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Abstract. In this paper, we propose a new constraint-handling technique for
evolutionary algorithms which is based on multiobjective optimization concepts.
The approach uses Pareto dominance as its selection criterion, and it incorpo-
rates a secondary population. The new technique is compared with respect to
an approach representative of the state-of-the-art in the area using a well-known
benchmark for evolutionary constrained optimization. Results indicate that the
proposed approach is able to match and even outperform the technique with re-
spect to which it was compared at a lower computational cost.

1 Introduction

The success of Evolutionary Algorithms (EAs) in global optimization has triggered
a considerable amount of research regarding the development of mechanisms able to
incorporate information about the constraints of a problem into the fitness function
of the EA used to optimize it [7]. So far, the most common approach adopted in the
evolutionary optimization literature to deal with constrained search spaces is the use of
penalty functions [10]. Despite the popularity of penalty functions, they have several
drawbacks from which the main one is that they require a careful fine tuning of the
penalty factors that indicates the degree of penalization to be applied [12].

Recently, some researchers have suggested the use of multiobjective optimization
concepts to handle constraints in EAs. This paper introduces a new approach that is
based on an evolution strategy that was originally proposed for multiobjective opti-
mization: the Pareto Archived Evolution Strategy (PAES) [5]. Our approach (which
is an extension of PAES) can be used to handle constraints in single-objective opti-
mization problems and does not present the scalability problems of the original PAES.



Besides using Pareto-based selection, our approach uses a secondary population (one
of the most common notions of elitism in evolutionary multiobjective optimization),
and a mechanism that reduces the constrained search space so that our technique can
approach a optimum more efficiently.

2 Problem Statement

We are interested in the general nonlinear programming problem in which we want to:

Find � which optimizes
��� ��� (1)

subject to: ��� � �	��

��������������������� (2)��� � �	�	����� �!�"�#�������$�&% (3)

where � is the vector of solutions �'�)( * � �+* � �������$�+*-,/.10 , � is the number of inequality
constraints and % is the number of equality constraints (in both cases, constraints could
be linear or non-linear). For an inequality constraint that satisfies

� � � �	�2�3� , then we
will say that is active at � . All equality constraints

� �
(regardless of the value of � used)

are considered active at all points of 4 ( 4 = feasible region).

3 Basic Concepts

A multiobjective optimization problem (MOP) has the following the form:

Minimize ( � � � �	�/� � � � �	�/��������� �657� �	�8. (4)

subject to the 9 inequality constraints:� � � �	��:;�<�����#�>=7�������/��9 (5)

and the % equality constraints:� � � �	�	���?�����#�>=7�������/�&% (6)

where @ is the number of objective functions
� ��A�B�CEDFB

. We call �'�)( * � ��* � ����������* C . 0
the vector of decision variables. We wish to determine from among the set 4 of all vec-
tors which satisfy (5) and (6) the particular set of values *HG� ��*IG� ���������+*JGC which yield the
optimum values of all the objective functions.

3.1 Pareto Optimality

A vector KL� �&M � �������$� M 5 � is said to dominate NE� �&O � ��������� O 5 � (denoted by K
P;N ) if
and only if

M
is partially less than

O
, i.e., QJ�SRUT#�#�������$�V@XW#� M � 
 O ��Y[Z ��RUT#���������$�>@XW AM ��\ O �

. For a given multiobjective optimization problem, ] � *X� , the Pareto optimal set
( ^!G ) is defined as:

^ G A �_T�*`R[4ba�c Z *-dIR[4e] � *Xd1��Pf] � *X�/W#� (7)



Thus, we say that a vector of decision variables � GLR 4 is Pareto optimal if there
does not exist another � R34 such that

� � � �	�'
 � � � �SG�� for all �`� ���������$�>@ and���#� �	� \ � �#� � G � for at least one � . In words, this definition says that � G is Pareto
optimal if there exists no feasible vector of decision variables � R 4 which would
decrease some criterion without causing a simultaneous increase in at least one other
criterion. Unfortunately, this concept almost always gives not a single solution, but
rather a set of solutions called the Pareto optimal set. The vectors � G correspoding to
the solutions included in the Pareto optimal set are called nondominated. The image of
the Pareto optimal set under the objective functions is called Pareto front.

4 Related Work

The main idea of adopting multiobjective optimization concepts to handle constraints
is to redefine the single-objective optimization of

��� �	� as a multiobjective optimization
problem in which we will have 9 � � objectives, where 9 is the total number of con-
straints. Then, we can apply any multiobjective optimization technique [3] to the new
vector �

O � � ��� �	�/� � �
� �	�/��������� ��� � �	��� , where

�
�
� �	�/��������� ���!� �	� are the original con-

straints of the problem. An ideal solution � would thus have
� � � �	� =0 for � 
�� 
�9

and
��� ��� 
 ����� � for all feasible

�
(assuming minimization).

These are the mechanisms taken from evolutionary multiobjective optimization that
are more frequently incorporated into constraint-handling techniques:

1. Use of Pareto dominance as a selection criterion.
2. Use of Pareto ranking [4] to assign fitness in such a way that nondominated indi-

viduals (i.e., feasible individuals in this case) are assigned a higher fitness value.
3. Split the population in subpopulations that are evaluated either with respect to the

objective function or with respect to a single constraint of the problem.

In order to sample the feasible region of the search space widely enough to reach
the global optima it is necessary to maintain a balance between feasible and infeasible
solutions. If this diversity is not reached, the search will focus only on one area of the
feasible region. Thus, it will lead to a local optima solution.

A multiobjective optimization technique aims to find a set of trade-off solutions
which are considered good in all the objectives to be optimized. In global nonlinear
optimization, the main goal is to find the global optimum. Therefore, some changes
must be done to those approaches in order to adapt them to the new goal. Our main
concern is that feasibility takes precedence, in this case, over nondominance. Therefore,
good “trade-off” solutions that are not feasible cannot be considered as good as bad
“trade-off” solutions that are feasible. Furthermore, a mechanism to maintain diversity
must normally be added to any evolutionary multiobjective optimization technique. In
our proposal, diversity is kept by using an adaptable grid, and by a selection process
applied to the external file that maintains a mixture of both good “trade-off” and feasible
individuals.

There are several approaches that have been developed using multiobjective opti-
mization concepts to handle constraints, but due to space limitations we will not discuss
them here (see for example [2, 13, 8, 9]).



5 Description of IS-PAES

Our approach (called Inverted-Shrinkable Pareto Archived Evolution Strategy, or IS-
PAES) has been implemented as an extension of the Pareto Archived Evolution Strategy
(PAES) proposed by Knowles and Corne [5] for multiobjective optimization. PAES’s
main feature is the use of an adaptive grid on which objective function space is located
using a coordinate system. Such a grid is the diversity maintenance mechanism of PAES
and it constitutes the main feature of this algorithm. The grid is created by bisecting @
times the function space of dimension � � � � � . The control of = 5�� grid cells means the
allocation of a large amount of physical memory for even small problems. For instance,
10 functions and 5 bisections of the space produce =���� cells. Thus, the first feature
introduced in IS-PAES is the “inverted” part of the algorithm that deals with this space
usage problem. IS-PAES’s fitness function is mainly driven by a feasibility criterion.
Global information carried by the individuals surrounding the feasible region is used to
concentrate the search effort on smaller areas as the evolutionary process takes place. In
consequence, the search space being explored is “shrunk” over time. Eventually, upon
termination, the size of the search space being inspected will be very small and will
contain the solution desired. The main algorithm of IS-PAES is shown in Figure 1.

maxsize: max size of file� : current parent �
	 (decision variable space)�
:child of c �
	 , ��
 : individual in file that dominates h
��� : individual in file dominated by h������������� : current number of individuals in file
cnew: number of individuals generated thus far������������� = 1; cnew=0;
c = newindividual();
add(c);
While cnew � MaxNew do

h = mutate(c); cnew ��� 1;
if (c � h) then Label A
else if (h � c) then � remove(c); add(g); c=h;  
else if ( ! a 
"� file # a 
"� h) then Label A
else if ( ! a � � file # h � a � ) then �

add( h ); $ a � � remove(a � ); current %&� 1  
else test(h,c,file)

Label A
if (cnew ' g==0) then c = individual in less densely populated region
if (cnew ' r==0) then shrinkspace(file)

End While

Fig. 1. Main algorithm of IS-PAES



The function test(h,c,file) determines if an individual can be added to the external
memory or not. Here we introduce the following notation: * ��� * � means * � is located in
a less populated region of the grid than * � . The pseudo-code of this function is depicted
in Figure 2.

if (current � maxsize) then �
add(h);
if (h � c) then c=h  

else if ( !������ file # h � ��� ) then �
remove( ��� ); add(h)
if (h � c) then c = h;  

Fig. 2. Pseudo-code of test(h,c,file)

5.1 Inverted “ownership”

PAES keeps a list of individuals on every grid location, but in IS-PAES each individ-
ual knows its position on the grid. Therefore, building a sorted list of the most dense
populated areas of the grid only requires to sort the @ elements of the external memory.
In PAES, this procedure needs to inspect all = 5 � locations in order to generate a list of
the individuals sorted by the density of their current location in the grid. The advantage
of the inverted relationship is clear when the optimization problem has many functions
(more than 10), and/or the granularity of the grid is fine, for in this case only IS-PAES
is able to deal with any number of functions and granularity level.

5.2 Shrinking the objective space

Shrinkspace(file) is the most important function of IS-PAES since its task is the reduc-
tion of the search space. The pseudo-code of Shrinkspace(file) is shown in Figure 3.

� �	��
 : vector containing the smallest value of either ��
 �
	
� �	��
 : vector containing the largest value of either ��
 � 	
select(file);
getMinMax( file, � �	��
 , � ����
 );
trim( � �	��
 , � ����
 );
adjustparameters(file);

Fig. 3. Pseudo-code of Shrinkspace(file)



m: number of constraints
i: constraint index
maxsize: max size of file
listsize: 15% of maxsize
constraintvalue(x,i): value of individual at constraint i
sortfile(file): sort file by objective function
worst(file,i): worst individual in file for constraint i
validconstraints= � 1,2,3,...,m  ;
i=firstin(validconstraints);
While (size(file) � listsize and size(validconstraints) � 0) �

x=worst(file,i)
if (x violates constraint i)

file=delete(file,x)
else validconstraints=removeindex(validconstraints,i)

if (size(validconstraints) � 0) i=nextin(validconstraints)
 
if (size(file) � � listsize))

list=file
else

file=sort(file)
list=copy(file,listsize) *pick the best listsize elements*

Fig. 4. Pseudo-code of select(file)

The function select(file) returns a list whose elements are the best individuals found
in file. The size of the list set to ����� of maxsize. Thus, the goal of select(file) is to
create a list with: 1) only the best feasible individuals, 2) a combination of feasible
and partially feasible individuals, or 3) the “best” infeasible individuals. The selection
algorithm is shown in Figure 4. Note that

O���� � ���
	 ����
�� � �8��
�� (a list of indexes to the
problem constraints) indicates the order in which constraints are tested. One individual
(the worst) is removed at a time in this loop of constraint testing till there is none
to delete (all factible), or ����� of the file is reached. The function getMinMax(file)
finds the extreme values of the decision variables represented by the individuals of the
list. Thus, the vectors � ����� and ������� are found. Function trim( � ����� , ������� ) shrinks the
feasible space around the potential solutions enclosed in the hypervolume defined by the
vectors � ����� and ������� . Thus, the function trim ( � ����� , ������� ) (see Figure 5) determines
the new boundaries for the decision variables.

The value of � is the percentage by which the boundary values of either * � R��
must be reduced such that the resulting hypervolume � is a fraction � of its previous
value. In IS-PAES all objective variables are reduced at the same rate � . Therefore, �
can be deduced from � as discussed next. Since we need the new hypervolume to be a
fraction � of the previous one, then

� new :���� old



n: size of decision vector;
� 
 : actual upper bound of the ��� 
 decision variable
� 
 : actual lower bound of the ��� 
 decision variable
� �	��
�� 
 : upper bound of ��� 
 decision variable in population
� �	��
�� 
 : lower bound of � � 
 decision variable in population
$�� : i �
� 1, . . . , n  �	� � ��
 
 �
��� ������� � �	��
�� 
 % � ����
�� 
 )� ��� � � ����� 
 � � �	��
�� 
 % � ��� 
�� 
 ; � ��� � � �
 � � �
 % � �
� ��� � �! 
� � 
 �#"%$�& 
 � � 
	'(*) & 
 � � 
 ����
 (�

delta 
 = max(slack 
 , deltaMin 
 );
� �,+ �

 � � ����
�� 
 �-� ��� � � 
 ; � �.+ �


 � � �	��
�� 
 %�� ��� � � 
 ;
if ( � �.+ �


 � � �*/ 
10�
3254	6 � 
 ) then
� �.+ �

 % � � �.+ �


 % � �*/ 
10�
3254	6 � 
 ; � �.+ �

 � � �*/ 
10 
72�4	6 � 
 ;

if ( � �.+ �

 � � �*/ 
10�
3254	6 � 
 ) then � �.+ �


 � � � �*/ 
30 
72�4	6 � 
 % � �.+ �

 ;

� �.+ �

 � � �*/ 
10 
72�4	6 � 
 ;

if ( � �.+ � � � �*/ 
10�
3254	6 � 
 ) then � �.+ �

 � � �*/ 
30 
72�4	6 � 
 ;

Fig. 5. Pseudo-code of trim

C8�:9
�

� *<;�= �� > * ;�= �� �	� �
C8�:9

�

� * ; � > * ; � �
Either * � is reduced at the same rate � , thusC8�:9

�
� � * ; � > * ; � �S� �

C8�:9
�

� * ; � > * ; � �
�
C C8�:9

�

� * ; � > * ; � �	� �
C8 � � * ; � > * ; �:9 � �

�
C � �

� � �@?A
Summarizing, the search interval of each decision variable * � is adjusted as follows

(the complete algorithm is shown in Figure 3):B � � 
 � CDC�E : �GF B � � 
 � ��H �
In our experiments, �L����� I#� worked well in all cases. Since � controls the shrinking
speed, it can prevent the algorithm from finding the optimum if small values are chosen.
In our experiments, values in the range [ J�� � , I ��� ] were tested with no effect on the
performance. The last step of shrinkspace() is a call to adjustparameters(file). The
goal is to re-start the control variable K using: K � � � * � > * � �MLDN � � R � ������������� � . This
expression is also used during the initial generation of the EA. In that case, the upper
and lower bounds take the initial values of the search space indicated by the problem.
The variation of the mutation probability follows the exponential behavior suggested
by Bäck [1].



6 Comparison of Results

We have validated our approach with the benchmark for constrained optimization pro-
posed in [7]. Our results are compared against the homomorphous maps [6], which
is representative of the state-of-the-art in constrained evolutionary optimization. The
following parameters were adopted for IS-PAES in all the experiments reported next:9 � * �������[� =���� , � � ��
 �8� �#� O � � M ��� � � � � � , � � � ��@ � ��� � � , � ���#��� . The maximum
number of fitness function evaluations was set to 350,000, whereas the results of Koziel
and Michalewicz [6] were obtained with 1,400,000 fitness function evaluations.

1. g01: Minimize:
��� �	� � ���
	 �:9 � * � > ����	 �79 � * �� > � ��
�:9

� *
�

subject to:
�

�
� �	� �= * � � = * � � * � �

� * � �
> � � 
 � , � �

� �	� �3= * � � = * 
 � * � �
� * � �

> � � 
 � ,� 
 � �	� � =6* � � =6* 
 � * � � � * � �
> ����
"� , � 	 � �	� �

> J�* � � * � � 
_� ,
�
�
� �	� �> J6* � � * � � 
 � , ��� � �	� � > J�* 
 � * � � 
 � , ��� � �	� � > = * 	

> * � � * � � 
3� ,��� � �	�	� > =6* � > * � � * � � 

� , ��� � �	�	� > = * � > * � � * � � 
;� where the bounds are��
 * � 
 � ( � �3�����������MI ), ��
 * � 
 ����� ( � � � �����#����� = ) and ��
 * ��
 
 � . The
global optimum is at *IG � � �����#���#���������������#���#��������������������� where

��� *IG � � > � � .
Constraints

�
� ,
�

� ,
� 
 , � 	 ,

�
� and

���
are active.

2. g02: Maximize:
��� �	�	�

����
� A(�� ?������

� ��! (#"%$ �'& A(�� ?(�����
)*��! (+"N � A(�� ?

� ! )(
���� subject to:

�
�
� �	�	� ���-, � >

C8�79
�
* � 
L�

�
� � �	�	�

C. �:9
�
* � > ,�� � � 
;� (8)

where � � =6� and � 
;* � 
_��� � �	���#�������$�+� � . The global maximum is unknown;
the best reported solution is [11]

��� *HG�� �f��� J��/��0��5I . Constraint
�

� is close to being
active (

�
� � > ��� $

�
).

3. g03: Maximize:
��� �	� � � N � � C21 C�:9

� * � subject to:
� � �	� �3�

C�:9
� * �� > �E� �

where �
� ��� and � 
 * � 
 � � � � ���������$�+� � . The global maximum is at *HG� ���LDN � � ���)������������� � where
��� *IG��S�"� .

4. g04: Minimize:
��� �	�	� �7� � ��, J��4�5, * �
 � ��� J����(0�JDI���* � * � � ��,�� =%I/�#=���I6* �

> � ��,%I#=7� �*�-�
subject to:
6 � � �87 �:9�� � ;<; = =��<> �-��� � � � ?<9 � 9 � �

�A@ �-��� � �5�<?<B ?CB � � �5D % ��� �5�CB<B����*; �'E �A@ %GF<B � �6 � � �87 � %�9�� � ;<; = =��<> % ��� � � � ?<9 � 9 � �
�A@ % ��� � �5�<?<B ?CB � � �'D � �%� �5�CB B5���*; �'E �A@ � �6 E � �87 �:9 �%� �(HIBI=CF � �%� �5�C>4HJ;�HJ> � �

� @ � ��� � �<B F<F � � � � �
� �-��� � �<B(HK9�HJ; � �E %LH<H	� � �6 D � �87 � %�9 �%� �(HIBI=CF % �%� �5�C>4HJ;�HJ> � �

� @ % ��� � �<B F<F � � � � �
� % ��� � �<B(HK9�HJ; � �E �MF � � �6 @5� �87 �:F�� ;5� �<F ?�H � �%� �5� =C>5�CB*? �'E �A@ � ��� � �(HIB �I=4> � � �'E �-��� � �(HJF5�<9�� �'E �5D %GB � � �6CN � �87 � %�F�� ;5� �<F ?�H % �%� �5� =C>5�CB*? �'E �A@ % ��� � �(HIB �I=4> � � �'E % ��� � �(HJF5�<9�� �'E �'D �OB�� � �

(9)

where: , J 
3* � 
 ���#= , ��� 
 * � 
P��� , =/, 
3* � 
P��� � � �Q���������#� . The op-
timum solution is *IG[� � ,%J��������V=%I�� IDI ��= �(0#�#= �(0�J�=���� ������07�-,�, � J�� =%I6����, J%J � where��� *IG��	� > ���/0�0��7� �(��I . Constraints

�
� y
���

are active.



5. g05 Minimize:
��� �	�	� ��* � � ��� �����#������* 
 � � = * � � � ��� �����#��� =DL4� � * 
� subject to:�

�
� �	�S� > * 	 � * 
 > ��� � � 
;��

�
� �	�S� > * 
 � * 	

> ��� � � 
;�� 
 � �	�S��� ���#� ����� � > * 
 > ��� = ��� � �����#� ����� � > * 	
> ��� = ��� � J�I���� J > * � � ��

	
� �	�S��� ���#� ����� � > * 
 > ��� = ��� � �����#� ����� � * 
 > * 	

> ��� = �#� � JDI(��� J > * � �f��
�
� �	�S��� ���#� ����� � > * 	

> ��� = ��� � �����#� ����� � * 	
> * 
 > ��� = �#� � � =%I(�-� J ���

(10)

where �f
 * � 
F� =���� , ��
 * � 
F� =���� , > ��� � �;
 * 
 
 ��� � � , and
> ��� � �L
* 	 
 ��� � � . The best known solution is *IG � � 0�,%I�� I(���(������� =(0�� ��05,��>�7� �#��J�J�,404�-�> ��� ��I/0#=(�/��0 � where

��� *IG��	� ��� =(0�� �!I�J�� .
6. g06 Minimize:

��� �	�	� � * �
> ��� � 
 � � * �

> =��#� 
 subject to:�
�
� �	�S� > � * �

>
��� � > � * �

>
�#� � � �����!
;��

�
� �	�S� � * �

> 0#� � � � * �
>
�#� � > J#=7� J�� 
;� (11)

where � � 
 * � 
 � ��� and � 
 * � 
 � ��� . The optimum solution is *HGf�� � ��� ��I ���+��� J�� =%I/0#� where
��� *JG��S� > 0�I�0���� J��<��J�J . Both constraints are active.

7. g07 Minimize:��� �	�	� * �
� � * �

� � * � * �
> �*��* �

> � 06* � � � * 
 > ��� � � � � � * 	
>
��� �

� � * �
> �#� � � = � * � > � � � � � * �� � , � * � > �#� � � � = � * � > � �#� �

� � * � �
> ,6� � � ���

(12)

subject to: �
� � �	�S� > ����� � ��* � � � * �

> ��* � � I6* � 

��
� � �	�S�)����* �

> J6* �
> �4, * � � =6* � 

�� 
 � �	�S� > J6* � � =6* � � � * � > =6* � �

> � = 
;��
	
� �	�S� � � * �

> =�� � � � � * �
> � � � � = * �
 > , * 	

> � =��!
L��
�
� �	�S� � * �

� � J�* � � � * 
 > 0#� � > =6* 	
> �#�!
L���� � �	�S��* �

� � = � * �
> =#� � > = * � * � � � ��* �

> 06* � 
;���� � �	�S� ��� � � * �
> J#� � � = � * �

> ��� � � �6* �

�
> * � > ���!
;�� � � �	�S� > �6* � � 0�* � � � = � * � > J � � > , * � � 

� (13)

where
> ���[
"* � 
 � � � � � �#�������$�����#� . The global optimum is *HG � � =7� �C,�� I�I/0��=7� ��0/��0�J/��� J��-,�,4�DI#=�07����� �%I�� I�J(���+��� IDI6��0 �(��J����6� �/�6����,C������� ��=7� 0(�����MI7� J#=�J/,6=40��J�� =%J#����I =7� J�� ��, ��I#=�, � where

��� *IG � � =4�-� �#��0 =6��I�� . Constraints
�

� ,
�

� ,
� 
 , � 	 ,

�
�

and
���

are active.
8. g08 Maximize:

��� ��� � �
� 	�
 � �
� ! ? " � � 	

� �
� ! ) "! 
 ?
��! ? = ! ) " subject to:

�
� � �	� �_* �

�
> * � � � 
_� ,�

� � �	�	��� > * � � � * �
> � � � 

� where � 
 * � 
_��� and �!
;* � 
 ��� . The optimum

solution is located at *IG � � �#� =#=/, I5,��<�����-� =(������,4���#� where
��� *IG��S�f��� �DI ��J#= � . The

solutions is located within the feasible region.



9. g09 Minimize:

��� �	�	� � * �
> ��� � � � � � * �

> � =�� � � * 	 
 � � � * 	
> ��� � �

� ����*
�
�
� , * �� � * 	 � > ��* � * � > ����* � > J6* � (14)

subject to: �
�
� �	�S� > � =/, � = * �

� � ��* 	 � � * 
 � ��* �

	
� �6* � 

��

�
� �	�S� > =�J#= � , * � � ��* � � ���6* �
 � * 	

> * � 

�� 
 � �	�S� > � I�0 � =(�6* � � * �
� � 06* �� > J�* � 

��

	
� �	�S�
�#* �

� � * �
�
> ��* � * � � = * �
 � �6* � > ����* � 
L� (15)

10. g10 Minimize:
��� �	�	�f* � � * � � * 
 subject to:�

�
� �	� � > � � ��� ���#= � � * 	 � * � ��

��

�
� �	� � > � � ��� ���#= � � * � � *

� > * 	 � 
L�� 
 � �	� � > � � ��� ��� � * � > * � ��
;��
	
� �	� � > * � * � � J/����� ��� = �#= * 	 � � ����* �

> J����/����� �/��� 

��
�
� �	� � > * � * � � � = �6��* � � * � * 	

> � = �6�6* 	 
;�� � � �	� � > * 
 * � � � = �6�#���#� � * 
 * �
> = �����6* � 
;� (16)

where � ��� 
3* � 
 �����#��� , ���#���'
 * � 
 ���#����� , � � � =7���#� , ��� 
 * � 
 �����#� ,� �����-�������$�MJ � . The global optimum is: *IG � � �/, I�� ��� 05,����<� ��I�� I(�/�������#����� �/,7�6��5J =7� ���C,4���V=%I ��� ��I�J����>=��<,�� I/, I�I��>=%J�07� ���*0 =����DI �7� � I5,�I#� , where
��� *IG�� � , ���DI�� ���#��, .�

� ,
�

� and
� 
 are active.

11. g11 Minimize:
��� ��� � * �

� � � * �
> � � �

subject to:
� � �	� � * �

> * �
� � � where:> � 

* � 
"� , > � 
L* � 
"� . The optimum solution is *IG � ��� ��L N =�����L�=�� where��� *IG��	� ���-, � .

The comparison of results is summarized in Table 1. It is worth indicating that IS-
PAES converged to a feasible solution in all of the 30 independent runs performed. The
discussion of results for each test function is provided next (HM stands for homomor-
phous maps):

For g01 both the best and the mean results found by IS-PAES are better than the
results found by HM, although the difference between the worst and the best result is
higher for IS-PAES. For g02, again both the best and mean results found by IS-PAES
are better than the results found by HM, but IS-PAES has a (slightly) higher difference
between its worst and best results. In the case of g03, IS-PAES obtained slightly better
results than HM, but in this case it also has a lower variability. It can be clearly seen that
for g04, IS-PAES had a better performance with respect to all the statistical measures
evaluated. The same applies to g05 in which HM was not able to find any feasible
solutions (the best result found by IS-PAES was very close to the global optimum). For
g06, again IS-PAES found better values than HM (IS-PAES practically converges to the
optimum in all cases). For g07 both the best and the mean values produced by IS-PAES
were better than those produced by HM, but the difference between the worst and best



Table 1. Comparison of the results for the test functions from [7]. Our approach is called IS-PAES
and the homomorphous maps approach [6] is denoted by HM. N.A. = Not Available.

BEST RESULT MEAN RESULT WORST RESULT
TF OPTIMAL IS-PAES HM IS-PAES HM IS-PAES HM
g01 -15.0 -14.995 -14.7864 -14.909 -14.7082 -12.4476 -14.6154
g02 -0.803619 -0.8035376 -0.79953 -0.798789 -0.79671 -0.7855539 -0.79199
g03 -1.0 -1.00050019 -0.9997 -1.00049986 -0.9989 -1.00049952 -0.9978
g04 -30665.539 -30665.539 -30664.5 -30665.539 -30655.3 -30665.539 -30645.9
g05 5126.498 5126.99795 N.A. 5210.22628 N.A. 5497.40441 N.A.
g06 -6961.814 -6961.81388 -6952.1 -6961.81387 -6342.6 -6961.81385 -5473.9
g07 24.306 24.3410221 24.620 24.7051034 24.826 25.9449662 25.069
g08 -0.095825 -0.09582504 -0.0958250 -0.09582504 -0.0891568 -0.09582504 -0.0291438
g09 680.630 680.638363 680.91 680.675002 681.16 680.727904 683.18
g10 7049.331 7055.11415 7147.9 7681.59187 8163.6 9264.35787 9659.3
g11 0.750 0.75002984 0.75 0.74992803 0.75 0.74990001 0.75

result is slightly lower for HM. For g08 the best result found by the two approaches
is the optimum of the problem, but IS-PAES found this same solution in all the runs
performed, whereas HM presented a much higher variability of results. In g09, IS-PAES
had a better performance than HM with respect to all the statistical measures adopted.
For g10 none of the two approaches converged to the optimum, but IS-PAES was much
closer to the optimum and presented better statistical measures than HM. Finally, for
g11, HM presented slighly better results than IS-PAES, but the difference is practically
negligible.

Summarizing, we can see that IS-PAES either outperformed or was very close to
the results produced by HM even when it only performed 25% of the fitness functions
evaluations of HM. IS-PAES was also able to approach the global optimum of g05, for
which HM did not find any feasible solutions.

7 Conclusions and Future Work

We have presented a new constraint-handling approach that combines multiobjective
optimization concepts with an efficient reduction mechanism of the search space and
a secondary population. We have shown how our approach overcomes the scalability
problem of the original PAES (which was proposed exclusively for multiobjective op-
timization) from which it was derived, and we also showed that the approach is highly
competitive with respect to a constraint-handling approach that is representative of the
state-of-the-art in the area.

The proposed approach illustrates the usefulness of multiobjective optimization
concepts to handle constraints in evolutionary algorithms used for single-objective op-
timization. Note however, that this mechanism can also be used for multiobjective op-
timization and that is in fact part of our future work.

Another aspect that we want to explore in the future is the elimination of all of the
parameters of our approach using online or self-adaptation. This task, however, requires



a careful analysis of the algorithm because any online or self-adaptation mechanism
may interefere with the mechanism used by the approach to reduce the search space.
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