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Abstract— In the field of single-objective optimization, hybrid
variants of gradient-based methods and evolutionary algorithms
have been shown to perform better than an evolutionary method
by itself. This same idea has been recently used in Evolution-
ary Multiobjective Optimization (EMO), obtaining also ver y
promising results. In most cases, gradient information is used
along the whole process, which involves a high computational
cost, mainly related to the computation of the step lengths
required. In contrast, in this paper we propose the use of
gradient information only at the beginning of the search process.
We will show that this sort of scheme maintains results of
good quality while considerably decreasing the computational
cost. In our work, we adopt a steepest descent method to
generate some nondominated points which are then used to
seed the initial population of a multi-objective evolutionary
algorithm (MOEA), which will spread them along the Pareto
front. The MOEA adopted in our case is the NSGA-II, which
is representative of the state-of-the-art in the area. To validate
our proposal, we adopt box-constrained continuous problems
(the ZDT test suite). The gradients required are approximated
using quadratic regressions. Our proposed approach performs
a total of 2000 objective function evaluations, which is much
lower than the number of evaluations normally adopted with
the ZDT test suite in the specialized literature. Our results are
compared with respect to the “pure” NSGA-II (i.e., without
using gradient-based information) so that the potential benefit
of these initial solutions fed into the population can be properly
assessed.

I. I NTRODUCTION

M OEAS have been very successful in the solution of
a wide variety of problems, mainly during the last

few years [4]. However, for certain types of applications,
MOEAs turn out to be particularly expensive (computation-
ally speaking), since they require a relatively large number
of objective function evaluations in order to produce an
acceptable approximation of the true Pareto front.

On the other hand, the classical (exact) methods for (multi-
objective) optimization (gradient-based methods) normally
require a low number of evaluations, but can get easily
trapped in local optima and require a lot of assumptions
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about the problems to be solved: continuity, differentiability,
explicit mathematical formulation, etc.

Also, it is well known that, under proper assumptions,
Newton’s method is quadratically convergent, but its
efficiency is reduced by its expensive computational cost,
especially, for mid- and large-scale problems. The key point
to make this sort of method of practical use is to evaluate
the gradient and the Hessian matrix efficiently. For that
sake, two different approaches are available:

• Use of analytical derivatives: The first option is
obtaining the exact (analytical) derivatives of each
function by hand and evaluate them. But this is only
possible if an explicit mathematical formulation is
available for the objective functions. This is precisely
the main weakness of this approach, since many
interesting problems may not be solvable with it (e.g.,
simulation-based problems, design problems, etc.). On
the other hand, obtaining the derivatives by hand is an
error-prone process, since it is relatively easy to make a
mistake when obtaining the derivative of a complicated
function.

• Use of estimated derivatives:In this category, we
can find the Newton-like methods, where derivatives
are estimated in some efficient way (e.g., using
finite differences). These methods do not require
the derivatives to be obtained by hand, but require
more objective function evaluations to compute the
estimation of the derivatives (or the Hessian matrix).

In this work, we use“global” estimated derivatives
through quadratic regression, but consuming the lowest
possible number of evaluations (using them only at the
beginning) while maintaining a high quality on the results.
The regression is done on the whole decision space, aiming
to obtain a global movement direction instead of a proper (or
precise) derivative (which can get easily trapped in local op-
tima). On the other hand, instead of using this gradient-based
information along the entire evolutionary process (which
would consume too many evaluations) we will just use it at
the beginning to seed the MOEA. Thus, the main role of this
gradient-based method will be driving the MOEA directly to
the exact Pareto front and then let it spread solutions along
the Pareto front using its own diversification mechanisms.



II. RELATED WORK

Several hybrids between a MOEA and a mathematical
programming technique have been proposed in the
specialized literature in the last few years. The main idea
has normally been to use the MOEA to guide the search
towards a good search region (i.e., to perform a global
search) and then use a mathematical programming technique
(e.g., gradient information) to perform a fine-grained search
(i.e., local search) that identifies the exact location of the
optima. Next, we will briefly discuss the papers that are
more closely related to our work:

• In [9], on each generation, for several randomly selected
solutions in the population, they convert the multi-
objective optimization problem into a single-objective
optimization problem through the use of theε-constraint
method (see for example [14]) and solve it with a
Newton-like method (the Sequential Quadratic Pro-
gramming (SQP) method), in order to improve this so-
lution. They obtain very good results in terms of quality,
but consume a lot of objective function evaluations in
some cases.

• In [7], they use a multilevel subdivision technique that
subdivides the search space, and perform local search in
each subspace. This local search is based on a similar
derivation of a single descent direction used in [12].
Again, exact derivativesare used, and some problems
can be found if the objectives have different ranges,
because the largest direction of simultaneous descent
will be biased towards the objective with the largest
range.

• In [1], they analytically describe the complete set of
nondominated simultaneously improving directions us-
ing theexact gradient of each objective function, and
this set is considered as a multi-objective gradient. In
order to use this information, at the end of a generation,
a set of candidate solutions is determined. The gradient-
based local search operator is then applied with each
of these candidate solutions as a starting point. The
performance of this approach turns out to be good in bi-
objective problems, but not so good in problems with
more than 2 objectives, as explained by the authors.
On the other hand, they find problems when moving
a solution towards the boundary between the feasible
and the infeasible regions, and the number of objective
function evaluations consumed by the approach is also
high.

• In [2], they useexact derivatives, and try to answer
a key question: what is the best way to integrate the
use of gradient techniques in the cycle of a MOEA?
They propose an adaptive resource-allocation scheme
that uses three gradient techniques: 1) a conjugate-
gradient algorithm, which is applied to a randomly
chosen objective, 2) an alternating-objective repeated
line-search and 3) a combined-objectives repeated line-
search. During the optimization process, the effectivity

of the gradient techniques is monitored and the available
computational resources are redistributed to allow the
(currently) most effective operator to spend the most
resources. The quality of the results varies a lot, but
again, a high number of objective function evaluations
is consumed by the approach. Additionally, the exact
derivatives of the objectives are required.

• In [13], two methods for unconstrained multi-
optimization problems are used as a mutation operator
in a state-of-the-art MOEA. These operators require
gradient information which isestimated using a finite
differences method and a stochastic perturbation tech-
nique requiring few function evaluations. The results are
very promising, but the number of evaluations is still
high, since the gradient-based operator is used along
the entire optimization process.

• In [3], they design a population-basedestimation of the
multi-objective gradient, although a complete algorithm
is not described in this paper. Also, no experimentation
is provided, because their aim is to give an indication
of the power of using directional information.

• In [8], the Multiobjective Steepest Descent Method
(MSDM) defines the degree of improvement in each
objective function when a solution is moved in a
direction as the inner product of the direction and the
steepest descent direction (usingexact derivatives)
of the corresponding objective function. MSDM finds
the direction that maximizes the minimum degree of
improvement of all the objective functions by solving a
quadratic programming problem and moves the solution
in that direction. When a solution is on a feasible region
boundary, it incorporates the boundary information
into the quadratic programming problem to exclude
infeasible directions. MSDM is computationally
expensive, since a quadratic programming problem has
to be solved to find a single direction.

As we will see in the remainder of this paper, by seeding
the initial population of a MOEA with gradient-based infor-
mation, our proposed approach consumes a lower number
of objective function evaluations than any of the proposals
previously discussed, while still producing reasonably good
results.

III. D EFINITIONS AND BASIC CONCEPTS

A. Multi-objective Optimization

We consider multiobjective optimization problems (MOPs)
of the form

minimize (f1(x), f2(x), . . . , fp(x))
subject to x ∈ X ⊆ R

n,
(1)

where:
• n is the number of decision variables,x =

(x1, x2, . . . , xn),
• X ⊂ R

n is the set of feasible solutions, and
• (f1, f2, . . . , fp) is the vector with thep objective func-

tions.



A feasible solutionx∗ ∈ X is Pareto optimal for problem
(1) if it does not exist any other solutionx ∈ X , such that

fi(x) ≤ fi(x
∗) for all i = 1, . . . , p

with at least onej ∈ {1, . . . , p} such thatfj(x) < fj(x
∗).

The set of all Pareto optimal solutions of (1) is called the
Pareto front.

B. Single-objective Optimization

Given a functionf : R
n → R, for x ∈ R

n the gradient
of f at x, ∇f(x), is ann-dimensional vector with entries:

(∇f(x))i =
∂f

∂xi

(x).

A direction v ∈ R
n is a descent directionif:

∇f(x)v < 0. (2)

A generalized gradient method can be summarized in the
following equation:

xk+1 = xk + αkvk

wherevk is a descent direction andαk is the step size. One
of the most commonly used choice for the descent direction
is the following (steepest descent):

xk+1 = xk − αk∇f(xk).

Choosing the optimum step sizeαk is desirable, but it
may be computationally expensive. Hence, some other set of
rules, which has good properties (i.e., convergence), is more
efficient. One of the most efficient is the Armijo’s rule:

Let β ∈ (0, 1) be a prespecified value, letv be a descent
direction and letx be the current point. The condition to
acceptt (the step size) is:

f(x + tv) ≤ f(x) + βt∇f(x)v

where we start witht = 1 and while this condition is not
satisfied we sett := t/2.

The choice ofβ can be critical because the bigger the value
of β, the bigger the steps we can implement at the beginning;
but the more evaluations that can be consumed if too many
reductions oft must be done to achieve the condition.

Armijo’s rule is mathematically correct and the “t” value
always exists. However, this value could be very small, which
would be translated into an insignificant progress (this is,in
fact, the main disadvantage of Armijo’s rule). This problem
is more significant for box-constrained problems (and/or for
constrained problems, which are not considered in this work)
when the current solution is close to the boundary between
the feasible and infeasible regions, or to the boundary of one
of the decision variables, and the descent direction moves
it out of the feasible space. In those cases, we apply the
following rules for each decision variablei:

• If xk+1
i < linf [i], thenxk+1

i =
linf [i]+xk

i

2 .

• If xk+1
i > lsup[i], thenxk+1

i =
lsup[i]+xk

i

2 .
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Fig. 1. Adapted Armijo’s rule for box-constrained problem allows two
types of movements, for feasible and infeasible solutions.

where linf [i] and lsup[i] denote the lower limit and the
upper limit for variablexi, for i = 1, 2, . . . n. This way, the
current solutionxk is not always moved in the same direction
induced by the estimated gradient but, however, it follows the
signs of the gradient. In some sense, this adapted Armijo’s
rule is considering different step sizes in each coordinate.

In Figure 1 we have represented the two possibilities
adopted:

• If xk+1 = xk +t∇f(xk) is infeasible, because itsi−th
coordinate is out of range, it is replaced by the mean
value.

• A feasiblexk+1.

IV. GRADIENT-BASED METHOD FORMOPS

The main idea of our proposed approach is based on the
Fritz-John optimality condition for unconstrained MOPs (see
for example [8]):

Given a pointx ∈ X , a necessary condition for this point
to be a Pareto optimal solution is the existence of~λ ≥ 0
such that:

p∑

i=1

λi∇fi(x) = 0.

Thus, for a bi-objective optimization problem, this condi-
tion means that for any Pareto optimal solution, we can find
someλ ≥ 0 such that:

∇f1(x) = −λ∇f2(x).

This is, for any Pareto optimal point, gradients of both
objective functions are parallel but in the opposite direction.
It means that if we are placed in the minimum of one of the
objectives (for example the minimum off1) and we follow
the direction of∇f2(x), we will remain in the Pareto front.
This is shown graphically in Figure 2.

This idea was used in [11], where they linkp + 1 local
searches (more precisely, tabu searches). The first local
search starts from an arbitrary point and attempts to find
the optimal solution to the problem with the single objective
f1. Let x1 be the last point visited at the end of this
search. Then, a local search is applied again to find the
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Fig. 2. Pareto front on a bi-objective problem

best solution to the problem with the single objectivef2

using x1 as the initial solution. This process is repeated
until all the single-objective problems associated with the p
objectives have been solved. At this point, they solve again
the problem with the first objectivef1 starting from xp,
to finish a cycle around the efficient set. This phase yields
the p efficient points that approximate the best solutions to
the single-objective problems that result from ignoring all
but one objective function, and additional efficient solutions
may be found during this phase because all visited points
are checked for inclusion in the approximation of the Pareto
front, as probably most of the intermediate points will lie on
the Pareto front. This way, an initial set of efficient pointsto
be used as the initial population for a MOEA are generated
in [11].

In this work, we are going to use the same idea, namely to
link p+1 single objective local searches, but using a single-
objective gradient based method instead of a tabu search. The
next subsection is devoted to show the main features on this
gradient-based local search mechanism.

A. Single-objective gradient-based method

For our local search engine, we are going to use a steepest
descent method, this is, given the current pointxk, the next
point will be computed as follows:

xk+1 = xk − t · ∇̃f(xk)

where ∇̃f(xk) is an estimation of∇f(xk), and the step
length (t) will be computed following our adapted Armijo’s
rule with β = 0.1 and starting with the value oft = 1. The
reason to choose a low value forβ is the fact that small steps
are also interesting for us while we are on the Pareto front,
as we are checking every intermediate solution for being
included in the final approximation. This is, we are not only
interested in the final point of each search, but also in the
intermediate points.

To estimate the gradient of a functionf , we will use a
quadratic approximation:

f(x) ≈ β0 +
n∑

i=1

β1
i · xi +

n∑

i=1

n∑

j=i

β2
i,j · xi · xj

The number of parameters (N ) to adjust such an approx-
imation for a function withn variables is:

N = 1 + n +
n(n + 1)

2
=

n2 + 3n + 2

2

N represents the minimum number of points needed
to adjust such an approximation. For a problem with 30
variables, for example, at least 496 will be needed. In
order to generate theseN points efficiently, we used Latin-
Hypercubes [10], which is a method that guarantees a good
distribution of the initial population in a multidimensional
space, as it is required in order to better fit the function
with this quadratic approximation. Once these points are
generated and evaluated, we compute the values of each
parameter solving the corresponding system of equations
using a pseudo-inverse (X is not always a square matrix).
This system of equations can be formulated using matrices:

X · B = Y

or, equivalently:




1 (x1
i ) (x1

i · x
1
j)

1 (x2
i ) (x2

i · x
2
j)

...
...

...
1 (xN

i ) (xN
i · xN

j )







β0

β1
i
...

β2
i,j


 =




f( ~x1)
f( ~x2)

...
f( ~xN )




In case theX matrix is not square, this system of linear
equations can be solved by using the pseudo-inverse ofX ,
that is:

B = (XtX)−1 · Xt · Y

Finally, we assumed the following stopping conditions:

1) The step is too small:t · ‖∇f(xk)‖ < ǫ, or
2) The improvement is too small:|f(xk+1) − f(xk)| <

0.1 ∗ ǫ

The complete method is summarized in Algorithm 1.

Algorithm 1 Pseudo-code of our Multi-Objective Gradient-
Based method

1: Generate a setInitPop with N initial points using Latin-
Hypercubes.

2: Send each point inInitPop to the list of nondominated
solutions:PF .

3: Use the setInitPop to adjust a quadratic approximation
of each objective function over all its domain.

4: while iteration< NumIter do
5: for each objective functionfi (repeating the first one)

do
6: x0 =last point visitedor random solution inPF

wheni = 0
7: while stopping conditions = FALSEdo
8: Obtain xk+1 through the single-objective

gradient-based method forfi.
9: Sendxk+1 to PF .

10: end while
11: end for
12: end while



V. HYBRIDIZATION AND PRELIMINARY RESULTS

In order to show some preliminary results, we have used
our proposed Multi-Objective Gradient-Based method to
seed the NSGA-II [6], which is a MOEA representative of the
state-of-the-art in the area. The seeding procedure consumes
about 1000 objective function evaluations (500 are required
for the quadratic regression) while the NSGA-II consumes
another 1000 objective function evaluations.

The first phase is not focused on approximating the Pareto
front but it tries to obtain some good points, while consuming
few evaluations. After that, this initial set of solutions is used
in the NSGA-II as its initial population. If the resulting set of
solutions is too small or the number of points is not a multiple
of 4, it is completed with randomly generated solutions until
the population size is52 (we experimentally found that this
is the minimum size population needed by the NSGA-II in
order for this approach to show a good performance). If the
population size is bigger than52, it is completed until the
nearest multiple of4 value. In the second phase, the NSGA-
II is seeded by this population and runs for a certain number
of generations.

In order to allow a fair comparison of results, the seeded
NSGA-II is compared with two versions of the NSGA-II: (1)
one that uses a random initial population size of52 solutions
and (2) another one that uses a random initial population of
100 points. This second version was adopted, because this is
the standard population size that several other authors have
used in their experiments.

To assess the performance of the seeded NSGA-II, we
used five test problems from theZDT set [15]: ZDT1, ZDT2,
ZDT3, ZDT4 and ZDT6.1 Table I shows the definitions of
these problems. We first run Newton’s method until 1000
evaluations are consumed. Then, the NSGA-II uses this
initial population to complete the approximation of the Pareto
front during 1000 additional evaluations.

The first phase of our approach uses two parameters:
NumIter and ǫ, that were set as follows:NumIter = 2
and ǫ = 0.001 for all cases. For the NSGA-II, we adopted
real-numbers encoding and the following parameters setting:
crossover rate = 0.9, mutation rate = 1/numvar (numvar =
number of decision variables),ηc = 15, ηm = 20. For the
number of generations, we have three different settings: for
the seeded NSGA-II (the population size is52) the maximum
number of generations is set to20; for the 52-population-
size random NSGA-II the number of generations is40 and
for the 100-population-size random NSGA-II the number
of generations is20. Thus, in all cases, the total number
objective function evaluations is2000.

In order to allow a quantitative comparison of results,
we adopted three performance measures which are described
next. Note that although the issue of more interest to us is to
measure convergence, we have also included a performance
measure related to the spread of the solutions obtained:

• Size of the space covered (SSC): This performance
measure was proposed by Zitzler and Thiele [16], and

1ZDT5 was excluded, because it is a binary problem.

it measures the hypervolume of the portion of the
objective space that is dominated by the approximation
setA, which is to be maximized. In other words, SSC
measures the volume of the dominated points. Hence,
the larger the SSC value, the better. This measure
is computed by using a Monte Carlo process with
1,000,000 randomly generated points.

SSC = |{x ∈ X |∃z ∈ A such thatzi ≤ xi∀i}|

• Unary additive epsilon indicator (I1
ε+): The epsilon

indicator family has been introduced by Zitzler et al.
[17] and comprises a multiplicative and an additive
version. We decided to use the unary additive epsilon
indicator (I1

ε+). The unary additive epsilon indicator of
an approximation set A (I1

ε+(A)) gives the minimum
factor ǫ by which each point in the real frontR can be
added such that the resulting transformed approximation
set is dominated by A:

I1
ε+(A) = infǫ∈R{∀z2 ∈ R\∃z1 ∈ A : z1

i ≤ z2
i +ǫ ∀i}.

I1
ε+(A) is to be minimized and a value equal to 0

implies thatA strictly dominates the real frontR.

• Spread (∆): In order to measure both the spread of the
approximation setA and the distances from the extreme
points ofA to the extremes of the real Pareto frontR,
we useSpread([5]):

∆ =

∑2
m=1 de

m +
∑|A|

i=1 |di − d|
∑m

m=1 de
2 + |A| · d

wheredi has been taken to be the Euclidean distance of
the i− th point in A to thei +1− th point in A (once
these points are ranked in ascending order),d is the
mean value ofdi, de

m is the Euclidean distances between
the extreme solutions of both fronts corresponding to the
m − th objective function (m = 1, 2). So,0 ≤ ∆ ≤ ∞
and the lower the value of∆, the better the distribution
of vectors inA. A perfect distribution, that is∆ = 0,
means thatdi = d for all i andde

m = 0 for all m (so the
extremes of the true Pareto front have been achieved).

Table II shows a summary of our results. For each test
problem, we performed 11 independent runs per algorithm.
The results reported in Table II show the mean values for
each of the three performance measures and the standard
deviation of the 11 runs performed. The best mean values
in each case are shown inboldface in Table II. Also, the
last column in Table II shows the mean sizes of the final
nondominated solution sets.

It can be observed in Table II that the seeded NSGA-
II produced the best mean values in most cases. Regarding
SSC and the unary additive epsilon indicator, there was only
one case in which the NSGA-II outperformed our approach.
Finally, regarding the Spread measure, the random NSGA-
II outperformed our approach only in two cases. This is
certainly remarkable if we consider the fact that the seeding
procedure is only focused on convergence aspects. Thus, it



Test Function Objectives Bounds

ZDT1

f1(~x) = x1

f2(~x, g) = 1 −
√

f1/g(~x)

where: g(~x) = 1 + 9
n−1

n∑
i=2

xi

n = 30
0 ≤ xi ≤ 1
i = 1, 2, . . . , 30

ZDT2

f1(~x) = x1

f2(~x, g) = 1 − (f1/g(~x))2

where: g(~x) = 1 + 9
n−1

n∑
i=2

xi

n = 30
0 ≤ xi ≤ 1
i = 1, 2, . . . , 30

ZDT3

f1(~x) = x1

f2(~x, g) = 1 −
√

f1/g(~x) − (f1/g)sin(10πf1)

where: g(~x) = 1 + 9
n−1

n∑
i=2

xi

n = 30
0 ≤ xi ≤ 1
i = 1, 2, . . . , 30

ZDT4

f1(~x) = x1

f2(~x, g) = 1 −
√

f1/g(~x)

where: g(~x) = 1 + 10(m − 1) +
n∑

i=2

(x2
i − 10cos(4πxi))

n = 10
−5 ≤ xi ≤ 5
i = 1, 2, . . . , 10

ZDT6

f1(~x) = 1 − exp(−4x1)sin
6(6πx1)

f2(~x, g) = 1 − (f1/g(~x))2

where: g(~x) = 1 + 9(
n∑

i=2

xi/(n − 1))0.25

n = 10
0 ≤ xi ≤ 1
i = 1, 2, . . . , 30

TABLE I

OBJECTIVE FUNCTIONS AND BOUNDS OF THE DECISION VARIABLES FOREACH OF THE TEST PROBLEMS ADOPTED FOR OUR EXPERIMENTAL STUDY.

was expected that the random NSGA-II would be favored by
this performance measure.

Figures 3, 4, 5, 6 and 7 show the nondominated solutions
obtained by the four algorithms. These plots correspond
to the run in the median value with respect to the unary
additive epsilon indicator. We are denoting by “newton” the
seeding procedure, by “newton+nsga2” the seeded NSGA-
II, by “nsga2-52” the random NSGA-II with a population
size of52 and by “nsga2-100” the random NSGA-II with a
population size of100.

We can clearly see that in problems ZDT1, ZDT2 and
ZDT6, the NSGA-II is very far from the true Pareto front,
whereas the seeded NSGA-II (newton+nsga2) has already
converged to the true Pareto front after only 2000 fitness
function evaluations. In fact, the seeding procedure was able
to produce nondominated solutions on (or very close to)
the real Pareto front, so the NSGA-II spread the solutions
and tried to move them closer to the true Pareto front. For
ZDT4, the most difficult problem in our experiments, the
seeded NSGA-II is able to find better nondominated solutions
(regarding convergence) than the other (standard versionsof
the) NSGA-II. Finally, for ZDT3, results are very similar
among the different methods, while the NSGA-II with the
smallest population performs slightly better.

It is important to note that 500 of the evaluations are con-
sumed by the Latin-Hypercubes (for the regression model).
Thus, the gradient-based method is consuming only around
500 evaluations. As indicated by our previous results, this
initial set of nondominated solutions generated at the first
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Fig. 3. Pareto fronts generated, using 2000 objective function evaluations,
by the seeded NSGA-II (newton+nsga2) and the standard NSGA-II with
population sizes of 52 points (nsga2-52) and 100 points (nsga2-100) for
ZDT1. Newton refers to the points obtained by the seeding procedure after
1000 evaluations.

stage of our approach has been found to be a good alternative
to seed a MOEA. In total, our approach requires 2000 evalu-
ations and produces results that are competitive with respect
to a state-of-the-art MOEA in terms of both convergence and
spread of solutions.



SSC I1
ε+ ∆ NonDom Sol.

Function Algorithm Mean σ Mean σ Mean σ Mean
ZDT1 Newton 0.8954 0.0318 0.0563 0.0290 1.0962 0.1000 34.00
ZDT1 Newton+NSGA2 0.9203 0.0157 0.0233 0.0180 0.4571 0.0887 53.91
ZDT1 NSGA2-52 0.8266 0.0155 0.1085 0.0144 0.7592 0.0589 40.18
ZDT1 NSGA2-100 0.7604 0.0159 0.1780 0.0153 0.8093 0.0304 41.18

ZDT2 Newton 0.8753 0.0036 0.0353 0.0109 1.2394 0.1032 53.09
ZDT2 Newton+NSGA2 0.8870 0.0008 0.0104 0.0064 0.4074 0.0872 58.91
ZDT2 NSGA2-52 0.2251 0.0547 0.6009 0.0897 0.9703 0.0277 8.00
ZDT2 NSGA2-100 0.6765 0.0199 0.2727 0.0225 0.9246 0.0439 9.00

ZDT3 Newton 0.5009 0.0640 0.3239 0.0594 0.9459 0.0534 32.36
ZDT3 Newton+NSGA2 0.6849 0.0257 0.1769 0.0195 0.7954 0.0376 42.36
ZDT3 NSGA2-52 0.7318 0.0190 0.1361 0.0237 0.8114 0.0447 46.18
ZDT3 NSGA2-100 0.6752 0.0123 0.1817 0.0098 0.7848 0.0640 47.18

ZDT4 Newton 0.7817 0.0520 0.2185 0.0518 1.0900 0.0834 15.91
ZDT4 Newton+NSGA2 0.9562 0.0108 0.0448 0.0104 0.9972 0.0664 10.20
ZDT4 NSGA2-52 0.9524 0.0118 0.0470 0.0125 0.9832 0.1146 9.55
ZDT4 NSGA2-100 0.9075 0.0190 0.0915 0.0179 0.9291 0.0908 10.55

ZDT6 Newton 0.4286 0.1114 0.5311 0.0898 1.1611 0.1820 46.55
ZDT6 Newton+NSGA2 0.9215 0.0162 0.0291 0.0181 1.0198 0.1470 49.36
ZDT6 NSGA2-52 0.5713 0.0168 0.3007 0.0213 0.9441 0.0180 8.09
ZDT6 NSGA2-100 0.4281 0.0241 0.4831 0.0284 0.9523 0.0254 9.09

TABLE II

COMPARISON OF RESULTS BETWEEN THE SEEDEDNSGA-II (NEWTON+NSGA2)AND THE OTHER 3 ALTERNATIVES FOR THE FIVE TEST PROBLEMS.

THE BEST VALUES ARE INboldface. σ REFERS TO THE STANDARD DEVIATION OVER THE11 RUNS PERFORMED.

VI. CONCLUSIONS ANDFUTURE WORK

We have introduced a new approach that hybridizes a
gradient-based method with a MOEA in order to generate
solutions to multi-objective optimization problems with alow
number of objective function evaluations. The main focus of
our work has been to keep the number of evaluations as
low as possible. For this sake, each objective function is
fitted by a quadratic function in order to estimate a global
improvement direction. The solutions generated are then used
to seed a MOEA, so that the gradient-based information is
not invoked throughout the run of the MOEA (which would
be computationally expensive), which is the sort of scheme
normally adopted in the specialized literature.

Our results indicate that our proposed scheme can produce
a significant reduction in the computational cost of the
approach, while producing results of good quality.

As part of our future work, we plan to experiment with
other hybridization schemes that may allow a further re-
duction in the number of evaluations performed. We also
plan to extend our approach to problems with more than two
objectives and to add it a constraint-handling mechanism.
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