.e., the so-called multi-objective optimization problems
(MOPs) [1]. Currently, there is a plethora of MOEAs that
employ different mechanisms to approximate the Pareto front
of an MOP. To compare the performance of MOEAs, they
are tested on several benchmark problems, where each one
has specific properties such as search difficulties (e.g., multi-
modality, separability, bias) and Pareto front shape.1 MOEAs
have been found to be very competitive when using traditional
benchmark problems [2]. However, Ishibuchi et al. [3] pointed
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1This is the geometry related to the Pareto front. For instance, it could be
linear, convex, concave, mixed, degenerate, or disconnected.

out that the performance of some MOEAs2 radically changes
even if the commonly used test problems are slightly modified.
In consequence, an important issue is that the performance of
some MOEAs strongly depends on the Pareto front shape of
the MOP being solved.

Indicator-based MOEAs (IB-MOEAs) have been recently
used to overcome the performance dependence of MOEAs to
the Pareto front shapes [4], [5], [6]. IB-MOEAs are based
on quality indicators (QIs) which are set functions that eval-
uate the quality of Pareto front approximations according to
specific convergence and diversity preferences [7]. Hence, a
straightforward idea is to employ one or more QIs to design
the selection mechanisms of an MOEA. In consequence, the
Pareto front approximations generated by an IB-MOEA inherit
the properties of its baseline QI(s). Since each indicator-based
mechanism has specific search abilities, an IB-MOEA using
multiple QIs could explore different regions of the search
space, avoiding the performance dependence to the Pareto
front shape [6], [8].

In 2019, Falcón-Cardona et al. [6] proposed the CRI-EMOA
algorithm which combines the individual selection effect of
two density estimators based on the Riesz s-energy (Es)
[9] and the Inverted Generational Distance plus (IGD+) [10]
indicators. The main idea of CRI-EMOA is to statistically
analyze its convergence behavior (based on an approximation
to the hypervolume indicator [11]) to decide which indicator-
based density estimator (IB-DE) should be executed. If the
convergence stagnates, the diversity of solutions is promoted
through the Es-DE. On the other hand, if the convergence
either decreases or increases, the IGD+-DE is applied. The
authors empirically showed that the performance of CRI-
EMOA is invariant to the Pareto front shape. However, its
main drawback concerns its statistical analysis of global con-
vergence since the approximation to the hypervolume indicator
(HV) provides noisy results which could lead to not using the
correct IB-DE.

Currently, there is a wide range of QIs that aim to mainly
assess convergence and diversity of Pareto front approxima-
tions [7]. Since the scope of convergence and diversity QIs is

2For instance, MOEAs using a set of convex weight vectors to guide the
population towards the Pareto front since the Pareto front shape of some MOPs
is highly correlated with the simplex formed by the weight vectors.
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Fig. 1: Trade-off between the hypervolume indicator and the
Riesz s-energy. In all cases, a well-diversified Pareto front
does not have the best hypervolume value and viceversa.

different, it is clear that their preferences could be in conflict.
In Figure 1, we show the Pareto fronts related to some DTLZ
[12] and DTLZ−1 [3] benchmark problems. For each MOP, we
generated two subsets by iteratively deleting the solution with
worst contribution to HV and Es and, then, we measured both
indicator values. The QI values show that a high hypervolume
value is not strictly related to a Pareto front approximation
with high diversity. Hence, there is a trade-off between both
QIs that can be exploited by an MOEA to produce Pareto front
approximations, optimizing both a convergence indicator and
a diversity one.

In this paper, we propose to exploit the trade-off between the
IGD+3 and the Riesz s-energy to overcome the drawbacks of
CRI-EMOA. To this aim, we mathematically combine IGD+

and Es in a single indicator which is then embedded into a
density estimator. Our proposed approach, called Pareto front
shape invariant evolutionary multi-objective algorithm (PFI-
EMOA), is based on the framework of SMS-EMOA [14] but
it replaces the HV-DE by our proposed density estimator using
the combined indicator.

The remainder of this paper is organized as follows. Sec-
tion II introduces some mathematical definitions. Section III
briefly describes the previous related work. Section IV is de-
voted to explain the design of PFI-EMOA. Section V presents
the experimental results where we compare it with state-of-the-
art MOEAs. Finally, our main conclusions and future work are
highligthed in Section VI.

II. BACKGROUND

Throughout this paper, we consider, without loss of gener-
ality, MOPs for minimization which are defined as follows:

3The decision to use IGD+ instead of HV is because the latter is
computationally expensive when dealing with MOPs having more than three
objective functions. Additionally, the preferences of IGD+ and HV are highly
correlated [13].

min
~x∈Ω

{
~F (~x) = (f1(~x), . . . , fm(~x))

}
, (1)

where ~x is the vector of decision variables, Ω ⊆ Rn is the
decision space and ~F (~x) is the vector of m ≥ 2 objective
functions such that fi : Ω → R for i ∈ {1, 2, . . . ,m}.
Unlike single-objective optimization problems which have a
single global optimal solution, the solution of an MOP is
a set of solutions that represents the best possible trade-
offs among the objective functions. To identify the trade-offs
among the objective functions, the Pareto dominance relation
has been commonly used. Given ~x, ~y ∈ Rn, ~F (~x) Pareto
dominates ~F (~y) (denoted as ~F (~x) ≺ ~F (~y)) if and only if
fi(~x) ≤ fi(~y) ∀i = 1, . . . ,m and there exists at least one
index j ∈ {1, . . . ,m} such that fj(~x) < fj(~y). In case that
fi(~x) ≤ fi(~y) for all i = 1, . . . ,m, we say that ~x weakly
Pareto dominates ~y, denoted as ~F (~x) � ~F (~y). Based on the
Pareto dominance relation, it is possible to identify Pareto
optimal solutions. A solution ~x∗ ∈ Ω is Pareto optimal if
there does not exist another ~x ∈ Ω such that ~F (~x) ≺ ~F (~x∗).
The set of all Pareto optimal solutions is called the Pareto set
and its image in objective space is known as Pareto front.

At each execution, an MOEA produces a Pareto front
approximation (also known as approximation set). Given Ψ
which is the set of all approximation sets, an approximation
set A ∈ Ψ is a finite set of m-dimensional objective vectors. A
is called a Pareto front approximation if none of its elements
weakly dominates another element. Based on the approxima-
tion sets, we can easily extend the Pareto dominance relation to
sets [15]. Given two approximation sets A and B, A dominates
B (denoted as AC B) if and only if ∀~b ∈ B,∃~a ∈ A : ~a � ~b
and A 6= B.

Quality indicators have been widely employed to quan-
titatively compare MOEAs’ outcomes. Mathematically, an
indicator is defined as follows:

Definition 1 (Quality indicator): A unary quality indicator
I : Ψ → R is a function that assigns a real value to every
element A ∈ Ψ.

Regarding QIs that measure convergence towards the Pareto
front, an important property is Pareto compliance. This prop-
erty determines if the total order imposed by an indicator
is compliant with the partial order defined by the Pareto
dominance relation. In the following, we provide the formal
definition of Pareto compliance, as well as that of weak Pareto
compliance.

Definition 2 (Pareto compliance): A quality indicator is
Pareto-compliant if and only if A C B ⇒ I(A) < I(B),
assuming that a lower indicator value is better.

Definition 3 (Weak Pareto compliance): A quality indicator
is weakly Pareto-compliant if and only if A C B ⇒ I(A) ≤
I(B), assuming that a lower indicator value is better.

III. PREVIOUS RELATED WORK

In 2015, Ishibuchi et al. [10] proposed the IGD+ indicator
which measures convergence and diversity simultaneously.
This QI measures the average distance between a reference set



Z and a Pareto front approximation A. For this purpose, IGD+

uses a modified Euclidean distance that works as follows for
given ~z ∈ Z and ~a ∈ A. If ~z Pareto dominates ~a, the usual
Euclidean distance is calculated. In case that both vectors are
mutually nondominated, the distance from ~z to the dominated
region of ~a is computed. Due to the modified Euclidean
distance, IGD+ is a weakly Pareto-compliant indicator. IGD+

is formulated in the following equation.

IGD+(A,Z) =
1

|Z|
∑
~z∈Z

min
~a∈A

d+(~a, ~z) (2)

where d+(~a, ~z) =
√∑m

i=1 max(ai − zi, 0)2 is a modified
Euclidean distance and m is the dimension of the objec-
tive space. The closer IGD+(A,Z) is to zero, the more
similar A and Z are. Hence, the aim is to minimize the
IGD+ value. One possibility to employ IGD+ in a selection
mechanism is to compute the individual contributions of the
solutions in A and delete the one having the minimum con-
tribution. Mathematically, this IGD+-DE is given as follows:
~aworst = arg min~a∈A CIGD+(~a,A), where CIGD+(~a,A) =
|IGD+(A,Z)− IGD+(A\ {~a},Z)| is the IGD+ contribution
of a solution ~a ∈ A.

A remarkable diversity indicator, which has not been ex-
tensively employed in the evolutionary multi-objective opti-
mization community, is the Riesz s-energy (Es) proposed by
Hardin and Saff [9]. This indicator measures the uniformity of
a set of points in m-dimensional manifolds. It is mathemati-
cally defined as follows:

Es(A) =
∑
i 6=j

‖~ai − ~aj‖−s (3)

where ‖·‖ represents the Euclidean distance and s > 0 is
a parameter that controls the degree of uniformity of the
solutions in A. It is worth noting that as s → ∞, with |A|
fixed, Es leads to the best packing problem [9]. The aim is
to minimize the Riesz s-energy, which implies a Pareto front
approximation with high diversity. Regarding the individual
contribution of a solution ~a ∈ A, it is given as CEs

(~a,A) =
1
2 [Es(A)−Es(A \ {~a})]. On the basis of CEs

, the Es-DE is
defined as follows: ~aworst = arg max~a∈A CEs

(~a,A).
Due to the nice properties of both IGD+ and Es, Falcón-

Cardona et al. [6] proposed the CRI-EMOA algorithm that
takes advantage of their selection properties. CRI-EMOA is
a steady-state MOEA that switches between IGD+-DE and
Es-DE depending on a statistical analysis of convergence.
At each iteration, CRI-EMOA measures the convergence of
its population, based on an approximation of HV that adds
up all the Euclidean distances between the solutions in the
population and a reference point. The convergence values are
stored in a circular array of size Tw. Once the circular array
is full, CRI-EMOA generates at each iteration a linear model
of the convergence behavior from which it is obtained the
angle θ related to the slope of the model and the coefficient
of variation β of the samples. Based on these two values and
two given thresholds β̄ and θ̄, the IB-DE to be executed is

selected. If the number of dominance layers produced by the
nondominated sorting algorithm [16] is equal to one and β ≤ β̄
and θ ∈ [−θ̄, θ̄], it means that the convergence is stagnated
because of a low variation of the convergence values and,
hence, diversity should be promoted via Es-DE. Otherwise,
IGD+-DE is performed. Its main drawbacks are related to
the HV approximation and the user-supplied thresholds, which
impact the performance of the switching mechanism between
the IB-DEs.

IV. OUR PROPOSED APPROACH

In this section, we first introduce the combination of IGD+

and Es in a single indicator from which a density estimator
is designed. Then, we present the general description of PFI-
EMOA.

A. Design of the Combined Indicator and Density Estimator

The underlying idea of PFI-EMOA is to unify IGD+

and Es in a single QI such that we exploit the trade-off
between both indicators and, then, the new QI is embedded
in a density estimator. In 2019, Falcón-Cardona et al. [17]
proposed to combine a set of QIs (given by an indicator
vector ~I = (I1, . . . , Ik)) from which one or more are weakly
Pareto-compliant QIs with at least one being Pareto-compliant,
using an order-preserving function u : Rk → R such that the
resulting combined indicator I = u(~I) is Pareto-compliant. In
this paper, we follow this combination approach to exploit the
trade-off between IGD+ and Es.

Let ~Is(A,Z) = (IGD+(A,Z), Es(A)) be our indicator
vector. From the set of order-preserving functions, we chose,
without loss of generality, the augmented Tchebycheff func-
tion (ATCH) which is defined as follows: ATCH~w(~x) =
maxi=1,...,k{wixi} + α

∑k
i=1 xi, where α > 0 and ~w ∈ Rk

is a weight vector, holding
∑k

i=1 wi = 1 and all of its
components should be strictly positive such that all the in-
dicators contribute to the ATCH value. Hence, the combined
indicator is ATCH~w(~Is(A,Z)). Since we are combining a
weakly Pareto-compliant QI with a non-Pareto-compliant one,
according to the theorem proposed by Falcón-Cardona et al.
[17], the proposed combined indicator is not Pareto-compliant.

To design a density estimator based on ATCH~w(~Is(A,Z)),
it is necessary to analyze the three cases of Figure 2 that
arise due to the non-Pareto compliance of Es. This figure
shows the relation between ~Is(A,Z) and ~Is(A \ {~a},Z). In
Case 1, every time a solution is removed from A, the Es

value gets better, which implies that ~Is(A,Z) is mutually non-
dominated with respect to all vectors ~Is(A \ {~a},Z). Hence,
ATCH~w(~Is(A \ {a},Z)) could be less than, greater than or
equal to ATCH~w(~Is(A,Z)). On the other hand, in Case 2, all
vectors ~Is(A\ {~a},Z) are dominated by ~Is(A,Z) since they
all have a greater Es value. Due to the order-preserving prop-
erty of ATCH, ATCH~w(~Is(A,Z)) < ATCH~w(~Is(A\{a},Z)),
for all ~a ∈ A. Finally, case 3 combines cases 1 and 2, thus,
ATCH~w(~Is(A \ {a},Z)) could be less than, greater than or
equal to ATCH~w(~Is(A,Z)). In the three cases, it is evident
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Fig. 2: Due to the Pareto non-compliance of the Riesz s-energy indicator, there are three cases for selection when using
ATCH~w(~Is(A,Z)).

that there exist non-contributing solutions to the IGD+ indi-
cator that must be eliminated every time they appear because
they do not contribute to the convergence of the algorithm.
In consequence, we delete the worst-contributing solution to
the Riesz s-energy indicator in this case. Regarding the rest
of solutions, we delete the solution having the minimum
ATCH~w(~Is(A \ {a},Z)) value.

B. PFI-EMOA: General Description

Algorithm 1 PFI-EMOA general framework

Require: Combination vector ~w ∈ R2

Ensure: Pareto front approximation
1: Randomly initialize population P
2: while stopping criterion is not fulfilled do
3: Create a single offspring solution ~q using variation operators
4: Q← P ∪ {~q}
5: {R1, . . . , Rk} ← nondominated-sorting(Q)
6: if |Rk| > 1 then
7: zmax

i ← max~a∈Q ai, i = 1, . . . ,m
8: zmin

i ← min~a∈Q ai, i = 1, . . . ,m
9: Normalize {Rj}j=1,...,k using ~zmax and ~zmin

10: B ← {~b | IGD+(Rk \ {~b}, R1) = IGD+(Rk, R1),∀~b ∈
Rk}

11: if |B| > 0 then
12: ~aworst ← argmax~b∈B CEs(~b,Rk)
13: else
14: ~aworst ← argmin~r∈Rk

ATCH~w(~Is(Rk \ {r}, R1))
15: end if
16: else
17: ~aworst is the sole solution in Rk

18: end if
19: P ← Q \ {~aworst}
20: end whilereturn P

Algorithm 1 outlines PFI-EMOA that is a steady-state
algorithm based on the framework of SMS-EMOA [14]. In
contrast to CRI-EMOA that requires the parameters β̄ and θ̄
to control the switching between the IB-DEs, PFI-EMOA only
requires a weight vector ~w ∈ R2 such that w1 + w2 = 1 and

w1, w2 > 0 which control the importance of the indicators.
Lines 2 to 17 encompass the main loop of PFI-EMOA where
the population P (randomly initialized in line 1) is evolved
to obtain a Pareto front approximation. At each iteration, the
nondominated sorting algorithm [16] classifies P and an off-
spring solution generated through variation operators4 in layers
R1, . . . , Rk according to the Pareto dominance relation. If the
cardinality of Rk (which has the worst solutions according
to the Pareto dominance) is greater than one, our density
estimator is applied; otherwise, the sole solution in Rk is
deleted. To execute the density estimator, it is first necessary
to normalize the objective values of all solutions. In line 10,
the set B of non-contributing solutions to the IGD+ indicator
is computed and if it has one or more solutions, the one having
the worst Riesz s-energy contribution is selected. Otherwise,
the solution in Rk having the worst trade-off between IGD+

and Es is selected in line 14. In both lines 10 and 14, R1 is
employed as the reference set of IGD+. The final step of the
loop is to delete in line 17 the selected solution. Finally, P is
returned as the Pareto front approximation.

Regarding the computational cost of the new selection
mechanism, we employed the efficient algorithms for calculat-
ing the individual contributions to IGD+ and Es, introduced
in [18] and [19], respectively. For both indicators, given
an approximation set of size N , the cost of computing all
the individual contributions is Θ(N2). In consequence, the
runtime involved in lines 10 to 15 is described in the following.
The identification of noncontributing solutions that shape B is
in Θ(|Rk|2). If B has one or more solutions, the identification
of ~aworst is Θ(|Rk|2). Otherwise, the contributions to the
combined indicator are calculated in Θ(m ·(|Rk|2 + |Rk|2)) =
Θ(m|Rk|2), where the term m is due to the calculation of the
ATCH value. Consequently, the use of the combined indicator
in the selection mechanism does not aggregate a considerable

4We employed the simulated binary crossover (SBX) and the polynomial-
based mutation (PBX) operators [16].



overhead.

V. EXPERIMENTAL RESULTS

In this section, we analyze the performance of PFI-EMOA5

by performing three experiments. First, we turn off the Riesz
s-energy indicator in the combined indicator to determine what
is its effect on the Pareto front approximations. Then, we com-
pare PFI-EMOA with CRI-EMOA [6], AR-MOEA [4], RVEA
[20], SPEA2+SDE [21], GrEA [22], and Two Arch2 [4]. We
used the WFG [2] and WFG−1 [3] benchmark problems with
2 to 6 objective functions to test the convergence and diversity
properties of the selected MOEAs. For each test instance, we
performed 30 independent executions and to obtain statistical
confidence, we performed the Wilcoxon rank-sum test with
a confidence value of 95%. To assess the performance of
PFI-EMOA, we employed four QIs: IGD+ and Es since PFI-
EMOA aims to optimize them, and, as neutral QIs, we used
HV and the Solow-Polasky-Diversity indicator (SPD) [23].
For each test instance, we merged all the solutions from
the MOEAs to produce a subset of mutually nondominated
solutions of size 100m (where m is the number of objective
functions) as the reference set required by IGD+. In all cases,
s = m−1 for Es as suggested in [24] and [6]. Regarding HV,
the reference point was set as follows: ~zref = {2i+ 1}i=1,...,m

for all the WFG problems, and ~zref = (10, . . . , 10) for all
the WFG−1 instances. SPD uses θ = 10 for its computation
[23]. Finally, we analyze the three possible ways in which PFI-
EMOA deletes a solution at each iteration, aiming to determine
which combined indicator to adopt.

A. Parameters Settings

Let (m;µ;T ) be a configuration tuple where m is
the number of objective functions, µ is the population
size, and T is the maximum number of function evalu-
ations. For a fair comparison, PFI-EMOA and the other
MOEAs used the same population size and the same num-
ber of function evaluations as their stopping criterion as
follows: (2; 120; 40, 000), (3; 120; 50, 000), (4; 120; 60, 000),
(5; 126; 70, 000), (6; 126; 80, 000). Since all the MOEAs em-
ploy SBX and PBX as their variation operators, we set the
crossover probability (Pc), the crossover distribution index
(Nc), the mutation probability (Pm), and the mutation dis-
tribution index (Nm) as follows. For MOPs having two and
three objective functions Pc = 0.9 and Nc = 20, while for
MOPs with m > 3, Pc = 1.0 and Nc = 30. In all cases,
Pm = 1/n where n is the number of decision variables and
Nm = 20. The number of decision variables n and the number
of position-related parameters k of both the WFG and WFG−1

test problems are n = 24 + 2(m − 2) and k = 2(m − 1).
Regarding PFI-EMOA, we set ~w = (0.5, 0.5) for two- and
three-dimensional MOPs while ~w = (0.9, 0.1) for MOPs
having m > 3, where w1 is related to IGD+ and w2 to Es. The
reason for this decision is that for many-objetive optimization
problems, the number of nondominated solutions increases

5The source code of PFI-EMOA is available at http://computacion.cs.
cinvestav.mx/∼jfalcon/PFI-EMOA.html.

Fig. 3: For each considered indicator, the number of test
instances for which PFI-EMOA is ranked first or second when
compared to PFI-EMOA/Es.

exponentially and, in some cases, Es could reward solutions
with low convergence degree. Hence, IGD+ should increase
the selection pressure, which is done by setting w1 = 0.9.
CRI-EMOA uses Tw = µ, β̄ = 0.1 and θ̄ = 0.25 for all
MOPs. The size of the convergence archive of Two Arch2
is equal to the population size and the fractional distance is
set to 1/m for all the test instances. Concerning RVEA, the
rate of change of the penalty is set to 2 and the frequency
of employing the reference vector adaptation is equal to 0.1
in all cases. GrEA creates 45, 15, 10, 9, and 9 divisions of
the objective space for 2, 3, 4, 5, and 6 objective functions,
respectively. We employed PlatEMO 2.0 [25] to execute AR-
MOEA, RVEA, GrEA, SPEA2+SDE, and Two Arch2 while
for CRI-EMOA, we used the source code available at http:
//computacion.cs.cinvestav.mx/∼jfalcon/CRI-EMOA.html.

B. Effect of Riesz s-energy

In this experiment, we analyze what is the effect of the
Riesz s-energy indicator in the final quality of the Pareto
front approximations generated by PFI-EMOA. To this aim,
we turned off the Es-contribution in PFI-EMOA, i.e., we set
~w = (1, 0), where the zero value is related to Es, and we
changed ATCH by the weighted sum function (WS~w(~x) =∑k

i=1 wixi) in the combined indicator. The reason to use WS
instead of ATCH is that even though we set ~w = (1, 0) in
ATCH, Es would be taken into account in the correction factor
α
∑k

i=1 xi of ATCH. We denote this modified PFI-EMOA as
PFI-EMOA/Es and we compare it with PFI-EMOA in the 90
test instances indicated before, using HV, SPD, IGD+, and Es.
Due to space limitations,6 in Figure 3 we show a summary of
the comparison where we stress the number of test instances
for which PFI-EMOA is ranked first or second by each QI.
Regarding the SPD and Es values in the figure, it is clear
that Es helps PFI-EMOA to significantly improve the diversity
of the Pareto front approximations. On the other hand, PFI-
EMOA performs better than PFI-EMOA/Es in almost 60 out
of the 90 test instances for both HV and IGD+. According to

6The complete numerical results are available at http://computacion.cs.
cinvestav.mx/∼jfalcon/PFI-EMOA.html.
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the numerical results, PFI-EMOA/Es is better than PFI-EMOA
for WFG1, WFG6, WFG7, WFG8 and WFG9 in terms of HV.
This is because PFI-EMOA/Es is being guided by an IGD+-
DE which produces similar distributions to HV (see [18], [13])
and, hence, in the performance comparison HV is rewarding
this behavior. In this light, IGD+ prefers PFI-EMOA/Es in
some cases because its preferences are similar to those of HV.
However, PFI-EMOA obtained the first rank in both indicators
in almost 66.66% of the benchmark problems, which implies
that Es helps to improve the convergence quality as well.

C. Comparison with state-of-the-art MOEAs

We analyzed the convergence and diversity properties of
PFI-EMOA with respect to six state-of-the-art MOEAs: GrEA
and RVEA are two approaches that aim to balance conver-
gence and diversity during the evolutionary process, and CRI-
EMOA, AR-MOEA, SPEA2+SDE, and Two Arch2 which
were specifically designed to have a good performance re-
gardless of the Pareto front shape of the MOP being tackled.
Figure 4 presents the statistical ranks obtained by the con-
sidered MOPs for each quality indicator. The underlying nu-
merical results are available at http://computacion.cs.cinvestav.
mx/∼jfalcon/PFI-EMOA.html. From the figure, it is clear that
PFI-EMOA simultaneously optimizes IGD+ and Es, being
the best-ranked algorithm. This is also clear from HV and
SPD which are neutral indicators in the comparison, i.e., no
algorithm aims to optimize such QIs. Figure 5 shows some
Pareto front approximations generated by all the MOEAs,
where it is possible to see that PFI-EMOA produces the best
distributions. An important factor to discuss is the effect of
the weight vector ~w in the performance of PFI-EMOA. Based
on a wide range of experiments, we observed that for two-
and three-dimensional objective spaces, IGD+ and Es can
be equally important (i.e., ~w = (0.5, 0.5)) because there are
not that many mutually nondominated solutions. However, for
many-objective problems, the number of mutually nondomi-
nated solutions drastically increases, and, in these cases, IGD+

should apply more selection pressure while Es helps PFI-
EMOA just to refine the ordering of solutions. If we give Es

more importance in high-dimensional spaces, it is more likely
to allow dominated solutions to survive.

D. Selection analysis

At each iteration, PFI-EMOA deletes a solution ~aworst from
the population by: (1) selecting the worst-contributing solution
to Es from the set of non-contributing solutions to IGD+, i.e.,
by line 12 of Algorithm 1, (2) using the ATCH~w(~Is(A,Z))-
based density estimator in line 14, and (3) determining the
worst solution in terms of the Pareto dominance relation in
line 17. These three cases are denoted as C1, C2, and C3.
In this section, we analyze the tendency of PFI-EMOA to
use these three selection criteria. In Figure 6, we present
statistical data of the utilization of C1, C2, and C3 for MOPs
WFG1-WFG4 and their corresponding inverted instances for
2 to 6 objective functions. For all two-objective test instances
(except for WFG1−1), C3 is the most employed selection case,

followed by C2, and C1 in that order. This is because in
two-dimensional objective spaces, it is more likely that the
nondominated sorting algorithm creates numerous layers and,
therefore, the Pareto-based selection is executed more times.
On the other hand, as the dimension of the objective space
increases, the number of mutually nondominated solutions
increases as well [26]. Consequently, for 3 to 6 objective
functions, Figure 6 shows that C2 is the most employed
selection criterion in a significant manner, followed by C3
and C1. Hence, this result shows that our proposed combined
indicator is mostly guiding the search of PFI-EMOA for many-
objective problems.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed to exploit the trade-off be-
tween the IGD+ and Riesz s-energy indicators (that assess
convergence and diversity, respectively) to design a selection
mechanism that produces Pareto front approximations having
both properties simultaneously. To this aim, we combined
IGD+ and Riesz s-energy in a single quality indicator that
is then embedded in a density estimator of a steady-state
MOEA, called PFI-EMOA. Our experimental results based
on the hypervolume, Solow-Polasky Diversity, IGD+, and
Riesz s-energy indicators showed that PFI-EMOA outperforms
several state-of-the-art MOEAs on the WFG and WFG−1 test
problems. As part of our future work, we want to study the
properties of the combined indicator and test other combina-
tions of indicators.
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