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Abstract. In this paper, we propose the use of Information Theory
as the basis of the fitness function for Boolean circuit design. Boolean
functions are implemented by means of multiplexers and genetic pro-
gramming. Entropy based measures such as Mutual Information and
Conditional Entropy are investigated as tools for similarity measures
between circuits. A comparison of synthesized (through evolution) and
minimized circuits through other methods denotes the advantages of the
Information-Theoretical approach.

1 Introduction

Entropy is a measure of disorder and the basis of Information Theory (IT)
[15]. Shannon [13] suggested the use of information entropy as a measure of
the amount of information contained within a message. Thus, entropy tells us
that there is a limit in the amount of information that can be removed from
a random process without having any information loss. For instance, in theory,
music can be compressed (in a lossless form) and reduced up to its entropy limit.
Further reduction is only possible at the expense of information lost.

The ID3 algorithm for the construction of classifiers (based on decision trees)
is probably the best-known computer science representative that relies on en-
tropy measures [12]. For ID3, an attribute is more important for concept classi-
fication if it provides greater “information gain” than the others.

IT was first used by Hartamann et al. [6] to transform decision tables into
decision trees. Boolean function minimization through IT techniques has been
approached by several authors [7,8]. These methods are top-down, thus, the
design strategy follows after a set of axioms in the knowledge domain. Luba
et al. [10] address the synthesis of logic functions using a genetic algorithm
and a fitness function based on conditional entropy. Their system needs heavy
preprocessing of the search space (Shannon’s expansion is applied to the target



Boolean function as to find subexpressions whose purpose is to guide the genetic
search. Only after that, the genetic algorithm is started).

In this paper we use multiplexers and genetic programming (GP) for the
synthesis of Boolean functions. We propose a fitness function driven by the
Normalized Mutual Information between the target function and the evolved
function. Our system works exclusively in a bottom-up fashion, thus no prepro-
cessing of the search space is needed. The paper is organized as follows. Section 2
describes the problem statement, Section 3 introduces basic concepts of infor-
mation theory used throughout the article. In Section 4 we show how entropy
based methods will prevent convergence of any evolutionary method if not used
correctly. In Section 5 we propose three fitness function based on normalized mu-
tual information and conditional entropy. Section 6 is devoted to experiments,
and we finish with conclusions and final remarks in Section 7.

2 Problem Statement

The design problem is the following: find the smallest circuit that implements a
Boolean function specified by its truth table [2,1,4]. The design metric adopted
in this case is the number of components in a 100% functional circuit. The pro-
cess works at “gate-level” and the only component replicated is the binary mul-
tiplexer. A binary multiplexers implements the Boolean function f = ax + a'y,
where a is the control and {x,y} the input signals. The use of multiplexers is a
sound approach because: 1) they are universal generators of Boolean functions,
and 2) any circuit in the population is the Shannon expansion of a Boolean
function. The expansion takes the form of and-or sum of products (SOP) which
are eagsily represented as decision trees. Therefore, circuits are encoded as trees
and the approach follows the representation adopted by Genetic Programming.
Leaves of the tree are only 1s and Os (as in a decision tree), and the nodes are
the variables of the Boolean function. Every variable of a node takes the place
of the “pivot” variable used in the expansion.

Definition 1. Boolean Residue The residue of a Boolean function

f(z1,22,...,2,) with respect to a variable z; is the value of the function for a
specific value of z;. It is denoted by f;,, for z; = 1 and by fz, for z; = 0.
f=%iflz; + 2 fle; 1)

The pivot variable is ;. For instance, for the function f(a,b,¢) = a'b'c +
a'bc’ + ab'c’, the residue of the expansion over variable q is:

fla,b,c) =a'F(a=0)+aF(a=1)=d (b'c+bc') +a(b'c)

Therefore, pivot variable a takes the control of the multiplexer and the two
residues form the inputs, as shown in Figure 1.

Further expansion of the functions at the mux inputs yields the complete
tree of muxes implementing the target function.



F=AX +A’Y F=A(B'C) + A'(B'C+BC)
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Fig. 1. a) the binary multiplexer, b) the Shannon expansion using a multiplexer

3 Basic concepts of IT
Uncertainty and its measure provide the basis for developing ideas about Infor-
mation Theory [5]. The most commonly used measure of information is Shan-

non’s entropy.

Definition 2. Entropy The average information supplied by a set of k£ symbols

whose probabilities are given by {p1,p2,...,pr}, can be expressed as,
k
H(p1,p2,---,pk) = — »_ prlogapi (2)
s=1

The information shared between the transmitter and the receiver at either end
of the communication channel is estimated by its Mutual Information,

MI(T;R) = H(T) + H(R) — H(T,R) = H(T) — H(T|R) (3)

The conditional entropy H(T'|R) can be calculated through the joint proba-
bility, as follows:

n n

ti’l‘j
H(T|R) = —Zzpmmlogz% ()

i=1 j=1

An alternative expression of mutual information is

MIT;R) =3 Y i, 7’)10921% (5)

teT reR

Mutual information, Equation 3, is the difference between the marginal en-
tropies H(T) + H(R), and the joint entropy H(T, R). We can explain it as a
measure of the amount of information one random variable contains about an-
other random variable, thus it is the reduction in the uncertainty of one random
variable due to the knowledge of the other [5].



Conditional entropy is used in top-down circuit minimization methods [3],
and also in evolutionary approaches [10,9].

Mutual information is not an invariant measure between random variables
because it contains the marginal entropies. Normalized Mutual Information is
a better measure of the “prediction” that one variable can do about the other
[14].

H(T)+ H(R)

NMI(T;R) = — TR (6)

Normalized Mutual Information has been used in image registration with
great success [11].

Example: We illustrate these concepts by computing the Mutual Information
between two Boolean vectors F' and C, shown in Table 1. Variable C is an
argument of the Boolean function F'(A, B,C) = AB + BC. We aim to estimate
the description the variable C can do about variable F', that is, MI(F; C).

AB|IC[F=AB+BC
0/0|0 0
0|01 0
0(1{0 0
011 1
100 0
110|1 0
1110 1
111 1

Table 1. Function F = AB + BC used to compute MI(F;C)

We use Equations 3 and 4 to calculate MI(F'; C). Thus, we need the entropy
H(F) and the conditional entropy H (F'|C).
Entropy requires the discrete probabilities p(F' = 0) and p(F' = 1) which we find
by counting their occurrences

5 5 3 3
H(F) = —(=logs= + logs=) = 0.9544
(F) (8 0928+80928) 0.95
The conditional entropy, Equation 4, uses the joint probability p(f;,c;), which
can be estimated through conditional probability, as follows: p(f,c) = p(f)p(c|f)-
Since either vector F' and C has two possible values, the discrete joint distribu-
tion has four entries, as follows:

=0.375

p(F=0,C=0)=p(f =0)p(c=0[f =0) = x

Co| Lt
(S YR



PF=0,C=1)=p(f =0)ple=1f =0) = 2 x 3 =025
p(F:1,C:0):p(f:1)p(c:0|f=1):gx%=0.125
PF=1,0=1)=p(f=ple=1lf=1) =3 x 2 =025

Now we can compute the conditional entropy by using Equation 4. The dou-
ble summation produces four terms (since n = 2):

3 3 1 1 1 1 1 1
H(F|C) = 0.9056

Therefore, MI(F;C) = H(F) — H(F|C) = 0.9544 — 0.9056 = 0.0488.

4 Entropy and Circuits

Entropy has to be carefuly applied to the synthesis of Boolean functions. Let’s
assume any two Boolean functions, F'1 and F2, and a third F'3 which is the
one’s complement of F2, then F'3 # F2.

H(F2) = H(F3)
Also, Mutual Information shows a similar behavior.
MI(F1,F2) == MI(F1,F3)

The implications for Evolutionary Computation are important since careless
use of mutual information can nullify the system’s convergence. Assume the
target Boolean function is T, then MI(T, F2) = MI(T, F3), but only one of
the circuits implementing F'2 and F'3 is close to the solution since their Boolean
functions are complementary. A fitness function based on mutual information will
reward both circuits with the same value, but one is better than the other. Things
could worsen as evolution progresses because mutual information increases when
the circuits get closer to the solution, but in fact, two complementary circuits
are then given larger rewards. The scenario is one in which the population is
driven by two equally strong attractors, hence convergence is never reached.

The fitness function of that scenario is as follows. Assume T is the target
Boolean function (must be seen as a truth table), and C is output of any cir-
cuit in the population. Fitness function is either the maximization of mutual
information or minimization of the conditional entropy term. This is,

badfitness function#1 = MI(T,C) = H(T) — H(T|C)



The entropy term H(T') is constant since this is the expected target vector.
Therefore, instead of maximizing mutual information the fitness function can
minimize the conditional entropy,

badfitnessfunction#2 = H(T) — H(T|C)

5 Fitness Function based on Normalized Mutual
Information

So far, we have described the scenario where the population is driven by a
fitness function based on the sole mutual information. We now propose two new
fitness functions based on entropy. Let’s assume a target Boolean function of
m atributes T'(A4y, Aa, ..., A.,), and the circuit Boolean function C of the same
size. We propose and report experiments using the two following fitness functions
(higher fitness means that a better solution has been found).

fitness = (Length(T) — Hamming(T,C)) x NMI(T,C) (7
. _ fitness
fitnessl = 2. NMI(4;,0) (8)
fitness2 = Z fitness x NMI(A;,C) (9)
i=1

fitness3 = (Length(T) — Hamming(T,C)) x (10 — H(T|C)) (10)

Fitnessl, Equation 7, is driven by NMI(T,C) and adjusted by the factor
Length(T) — Hamming(T,C). This factor tends to zero when T and C are
far in Hamming distance, and tends to Length(T') when T and C are close in
Hamming distance. The effect of the term is to give the correct rewarding of the
NMI to a circuit C close to T'. Equation 7 is designed to remove the convergence
problems described in the previous section. Fitnessl and Fitness2, Equations 8
and 9, combine the NMI of 7" and C with NMI of C' and the attributes Ay of
the target function. Thus, fitnessl and fitness2 pretend to use more information
available in the truth table in order to guide the search. Fitness3 is based on
conditional entropy and it uses the mentioned factor to supress the reproduction
of undesirable trees. Since conditional entropy has to be minimized we use the
factor 10 — H(T'|C) in order to miximize fitness.

6 Experiments

In the following experiments we find and contrast the convergence of our GP
system for the three fitness functions defined above.



6.1 Experiment 1

Here we design the following (simple) Boolean function:

F(a,b,c,d) = (0,1,2,3,4,6,8,9,12) = 1

We use a population size of 300 individuals, p. = 0.35, p,, = 0.65, and we
run our algorithm for 100 generations. The optimal solution has 6 nodes, thus
we find the generation in which the first 100% functional solution appears, and
the generation number where the optimal is found. The problem was solved 20
times for each fitness function.

Table 2 shows the results of these experiments.

Event Gen. at fitnessl|Gen. at fitness2|Gen. at fitness3
100% Functional 13+5 14+7 18 +6
Optimum Solution 30+7 30+10 40 +20

Table 2. Generation number where the first 100% functional circuit is found, and the
generation where the optimum is found, for three fitness functions

6.2 Experiment 2

The next test function is:

F(a,b,c,d,e, f) =ab+cd+ef

In this case, we use a population size of 600 individuals, p. = 0.35, p,, = 0.65,
and we stop after 200 generations. The optimal solutions has 14 nodes. Each
problem was solved 20 times for each fitnesss function.

Table 3 shows the results of these experiments.

Event Gen. at fitnessl|Gen. at fitness2|Gen. at fitness3
100% Functional 39 +12 40 +11 50 +£12
Optimum Solution 160 £ 15 167 £ 15 170 £ 20

Table 3. Generation number where the first 100% functional circuit is found, and the
generation where the optimum is found, for three fitness functions



6.3 Experiment 3

The last problem is related to partially specified Boolean functions [1]. With this
experiment we address the ability of the system to design Boolean functions with
“large” number of arguments and specific topology. For this, we have designed a
synthetic problem were the topology is preserved when the number of variables
increases.

Boolean functions with 2k variables are implemented with (2% 2k) — 1 binary
muxes if the truth table is specified as shown in Table 4.

ABCD[F(ABCD)
0000 0

0001
0010
0100
1000
0111
1011
1101
1110
1111

O = o e e e e

Table 4. Partially specified Boolean function of Example 3 needs (2 * 2k) — 1

We ran experiments for k¥ = 2,3,4, thus 4,8, and 16 variables and we have
contrasted these results with the best known solutions for this problem (reported
in [1]). For completeness, all previous results are reported together with the
results of the new experiments in Table 5, where we use the three fitness functions
(Equations 8,9,10).

k|variables|size| Avg(previous)|Avg(fitnessl)|Avg(fitness2)|Avg(fitness3)
2 4 7 60 60 60 60

3 8 15 200 190 195 194

4 16 31 700 740 731 748

5 32 63 2000 2150 2138 2150

Table 5. Generation number where the first 100% functional circuit is found, and the
generation where the optimum is found, for three fitness functions

All parameters are kept with no change for similar experiments, average is
computed for 20 runs. The previous experiments use a fitness function based
on Hamming distance between the current solution of an individual and the
target solution of the truth table. One important difference is the percentage of



correct solution found. Previously we reported that in 90% of the runs we found
the solution (for the case of fitness based on Hamming distance). For the three
fitness functions based on entropy we found the solution in 99% of the runs.

7 Final remarks and conclusions

A fitness function using only conditional entropy was tested with no success at
all. We believe this is a clear indication of a fitness function that does not take
into account the properties of entropy. In general, the three fitness functions
work quite well, all of them found the optimum in most cases, thus comparable
to other fitness functions based on Hamming distances. Entropy based measures
seem hard to adapt to Evolutionary Computation since the entropy of evolu-
tionary systems is not well understood (after “creationists” would say evolution
is imposible because entropy would not allow the development of a system). The
final remark is that the convergence time and the quality of results produced is
comparable with the many experiments we have done before in this area. Based
on the results shown in Tables 2 and 3 we would give some advantage to nor-
malized mutual information over simple mutual information because it is less
biased. Results from Table 5 could imply that mutual information is able to
capture “that” relationship between the data that the sole Hamming distance
can not convey to the population.
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