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ABSTRACT : We present a method for optimizing the design of axially loaded non-prismatic columns using
a search technique based on the mechanics of natural selection, called the genetic algorithm. The design pro-
blem was formulated as an optimization problem in which the objective function is to minimize the volume of
a column under a given load by changing its shape, subject to both buckling and strength constraints. Both
floating point representation and binary representation (with and without Gray coding) were used and compa-
red against a mathematical programming method based on the generalized reduced gradient method. Our re-
sults show that the floating point representation scheme provides the best solutions, both in terms of precision
and in terms of computing time.

1 INTRODUCTION

The optimization of structural members subject to
compression forces has been of great interest for a
long time. Leonhard Euler derived first the formula
for the criti cal buckling load of an ideal slender co-
lumn (Euler 1960b), and was also the first to solve
the problem of inextensible elastica (i.e., for constant
modulus of elasticity and modulus of inertia, he
found the curve of prescribed length with prescribed
terminal displacements and slopes and minimum
stored energy). Euler solved the case of a column
that has the lower end fixed and the upper end free.
Later he extended (Euler 1960a) his work on co-
lumns, and even today it has a great influence in
every strength of materials textbook. In fact there
were very few contributions to his work until La-
marle (1845) noticed that Euler's formula should be
used only for slenderness ratios over a certain limit ,
and that the experimental data should be applied
only to small ratios. In 1889 the French engineer
Considère (1891) performed a set of 32 tests on co-
lumns, establishing the so-called theory of the redu-
ced module. During that same year, the German en-
gineer F. Engesser (1889) independently suggested
the theory of tangential module. From these two
theories, the first one dominated until 1946, when
American professor F. R. Shanley indicated the logi-
cal paradoxes of both theories. In a remarkable paper
of only one page (Shanley 1946) he explained not
only what was wrong with both theories, but he also
proposed his own theory that solved the paradoxes.

  On the other hand, the problem of non-prismatic
columns (i.e., those with a variable cross-section
area) has been studied more recently. A. N. Dinnik
(1932) discussed the design of columns in which the
moment of intertia of the cross-section areas varies
according to a power of the distance along the mem-
ber axis. Keller (1960) and later Tadjbakhsh and
Keller (1962) derived optimal solutions to the stron-
gest-column problem, which was characterized in
the following way: "For a column of given length
and volume of material, determine the column shape
for which the Euler buckling load is maximum". In
their analysis, Tadjbakhsh and Keller established the
necessary conditions for a maximum by performing
variations on the differential equations of equili -
brium and associated boundary conditions, and the
constraint of constant volume.
  J. Taylor (1967) studied the same problem using an
energy approach, and presented a method to calcu-
late a lower bound to the maximum eigenvalue. Spi-
llers and Levy extended Keller's solution for the op-
timal design of columns to the case of plates
(Spill ers & Levy 1990) and later, for axisymmetric
cylindrical shells (Spill ers & Levy 1991). However,
in all these works, only the constraint of constant
volume was considered and, as Fu and Ren (1992)
point out, in a practical design, material strength
constraints are equally important. With that in mind,
these last two authors added such constraint to the
optimization problem and used an algorithm called
the generalized reduced gradient method (Reklaitis
et al. 1983) to select the design variables at nodal
points. The results that they obtained are very reaso-



nable and verifiable. The generalized reduced gra-
dient method linearizes the non-linear constraints of
this problem, and uses the convex simplex method to
select the best direction of search from all the candi-
date directions which are both feasible and descent.
Then the search for the optimum is started from the
feasible initial point. Newton iteration is employed
to adjust the basic variable to maintain feasibility.
The convergence is accelerated by incorporating
conjugate direction or quasi-Newton constructions.
Naturally, the existence of continuous differentiabi-
lity of the problem functions is a fundamental requi-
rement for using the method.

  Our work followed this last approach, and applied
the genetic algorithm (GA) instead of the generali-
zed reduced gradient method. Some problems had to
be faced, though, namely the representation scheme
and the parameters to be optimized. However, our
results are practically as good as those found by Fu
and Ren (1992), and in at least one case we found a
better solution than them. Binary and floating point
representation schemes were tried, since this pro-
blem has a continuous search space. Nevertheless,
the search space can be easily discretized, since in
real designs there is always a lower and an upper
bound on the designs of the column.

Figure 1 : Column elevation and sections.

2 STATEMENT OF THE PROBLEM

Given a column subject to axial load along the hori-
zontal direction, the governing differential equation
is

EIy Py"+ = 0   (2.1)

where E is the modulus of elasticity, I is the moment
of inertia, P is the axial load, and y is the function
that represents the slenderness of the column. Let' s
assume that the column that we are going to study is
divided into 6 equal-sized segments throughout its
length (see Figure 1). Then, Equation (2.1) may be
expressed in a finite difference form, as (Fu & Ren
1992):
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For non-trivial solution, the determinant must va-
nish, namely
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or, in linear form:
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where, for round and regular polygonal sections, the
moments of inertia will be given by

I Di i= α 4                                       (2.5)

Di is the diameter for round sections, or the side
length for regular polygonal sections. Table 1 shows
the values of α for the most commonly used cross-
sections.

Table 1. Value of α for the most common sections.
Round section Square section Triangular sec-

tion*
π
64

1

12
3

96
*We assume an equilateral triangle.

  In general, for an n-sided regular polygon, α may
be derived as
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  For rectangular sections where width b is assumed
to be constant throughout the length of the column,
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  In a column design, Equation (2.4) represents a
buckling constraint. Furthermore, a compressive
strength constraint must also be satisfied, that is

P

A y

1

≤ σ                                    (2.8)

where A1 is a function of D1. Since P and σy are
always given values, we can compute the minimum
D1 or A1 for each particular problem. This means
that we may express the compressive strength cons-
traint only in terms of D1 or A1.
  Now, we have all the necessary elements to express
the column design problem as an optimization pro-
blem. If we assume that P, h and σy are given, the
objective is to minimize the volume of the column.
Therefore, we' ll consider 2 cases:
  a. Square or round columns: The objective function
may be stated as (Fu & Ren 1992)
  Minimize:
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where K is a constant defined according to Table 2,
and Vc is the volume of the round or square column.

Table 2. Value of K for the most common sections.
Round section Square section Triangular sec-

tion*
πl

36

l

9
l 3

36
*We assume an equilateral triangle.

  The objective function is subjected to the equality
constraint defined by Equation (2.4), and the fo-
llowing additional inequality constraints:

C D C il i< < =µ , , , ,   1 2 3 4                     (2.10)

where Di are the design variables; Cl and Cµ are,
respectively, the lower and upper bounds of the de-
sign variables.

  b. Rectangular columns: The objective function
will be (Fu & Ren 1992):
  Minimize:
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where Vr is the volume of the rectangular column.



  The objective function is subjected to the equality
constraint defined by Equation (2.4), and the fo-
llowing similar equation that is derived on the basis
of buckling in the orthogonal direction:
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  Furthermore, an additional set of inequality cons-
traints have to be satisfied
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where A
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σ
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3 USE OF THE GENETIC ALGORITHM

To solve this problem, we used the Simple Genetic
Algorithm (SGA) proposed by Goldberg (1989). An
issue in this application is the representation scheme,
because we are dealing with real-valued parameters,
and therefore it is necessary to use some kind of
discretization, so that we can apply a binary repre-
sentation scheme. We used a linear discretization
that uses the upper and lower bounds given by the
user to compute the decoded value with a 3 decimal
precision.
  We also tried to use Gray codes as suggested by
Goldberg (1989). The Gray code representation has
the property that any two points next to each other in
the problem space differ by only one bit
(Michalewicz 1992). In other words, an increase of
one step in the parameter value corresponds to a
change of a single bit in the code. This is a well
known technique used to reduce the distance of two
points in the problem space, and it is argued to bring
some benefit because of their adjacency property,
and the small perturbation caused by many single
mutations. However, the use of Gray codes didn' t
help much in this particular application, as we' ll see
in the next section.
  Finally, we used a floating point representation,
since it is conceptually closest to the problem space
(Michalewicz 1992), and allows the easy and eff i-
cient implementation of closed and dynamic opera-

tors. We' ll see how this last approach provided the
best results, both in terms of the precision obtained
and in terms of the computation time needed.
  The fitness function that we used is ill ustrated by
the following algorithm:

check1 = Error in Equation (2.4)
If P A

y
/ ( ) . .

1
1 0 0 0× − >σ  then check2 = 1.0

 else check2 = 0.0
fitness vol check check= × + +1 0 1 2 1 0. / ( ( ) . )

  As we can see, if our answer violates the constaint
imposed by Equation (2.4) then the fitness function
will be penalized by the error produced. On the other
hand, if it violates the stress constraint (i.e.,
P A

y
/

1
≤ σ ), then the penalty is 1.0. For rectangular

columns, the constraint is that b D P
y

× >
1

/ σ . In this
last case, we must also check the orthogonal direc-
tion, so that we have three penalty values instead of
two. These values are added and the result is multi -
plied by 1000we magnify the errorso that we
"punish" our result. Note that when there are no
violations to any of the constraints the fitness func-
tion returns the inverse of the volume.
  As we mentioned before, we used an SGA as des-
cribed by Goldberg (1989), but with some modifica-
tions: we used two-point crossover and binary tour-
nament selection. The four diameters that we want to
find were represented by consecutive binary or floa-
ting point strings of the same length. The halting
criteria was through a maximum number of genera-
tions. The GA was implemented in Turbo Pascal 7.0
using the technique proposed by Porter (1988) for
dynamic memory management. We found experi-
mentally that the following parameters seem to give
the best results:

Population size ⇒ 400
Crossover probabilit y ⇒ 0.80
Mutation probabilit y ⇒ 0.01

4 EXAMPLES

The following examples were taken from Fu and
Ren (1992):

  a. Example 1: Select the best diameters at nodal
points for a steel round column of 10' (3.048 m)
length which is subjected to an axial load of 400 kips
(181.437 Ton). The modulus of elasticity is E=30×
106 psi (2109.209 Ton/cm²) and the yield strength,
σy is 60,000 psi (4.218 Ton/cm²). Thus, the mini-
mum diameter may be computed as 2.914" (7.402
cm). The design variables are the diameters at nodal
point, D1, D2, D3 and D4. The lower and upper



bounds, Cl and Cµ are 2.914" (7.402 cm) and 20"
(50.8 cm), respectively. The size of the search space
for this problem is (20000-2914)4 ≅ 8.52×1016.
  b. Example 2: Select the best side-widths at nodal
points for a steel square column of 10' (3.048 m)
length which is subjected to an axial load of 400 kips
(181.437 Ton). The modulus of elasticity E=30×106

psi (2109.209 Ton/cm²) and the yield strength, σy is
60,000 psi (4.218 Ton/cm²). Thus, the minimum
diameter may be computed as 2.582" (6.558 cm).
The design variables are the diameters at nodal
point, D1, D2, D3 and D4. The lower and upper
bounds, Cl and Cµ are 2.582" (6.558 cm) and 20"
(50.8 cm), respectively. The size of the search space
for this problem is (20000-2582)4 ≅ 9.20×1016.
  c. Example 3 : Select the best side-widths at nodal
points for a steel equilateral triangle column of 10'
(3.048 m) length which is subjected to an axial load
of 400 kips (181.437 Ton). The modulus of elasticity
E=30×106 psi (2109.209 Ton/cm²) and the yield
strength, σy is 60,000 psi (4.218 Ton/cm²). Thus, the
minimum diameter may be computed as 3.924"
(9.967 cm). The design variables are the diameters at
nodal point, D1, D2, D3 and D4. The lower and upper
bounds, Cl and Cµ are 3.924" (9.967 cm) and 20"
(50.8 cm), respectively. The size of the search space
for this problem is (20000-3924)4 ≅ 6.70×1016.
  d. Example 4 : Select the best side-widths at nodal
points for a steel rectangular column of 10' (3.048
m) length which is subjected to an axial load of 400
kips (181.437 Ton). The modulus of elasticity E=30
×106 psi (2109.209 Ton/cm²) and the yield strength, 
σy is 60,000 psi (4.218 Ton/cm²). Thus, the mini-
mum diameter may be computed as 1.500" (3.810
cm). The design variables are the diameters at nodal
point, D1, D2, D3 and D4. The lower and upper
bounds, Cl and Cµ are 1.500" (3.810 cm) and 20"
(50.8 cm), respectively. The size of the search space
for this problem is (20000-1500)4 ≅ 1.20×1017. In
this problem we had to use a larger population than
in the others (500 chromosomes as compared to the
400 used in the others), and we ran the algorithm for
100 generations, instead of the 50 generations used
before. The reason for this change of parameters was
the extra length added to our chromosomic strings in
this case (we have 15 extra bits in the binary repre-
sentation and 5 extra digits in the floating point re-
presentation) because of the extra parameter needed
(the width b of the column).
  Table 3 shows the final results of our experiments
(notice that we used English units for the tests, but
the results are displayed in SI units). We can see
how, in general, the floating point representation ga-
ve better results, and the binary representation using
Gray coding produced the worst. This wasn' t only in
terms of the volume, but also in terms of the conver-
gence time and the maximum error produced. The
differences between our approach and that used by

Fu and Ren will l ook bigger because of the units
used, but in cubic inches (units used for the compu-
tations) is minimal. Fu and Ren (1992) don' t report
the times that their approach took, but only mention
the number of cycles required. In our case, we can
say that in all tests, the computing time didn' t exceed
one minute, in an IBM PC 486/DX running at 66
MHz. For details, refer to our technical report
(Coello & Christiansen 1995).

Table 3. Comparison of f inal volumes for the four
examples.
Method Volume 1

(cm3)
Volume 2
(cm3)

Volume 3
(cm3)

Volume 4
(cm3)

Fu &
Ren

26914.173 26355.373 24695.360 26513.541

GA
(FP)*

26918.434 26363.403 24740.080 19891.596

GA
(B)**

26919.302 26367.286 24742.292 26657.469

GA
(G)***

27005.777 26897.081 24853.708 28227.829

*Floating point representation.
** Binary representation.
*** Binary representation with Gray coding.

5 FUTURE WORK

Currently, we are interested on extending this tech-
nique to any kind of columns, including those made
of composite materials. This will complicate the
analysis a bit more, but it will make the system more
useful for real world applications. Also, we are star-
ting to develop applications to deal with structural
optimization problems in which we have more than
one objective function at a time (multiobjective op-
timization), both with conflicting objectives and
equality and inequality constraints. The GA seems
very suitable for multiobjective optimization, and we
expect to come up with a new system able to handle
such kind of problems in a near future.

6 CONCLUSIONS

We have shown another successful application of the
GA to an structural optimization problem. This sys-
tem is not an isolated entity, but instead it should be
seen as a part of the set of GA-based structural op-
timization tools that we have developed in the last
two years. So far, we have been able to successfully
design plane and space trusses, rectangular beams
and columns, and we' ll keep working with the re-
maining framed structures (i.e., plane grids, plane
and space frames). One important lesson learned du-
ring the development of this application was the im-
portance of using floating point representation when



dealing with a continuous search space. This repre-
sentation not only generates superior solutions than
the binary representation scheme (with or without
Gray coding) in terms of the precision obtained, but
also in terms of the speed. Because we can use the
same genetic operators with only slight modifica-
tions, the convergence will be faster since the chro-
mosomes are of shorter length. This problem is an
interesting one because, even when its analysis is
very simple, it normally has fairly large search spa-
ces and several constraints. The penalty technique
that we used has proved to be useful incorporating
the constraints into the fitness function for this parti-
cular application, as can be seen from our results.
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