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ABSTRACT : We present amethodfor optimizing the design d axially loaded nonprismatic columns using
aseach tednique based onthe medanics of natural seledion, caled the genetic dgorithm. The design po-
blem was formulated as an ogtimizaion poblem in which the objedive function is to minimize the volume of
a olumn uncder agiven load by changingits sape, subjed to bah buckling and strength constraints. Both
floating pant representation and binary representation (with and without Gray coding) were used and compa-
red against a mathematica programming method kased onthe generali zed reduced gradient method Our re-
aults show that the floating pant representation scheme provides the best solutions, bath in terms of predsion

and in terms of computing time.

1 INTRODUCTION

The optimization d structural members sibed to
compresson forces has been o grea interest for a
longtime. Leonhard Euler derived first the formula
for the aiticd bucklingload of anided dender co-
lumn (Euler 19600, and was aso the first to solve
the problem of inextensible dastica(i.e., for constant
moduus of elasticity and moduus of inertia, he
foundthe arve of prescribed length with prescribed
terminal displacements and slopes and minimum
stored energy). Euler solved the cae of a clumn
that has the lower end fixed and the upper end free
Later he extended (Euler 196@g) hiswork on co-
lumns, and even today it has a gred influencein
every strength of materialstextbook In fad there
were very few contributions to hiswork urtil La-
marle (1849 naticed that Euler's formula shoud be
used only for slendernessratios over a cetain limit,
and that the experimental data shoud be gplied
only to small ratios. In 1889the French enginee
Considere (1891) performed a set of 32 tests on co-
lumns, establi shing the so-cdl ed theory of the redu-
ced modue. During that same yea, the German en-
gineg F. Engessr (1889 independently suggested
the theory of tangential modue. From these two
theories, the first one dominated urtil 1946 when
American professor F. R. Shanley indicaed the logi-
cd paradoxes of baoth theories. In aremarkable paper
of only one page (Shanley 1946 he explained na
only what was wrongwith bah theories, but he dso
propacsed his own theory that solved the paradoxes.

On the other hand, the problem of non-prismatic
columns (i.e., those with avariable aosssedion
areg has been studied morerecently. A. N. Dinnik
(1932 discussd the design d columns in which the
moment of intertia of the dosssedion areas varies
acording to a power of the distance dongthe mem-
ber axis. Keller (1960 and later Tadjbakhsh and
Keller (1962 derived ogimal solutions to the stron-
gest-column problem, which was charaderized in
the following way: "For a olumn of given length
and vdume of material, determine the alumn shape
for which the Euler bucklingload is maximum®. In
their analysis, Tadjbakhsh and Kell er establi shed the
necessry condtions for amaximum by performing
variations on the differentia equetions of equili -
brium and assciated boundry condtions, and the
constraint of constant volume.

J. Taylor (1967 studied the same problem using an
energy approad, and presented a methodto cdcu-
late alower boundto the maximum eigenvalue. Spi-
llers and Levy extended Keller's slution for the op-
timal design d columnsto the case of plates
(Spillers & Levy 1990 and later, for axisymmetric
cylindricd shells (Spillers & Levy 1991). However,
in all these works, only the constraint of constant
volume was considered and, as Fu and Ren (1992
point out, in apradicd design, material strength
constraints are equally important. With that in mind,
these last two authors added such constraint to the
optimizaion poblem and used an algorithm cdled
the generalized reduced gradient method (Reklaiti s
et a. 1983 to seled the design veriables at nockl
points. The results that they obtained are very reaso-



nable and verifiable. The generalized reduced gra-
dient method linearizes the non-linear constraints of
this problem, and uses the convex ssmplex method to
select the best direction of search from all the candi-
date directions which are both feasible and descent.
Then the search for the optimum is started from the
feasibleinitial point. Newton iteration is employed
to adjust the basic variable to maintain feasibility.
The convergence is accelerated by incorporating
conjugate direction or quasi-Newton constructions.
Naturally, the existence of continuous differentiabi-
lity of the problem functionsis a fundamental requi-
rement for using the method.

Our work followed this last approach, and applied
the genetic agorithm (GA) instead of the generali-
zed reduced gradient method. Some problems had to
be faced, though, namely the representation scheme
and the parameters to be optimized. However, our
results are practically as good as those found by Fu
and Ren (1992), and in at least one case we found a
better solution than them. Binary and floating point
representation schemes were tried, since this pro-
blem has a continuous search space. Nevertheless,
the search space can be easily discretized, sincein
real designsthereisawaysalower and an upper
bound on the designs of the column.
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Figure 1 : Column elevation and sections.

2 STATEMENT OF THE PROBLEM

Given a column subject to axial load along the hori-
zontal direction, the governing differential equation
IS

Ely'+Py=0 (2.1)

where E is the modulus of elasticity, | isthe moment
of inertia, P isthe axial load, and y is the function
that represents the denderness of the column. Let' s
assume that the column that we are going to study is
divided into 6 equal-sized segments throughout its
length (see Figure 1). Then, Equation (2.1) may be
expressed in afinite difference form, as (Fu & Ren
1992):
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For non-trivia solution, the determinant must va-
nish, namely
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or, in linear form:
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where, for round and regular polygonal sections, the
moments of inertiawill be given by

(2.4)

| =aD? (2.5)
D, isthe diameter for round sections, or the side
length for regular polygonal sections. Table 1 shows
the values of a for the most commonly used cross-
sections.

Table 1. Vaue of a for the most common sections.

Round section  Square section Trlangular Sec-
tion”
T T e
64 12 96

“We assume an equilateral triangle.

In genera, for an n-sided regular polygon, a may
be derived as

a ——CotFBBCot +1E

(2.6)

For rectangular sections where width b is assumed
to be constant throughout the length of the column,

| bD?

1=2,34

2.7)

In a column design, Equation (2.4) represents a
buckling constraint. Furthermore, a compressive
strength constraint must also be satisfied, that is

P

—<o,

A

where A, isafunction of D;. Since P and o, are
always given values, we can compute the m| nimum
D, or A, for each particular problem. This means
that we may express the compressive strength cons-
traint only interms of D, or A,.

Now, we have al the necessary elements to express
the column design problem as an optimization pro-
blem. If we assume that P, h and o, are given, the
objective isto minimize the vol ume of the column.
Therefore, we' |l consider 2 cases:

a Square or round columns: The objective function
may be stated as (Fu & Ren 1992)

Minimize:

V, = K(D? +2D? +2D? + D}
+D1D2 + D2D3 + D3D4)

(2.8)

(2.9)

where K is a constant defined according to Table 2,
and V, is the volume of the round or sgquare column.

Table 2. Vaue of K for the most common sections.

Round section  Square section Trlangular Sec-
tion”
il ! 143
36 9 36

“We assume an equilateral triangle.

The objective function is subjected to the equality
constraint defined by Equation (2.4), and the fo-
llowing additiona inequality constraints:

C<D<C, i=1234 (2.20)
where D, are the design variables; C, and C , are,
respectively, the lower and upper bounds of the de-
sign variables.

b. Rectangular columns: The objective function
will be (Fu & Ren 1992):
Minimize:
= %(Dl +2D, +2D, +D,

+\/D1D2 +\/D2D3 +\/D3D4)

where V, isthe volume of the rectangular column.

(2.11)




The objedive functionis subjeded to the equality
constraint defined by Equation (2.4), and the fo-
Ilowing similar equation that is derived onthe basis
of bucklingin the orthogoral diredion:
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3
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Furthermore, an additional set of inequality cons-
traints have to be satisfied

bxD,>A O
C <D <C,Hi=1234
C <b<cC, H

(2.14)

where A :E.
o

y

3 USE OF THE GENETIC ALGORITHM

To solve this problem, we used the Simple Genetic
Algorithm (SGA) propased by Goldberg (1989. An
Issuein this applicaion is the representation scheme,
becaise we ae dedingwith red-valued parameters,
andthereforeit isnecessry to use some kind d
discretization, so that we can apply abinary repre-
sentation scheme. We used a linea discretizaion
that uses the upper and lower bounds given bythe
user to compute the decoded value with a3 deamal
predsion.

We dso tried to use Gray codes as suggested by
Goldberg (1989. The Gray code representation has
the property that any two pdnts next to ead ather in
the problem spacediffer by only ore bit
(Michalewicz 1992. In ather words, an increase of
one step in the parameter value @rrespondsto a
change of asingle bit in the mde. Thisisawell
known tednique used to reduce the distance of two
pointsin the problem space and it isargued to bring
some benefit because of their adjacecy property,
and the small perturbation caused by many single
mutations. However, the use of Gray codes didn’ t
help much in this particular applicéion, aswe' |l see
in the next sedion.

Finaly, we used afloating pant representation,
sinceit is conceptuall y closest to the problem space
(Michalewicz 1992, and al ows the eay and effi-
cient implementation d closed and dyramic opera-

tors. We' |l seehow thislast approach provided the
best results, bath in terms of the preasion oliained
andin terms of the cmputation time needed.

The fitnessfunction that we used is ill ustrated by
the following agorithm:

checkl = Error in Equation (2.4)
If P/(A x0,)-1.0>0.0 then check2 = 1.0

else check2 = 0.0
fitness=10/ (vol x (checkl+ check2) +1.0)

Aswe can seg if our answer violates the mnstaint
impased by Equation (2.4) then the fitnessfunction
will be penalized bythe eror produced. On the other
hand, if it violates the stressconstraint (i.e.,

P/A <o ), thenthe penalty is 1.0. For redanguar

columns, the cngtraint isthat bxD, >P/o,. Inthis

last case, we must aso ched the orthogoral direc
tion, so that we have threepenalty valuesinsteal of
two. These values are alded and the result is multi-
plied by 100@] we magnify the eror] so that we
"punsh” our result. Note that when there ae no
violationsto any o the @nstraints the fitnessfunc-
tion returns the inverse of the volume.

Aswe mentioned before, we used an SGA as des-
cribed by Goldberg (1989, but with some modifica
tions: we used two-point crosover and kbinary tour-
nament seledion. The four diameters that we want to
find were represented by conseautive binary or floa
ting pant strings of the same length. The halting
criteriawas througha maximum number of genera-
tions. The GA was implemented in Turbo Pascd 7.0
using the technique proposed by Porter (1989 for
dynamic memory management. We foundexperi-
mentally that the foll owing parameters seem to gve
the best results:

Popuationsize 0 400
Crossover probability [ 0.80
Mutation probability [0 0.01

4 EXAMPLES

The foll owing examples were taken from Fu and
Ren (1992:

a Example 1: Seled the best diameters at nodal
pointsfor asted roundcolumn of 10" (3.048m)
length which is subjeded to an axial load of 400 kips
(181437Ton). The moduus of elasticity is E=30x
10 psi (2109209 Tor'em?) and the yield strength,
0, 160,000 i (4.218 Ton/cm?). Thus, the mini-
mum diameter may be computed as 2.914" (7.402
cm). The design variables are the diameters at nocsl
point, D,, D,, D;and D,. The lower and upger



bounds, C, and C, are 2.914" (7.402cm) and 20
(50.8 cm), r&epealvely The size of the seach space
for this problem is (2000029144 8.52x1016.

b. Example 2: Seled the best side-widths at nockl
pointsfor asted square wlumn of 10" (3.048m)
length which is subjeded to an axial load of 400 kips
(181437Ton). The moduus of elasticity E=30x10°
psi (2109209 Tor'cm?) and the yield strength, o, is
60,000 = (4.218 Torvcm?). Thus, the mlnlmum
diameter may be cmputed as 2.582' (6.558cm).
The design veriables are the diameters at nocsl
point, D,, D,, D;and D,. The lower and upger
bound;, C, and C are 2 582" (6.558cm) and 20
(50.8 cm), r&epealvely The size of the seach space
for this problem is (2000025824 9.20x10:6.

c. Example 3 : Seled the best side-widths at nodel
pointsfor asted equilatera triangle mwlumn of 10’
(3.048m) length which is subjeded to an axial |oad
of 400 kps (181437 Ton). The moduus of elasticity
E=30x10(° psi (2109209 Tor/cn?) and the yield
strength, o, is 60,000 i (4.218 Tor/en). Thus, the
minimum dlameter may be computed as 3.924"
(9.967cm). The design variables are the diameters at
nodal point, D,, D,, D; and D,. The lower and upger
bound;, C, andC,, are 3 924’ (9 967cm) and 20
(50.8 cm), r&epealvely The size of the seach space
for this problem is (2000039244 6.70x10%6.

d. Example 4 : Seled the best side-widths at nockl
pointsfor asted redanguar column of 10' (3.048
m) length which is sibjeded to an axial load of 400
kKips (181437 Ton). The moduus of easticity E=30
x10° psi (2109209 Ton/cm?) and the yield strength,
0, 160,000 i (4.218 Ton/cm?). Thus, the mini-
mum diameter may be computed as 1.500' (3.810
cm). The design variables are the diameters at nocsl
point, D,, D,, D;and D,. The lower and upger
bound;, C, and C arel. 500 (3.810cm) and 20
(50.8 cm), r&epealvely The size of the seach space
for this problem is (2000615004 C 1.20x10. In
this problem we had to use alarger popuation than
in the others (500 chromosomes as compared to the
400 wsed in the others), and we ran the dgorithm for
100 generations, instead of the 50 generations used
before. The reason for this change of parameters was
the extralength added to ou chromosomic stringsin
this case (we have 15 extra bits in the binary repre-
sentation and 5extra digitsin the floating pant re-
presentation) because of the extra parameter needed
(the width b of the alumn).

Table 3 shows the final results of our experiments
(naticethat we used English unitsfor the tests, but
the results are displayed in Sl units). We can see
how, in general, the floating pant representation g
ve better results, and the binary representation wsing
Gray coding produced the worst. Thiswasn' t only in
terms of the volume, but aso in terms of the mnwver-
gencetime and the maximum error produced. The
diff erences between ou approac and that used by

Fu and Ren will | ook ligger because of the units
used, but in cubic inches (units used for the mmpu-
tations) isminimal. Fu and Ren (1992 don' t report
the times that their approad took, but only mention
the number of cyclesrequired. In ou case, we can
say that in all tests, the omputing time didn' t exceed
one minute, in an IBM PC 486DX runnng at 66
MHz. For detail s, refer to ou technica report

(Coello & Christiansen 1995.

Table 3. Comparison d final volumes for the four

examples.
Method Volumel Volume2 Volume3 Volume4
(cmd) (cmd) (cmd) (cmd)

Fu & 26914173 26355373 24695360 26513541
Ren

GA 26918434 26363403 24740080 19891596
(FP

GA 26919302 26367286 24742292 26657469
(B)”

GA 27005777 26897081 24853708 28227829
(G)™

*Floating pant representation.
" Binary representation.
" Binary representation with Gray coding.

5 FUTURE WORK

Currently, we aeinterested onextending thistedh-
nique to any kind d columns, including thase made
of compaosite materials. Thiswill complicate the
analysis a bit more, but it will make the system more
useful for red world applicaions. Also, we ae star-
ting to develop applicaionsto ded with structural
optimizaion poblemsin which we have more than
one objedive function at atime (multiobjedive op-
timizaion), bath with conflicting ohedives and
equality and inequality constraints. The GA seans
very suitable for multiobjedive optimizaion, and we
exped to come up with a new system able to hande
such kind d problemsin anea future.

6 CONCLUSIONS

We have shown ancther succesdul applicaion d the
GA to an structura optimization poblem. This /s
tem isnot an isolated entity, but instead it shoud be
seen as a part of the set of GA-based structura op-
timizaion tods that we have developed in the last
two yeas. So far, we have been able to succesSully
design dane and spacetrusses, redanguar beans
and columns, andwe' |l kegp working with the re-
maining framed structures (i.e., plane grids, plane
and spaceframes). One important lesson leaned du
ring the development of this appli cation was the im-
portance of using floating pant representation when



deding with a continuows sach space Thisrepre-
sentation nd only generates superior solutions than
the binary representation scheme (with or withou
Gray coding) in terms of the preasion oldained, but
also in terms of the speal. Becaise we can use the
same genetic operators with orly sight modifica
tions, the wnvergencewill be faster sincethe diro-
mosomes are of shorter length. This problem isan
interesting ore because, even when itsanalysisis
very smple, it normally hasfairly large seach spa-
ces and several congtraints. The penalty tedhnique
that we used has proved to be useful incorporating
the mnstraints into the fitnessfunction for this parti-
cular application, as can be seen from our results.
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