
Improving Hyper-heuristic Performance through
Feature Transformation

Ivan Amaya∗, José Carlos Ortiz-Bayliss∗, Andrés Eduardo Gutiérrez Rodrı́guez∗,
Hugo Terashima-Marı́n∗, Carlos A. Coello Coello†

∗School of Engineering and Sciences
Tecnologico de Monterrey

Email: {iamaya2, jcobayliss, terashima}@itesm.mx
† CINVESTAV-IPN (Evolutionary Computation Group)

Email: ccoello@cs.cinvestav.mx

Abstract—Hyper-heuristics are powerful search methodologies
that can adapt to different kinds of problems. One element of
paramount importance, however, is the selection module that
they incorporate. Traditional approaches define a set of features
for characterizing a problem and, thus, define how to best solve
it. However, some features may vary nonlinearly as the solver
progresses, requiring higher resolution in specific areas of the
features domain. This work focuses on assessing the advantage
of using feature transformations to improve the given resolution
and, as a consequence, to improve the overall performance
of a hyper-heuristic. We provide evidence that using feature
transformations may result in a better discrimination of the
problem instance and, as consequence, a better performance of
the hyper-heuristics. The feature transformation strategy was
applied to an evolutionary-based hyper-heuristic model taken
from the literature and tested on constraint satisfaction problems
The proposed strategy increased the median success rate of
hyper-heuristics by more than 13% and reduced its standard
deviation in about 7%, while reducing the median number of
adjusted consistency checks by almost 30%.

I. INTRODUCTION

The algorithm selection problem [1] is the task of selecting
the most suitable algorithm for a particular problem, among
a set of available ones. This idea is based on the highly
variable properties of problem instances and on the irregular
performance of each solver. Algorithm selection is a generic
problem, as it appears in many different domains. The past
few years have witnessed a rapid growth in the number
of techniques that address this problem by relating problem
instances to one or more suitable solving strategies. Examples
of algorithm selection strategies include, but are not limited to:
algorithm portfolios [2], [3], [4], selection hyper-heuristics [5],
[6] and instance specific algorithm configuration (ISAC) [7].
In general, all these methods manage a set of solving strategies
and apply one that is suitable to the current problem state of
the instance being solved. Striving to unify terms, from this
point on, we will use selection hyper-heuristic to refer to the
methods proposed in this paper.

Selection hyper-heuristics attempt to learn patterns of differ-
ent human-designed heuristics to robustly tackle a wider range
of problems on various domains [8]. A hyper-heuristic tries to
find the right heuristic for a particular situation rather than
trying to solve a problem directly [9]. The idea behind hyper-

heuristics is to automate as much of the algorithm design
process as possible [10].

One of the main problems related to hyper-heuristics is
how to properly characterize the instances to allow a correct
mapping into heuristics. This problem is not only related to
feature selection, as it covers a wider spectrum (e.g., when the
set of available features does not reflect the properties of the
problems). In this work, we propose a method for transforming
the features used by the selectors in such a way that the
predictive power of the new features increases, obtaining a
better mapping from instances to heuristics.

Summarizing, this investigation has to main contributions:
• It suggests that it is possible to increase the descriptive

power of the features used to characterize a problem by
applying transformations that increase the resolution of
some specific regions of the feature space.

• It provides statistical evidence that transforming the fea-
tures that characterize the problem state may improve the
search when using rule-based hyper-heuristics.

The rest of the paper is organized as follows. Section II
presents the foundations of this work. The problem itself,
as well as the proposed solution and the domain where it
was tested, are described in Section III. Section IV describes
the three-step methodology adopted in this work. Section V
presents the experiments and the results obtained. Finally, our
conclusions and some possible paths for future work are laid
out in Section VI.

II. FOUNDATIONS

Hyper-heuristics are strategies for selecting one from among
several approaches for dealing with the current state of a given
problem [11], [12]. They are mainly comprised of a selection
module and of a core with some kind of learning algorithm.
The former is usually represented as a set of rules, where each
one is a conjunction of feature-value items of the problem,
and a final value corresponding to a specific heuristic. The
latter, uses a set of training scenarios for finding the optimum
feature values (and even the heuristics) that lead to the best
selection for all test problems. Some details regarding these
two components are provided in the next lines.

Fig. 1. Action selection for rule-based hyper-heuristics. Black dots: rules.
White box: current state of the problem.

Hyper-heuristics need a way of assessing the agreement
between the current state of a problem and that of the N
problems it has already learned. One way of doing so is
by calculating the Euclidean distance from the current state
to each of the learned ones.1 Should the distance be small
enough, then both problems are considered similar. Thus,
the action for the next step of the solution (AT) is selected
following the closest neighbor rule, or AT = Aj , where
j = argmin ||FT − Fi||; i = 1, 2, 3, . . . , N . Figure 1 shows
an example for N = 2 rules (black dots). After calculating the
distance from the current test state (white box) to each rule
(d1 and d2 respectively), an action is selected depending on
whether d1 or d2 is the smallest value. In the first case, the
next action is selected as A1. Otherwise, AT = A2.

The core of each hyper-heuristic rests on its learning algo-
rithm, since its task is to improve the selection module so that
it performs appropriately. Producing the rules that minimize
the cost is seen as an optimization problem, as shown in (1),
where Ci(X,A) represents the cost of evaluating problem i
(out of Np) with the rules defined by feature values X , and
with its corresponding actions A.

min :F (X,A)

F (X,A) =

Np∑
i=1

Ci(X,A)
(1)

III. PROBLEM DESCRIPTION

This section presents a brief description of the problems that
arise when using features, as well as the way in which feature
transformation may alleviate them. Some transformations are
shown with exemplary purposes. Also, some comments are
given about the domain selected for this study, including the
considered features and heuristics.

1There are other types of hyper-heuristics, such as those based on prob-
abilistic models [13], reinforcement learning [14] and case-based reason-
ing [15], among others. However, due to space restrictions, and striving to
keep this manuscript as simple as possible, their discussion is omitted.

Fig. 2. Action selection for rule-based hyper-heuristics. Black dots: previous
rules. Gray dots: new rules. White box: current state of the problem.

Fig. 3. Action selection for rule-based hyper-heuristics with transformed
features. Black dot: initial rule. Gray dot: new rule with similar feature values.
White box: current state of the problem. Note: rules two and four are not
shown in order to simplify the plot.

A. The problem with features and how transforming them may
be of help

Hyper-heuristics require a set of features that properly
identify the current state of a problem, and they are usually
normalized to balance their importance over the selection
process. However, simply normalizing a feature may not be
enough. Rule-based hyper-heuristics with features directly
extracted from the optimization problem may exhibit two
drawbacks:
• Likeliness: There may be two or more problem states

with similar features that are best solved by different
strategies (Figure 2). Since features are very alike, their
distance to a test point would also be alike, leading to
sometimes selecting an inappropriate approach. Conse-
quently, there could also be a large set of feature values
where the best action remains constant, thus ‘wasting’
part of the range. Feature transformation may be of help
here, since those small (or big) changes can be mapped to
broader (or narrower) ranges (Figure 3), thus increasing
(or reducing) the difference between the distance values
and reducing the risk of selecting the wrong one (or

Fig. 4. Example of feature behavior concentrated over a given region (lower
values in this case).

Fig. 5. Example of implementing feature transformations for increasing the
resolution of specific regions from the main feature.

saving part of the range for differentiating other values).
• Stagnation: As the solution to an optimization problem

begins to stagnate, features become almost invariant, as
we describe next. Imagine there exists a feature that
measures wasted space in an allocation problem. Thus, a
value of one would indicate that all space is being wasted
while a value of zero would imply perfect allocation.
Most problems would likely start at one (since nothing
has been allocated), but quickly migrate to lower values
as elements are placed (Figure 4). However, a time will
come when improvements become small (e.g. going from
0.05 to 0.04), even if relative big changes are being made
(e.g., swapping two elements). It could also be the case
that these two problem states are best solved by different
approaches. Identifying this phenomenon and defining ap-
propriate rules for dealing with them may prove difficult.
However, by incorporating feature transformations, a set
of values can be created for improving the resolution
over different regions of interest (Figure 5). This way,
the aforementioned difference of 0.01 could be expanded
to a higher value, e.g. 0.07. Furthermore, functions can be
defined as to allow for a higher span in these mappings.
Thus, rule definition may be made into an easier task,

likely improving the performance of its corresponding
hyper-heuristic.

Different kinds of functions can be used for transforming
features, which makes difficult for a researcher to select one
of them. However, a distinction can be made depending on
which region of the feature is of interest. For example, (2)
and (3) were used in Figure 5 for mapping the original feature
into low and high regions of interest, by setting K = 20 and
K = 7, respectively. Nonetheless, should focus be given to the
middle region, a bell-shaped transformation following (4) can
be implemented, where µ relates to the center and σ regulates
the span of the bell. An example of this transformation is
shown in Figure 5 for µ = 0.5 and σ = 0.1 It is worth
remarking that the selection of these functions (or other the
user may desire) is completely arbitrary and may or may not
be an increasing function, but it should focus on expanding the
range where most instances are located. In this sense, simpler
functions such as Y = e(−K·X) or Y = 1 − e(−K·X) could
be used for the transformation. However, preliminary testing
carried out with them showed that they did not behave as good
as (2).

Y = 1− 2 ·
(
e−K·X − e−K

1 + e−K·X

)
(2)

Y =
2

1 + e−K·(X−1)
(3)

Y = e−
(X−µ)2

2·σ2 (4)

B. Domain under study

The feature-transformation strategy described in this work
can be applied to any rule-based hyper-heuristic and to many
different problem domains. However, due to space limitations,
we focused our study on only one domain. We selected
a set of constraint satisfaction problems (CSPs) to validate
the proposed approach, mainly because of its many practical
applications [16], [17]. CSPs are usually solved by traversing
a depth-first search tree. At each node in the search tree, the
algorithm must select an unassigned variable and one suitable
value from its corresponding domain. If the current assignment
of the variables breaks at least one constraint, the search
backtracks and changes the value of a previously assigned
variable, and then, resumes the search from the backtracking
point.

The 322 CSP instances considered for this investigation are
publicly available at a repository.2 The specific sets of in-
stances used in this investigation can be referred by the names
given in the repository: geom, ehi-85 and bqwh-15-106.
From these instances, 5% were used for training and the
remaining 95%, for testing purposes.

2http://www.cril.univ-artois.fr/∼lecoutre/benchmarks.html

1) Heuristics and Problem Features: All the hyper-
heuristics in this investigation work in the following way. They
use a set of features to characterize the current problem state
and, by using a set of rules (discovered automatically by using
a messy genetic algorithm [5]), decide one suitable heuristic
to apply. Once a heuristic has been selected, it decides, based
on its own criterion, the next variable to assign. The process is
repeated every time a variable is to be assigned. Thus, solving
a CSP instance by using a hyper-heuristic derives in a sequence
of different heuristics.

As the search progresses, hyper-heuristics use the charac-
terization of the problem state to decide which heuristic to
apply. Throughout this work, we focused on two features for
characterizing the problem state:
• Constraint density (p1): The global constraint density

is calculated as the number of constraints in the instance
divided by n(n − 1)/2, which represents the maximum
number of possible bidirectional constraints in the in-
stance (where n stands for the number of variables in
the instance).

• Constraint tightness (p2): The local constraint tightness
is calculated as the fraction of forbidden pairs of values
in a given constraint. The global constraint tightness of
a CSP instance is the average of the local constraint
tightness among all the constraints.

By using the information from the features, one heuristic
among the set of available options is chosen at each node.
This work considers four different heuristics:
• Domain (DOM): selects the variable with the fewest

remaining values in its domain [18].
• Degree (DEG): selects the variable with the largest

degree [19], where the degree of a variable is the number
of constraints where such a variable participates.

• Kappa (K): selects first the variable that minimizes the
κ value of the resulting instance [20]:

κ =

−
∑
c∈C

log2(1− pc)∑
x∈X

log2(dx)
(5)

where pc represents the tightness of constraint c (the
proportion of forbidden pairs of values in the constraint)
and dx stands for the domain size of variable x.

• WDEG: attaches a weight to every constraint in the
problem and increases it when its respective constraint
fails during the search [21]. The weighted degree of a
variable is calculated as the sum of the weights of the
constraints in which the variable is currently involved.
WDEG selects the variable with the largest weighted
degree.

Once a variable has been selected by using one of the
heuristics described above, the first available value in its
domain is used for the assignment.

In order to compare the performance of different solvers for
CSPs, in this work we have adopted the following performance
metrics:

Fig. 6. Methodology followed throughout this work

Fig. 7. Transformations applied in this work

• Consistency checks (CC): The revisions of the con-
straints required to solve a given instance. The larger the
number of consistency checks, the more expensive the
search.

• Adjusted consistency checks (ACC): This measure is
similar to the previous one, but the adjustment discards
the tests where the solver times out.

• Success rate (SR): The success rate is a relation between
the number of instances that a solver is able to complete,
divided by the total number of problem instances tested.
The higher the rate, the better the solver.

IV. METHODOLOGY

Throughout this work we followed a three-stage methodol-
ogy (Figure 6), which is briefly discussed in the next lines.
• Generation: The first stage consists on generating a large

enough number of hyper-heuristics so that conclusions
can be derived from the resulting data. In this sense,
we chose to generate 12 different hyper-heuristics, where
each one used a transformation that highlighted one of
four possible ranges, and with three hyper-heuristics per
range. The hyper-heuristic generation process used in this
investigation is an extension of the work described in [5].
This generation process is based on a messy genetic

Fig. 8. Selectors generated and their corresponding actions (with influence zones). Black circle: DOM; Dark gray square: DEG; Light gray diamond: KAPPA;
White star: WDEG. Each column represents a different run and each row (from top to bottom) represents a value of K, where K = 5, 10, 15, 20.

algorithm that produces a set of rules that minimize the
number of revisions of the constraints when solving all
the training instances (consistency checks). In all cases,
the generation model ran with the following parameters:
20 individuals in the population, up to 100 cycles per
run,3 crossover rate of 1.0, and mutation rate of 0.1.

3Considering that using a fixed number of generations could lead to
terminating the algorithm prematurely, or to simply wasting computing time,
we decided to use a criterion based on the eventual performance stagnation.
To do so, the algorithm stops after 5% of the total number of cycles has come
and gone with no improvement, and where the current fitness sits below the
average of the historical fitness, minus its standard deviation [22].

• Selection: After training and testing all hyper-heuristics,
performance data will be analyzed, focusing on the num-
ber of consistency checks required to solve the instances,
as well as on their success rate. Using this information,
K will be selected as the one leading to the best av-
erage performance, and 10 new hyper-heuristics will be
generated.

• Comparison: The final stage will compare the overall
performance of the selected hyper-heuristics against two
reference sets. The first one relates to the performance of
each independent heuristic, as well as to the performance

of an Oracle: a synthetic strategy that always selects
the best heuristic for every instance. This is done to
verify that hyper-heuristics indeed outperform heuristics.
The second batch of comparisons will focus on the per-
formance of ‘traditional’ hyper-heuristics. In this sense,
and considering that a total of 13 hyper-heuristics (for
the best value of K) will be available at this point,
the analysis will be done against 13 hyper-heuristics
generated with no feature transformation [5], striving to
detect any possible gain from the proposed approach.

V. EXPERIMENTS AND RESULTS

The main results of our work are now presented, following
the same structure presented in the methodology.

A. Hyper-heuristics Generation

As indicated before, we created three hyper-heuristics by
using four different values of K: 5, 10, 15 and 20. These values
were empirically defined from a preliminary experimentation
phase. In order to test the feasibility of using feature trans-
formations, we limited our tests to transforming each feature
via (2), highlighting ranges up to 0.80, 0.45, 0.30, and 0.23,
respectively, as the result of the chosen values of K (Figure 7).
Nonetheless, this does not limit the generality of our approach,
since other transformations can also be used, either the ones
shown in (3) and (4), or others that the user may define.

We produced three hyper-heuristics per value of K. To
produce one hyper-heuristic, the genetic algorithm runs until
the termination criteria is met. Each hyper-heuristic contains
a set of rules in the form features → heuristic.

Figure 8 summarizes all hyper-heuristics generated by ap-
plying feature transformation, where each column represents
a different run and where different values of K are shown in
each row. It is evident that a high variability in the number of
generated rules exists, ranging from two to eight. Moreover,
their location is not always the same, and it partly depends
on the number of rules generated. In some cases, overlapping
two runs of the same transformation would place two rules
with the same action on similar locations (e.g., runs two and
three for K = 5). But, in others, rules with different actions
will end up close by (e.g., runs one and two for K = 10),
or in equivalent regions (e.g., runs one and two for K = 5).
This, however, only implies that it is likely that both actions
are good at solving the set of instances whose features rest
at its corresponding region. This is more clearly seen when
analyzing the overlapping of the influence zones across all
runs for each K. For example, with K = 5 it is clear that
most of the diagonal going from (0,0) to (1,1) can be properly
solved with KAPPA (light gray diamonds), while the same
happens for K = 10 but limited to the central region.

B. Hyper-heuristic Selection

After testing all the generated hyper-heuristics in the train-
ing set, it was clear that selectors created with K = 5 out-
performed all others in virtually all scenarios (see highlighted
values in Table I). Thus, we selected this value as the best

K and created 10 additional hyper-heuristics. However, and
due to space restrictions, they are not plotted in the paper.
Nonetheless, the average performance of each value of K is
compared below.

TABLE I
CONSISTENCY CHECKS (CC), ADJUSTED CONSISTENCY CHECKS (ACC),
AND SUCCESS RATE (SR) FOR ALL THE GENERATED HYPER-HEURISTICS,

INCLUDING THE AVERAGE (AVG) AND STANDARD DEVIATION (SD) OF
EACH CONFIGURATION. VALUES IN BOLD REPRESENT THE BEST RESULT

FOR EACH METRIC AT EVERY RUN

Performance Run 1 Run 2 Run 3 AVG SD
CC (K=5) 410533 427049 391642 409741 17717

CC (K=10) 795318 461162 793408 683296 192376
CC (K=15) 440387 719455 698086 619310 155319
CC (K=20) 749041 839898 756196 781712 50518
ACC (K=5) 169815 185069 171410 175431 8384

ACC (K=10) 462871 182868 307611 317783 140279
ACC (K=15) 188632 381979 222910 264507 103167
ACC (K=20) 228457 268794 225464 240905 24199

SR (K=5) 90% 90% 90% 90% 0%
SR (K=10) 74% 89% 60% 75% 15%
SR (K=15) 89% 77% 64% 77% 13%
SR (K=20) 63% 59% 64% 62% 2%

C. Hyper-heuristics Comparison

The final batch of results is presented below. As was
stated in the methodology, data are split into two groups: one
regarding base heuristics and the Oracle, and one comparing
against traditional hyper-heuristics.

1) Performance of heuristics and Oracle: Comparing the
performance of each individual heuristic against that of the
Oracle reveals that the latter is significantly better than each
heuristic on their own (Figure 9). Nonetheless, it is worth
mentioning that the Oracle is a synthetic approach used in
this work to denote the best possible performance that could
be achieved for each instance. Thus, the existence of the
Oracle does not imply the existence of a strategy that works
best for every scenario. Instead, this Oracle operates on the
principle that it is able to accurately predict which one of the
available heuristics will perform best in every scenario. Or,
in other words, it chooses a heuristic using the performance
data of each available option for every instance. However,
since running all solvers for every particular problem is not
practical, the use of this technique for a purpose different to
benchmarking is out of the question.

In spite of what has been said before, throwing hyper-
heuristics into the mix yields interesting results. Even if it
is evident that some values of K hinder performance (i.e.,
lower the success rate to around 60% and increase the number
of adjusted consistency checks to about 300000), there are
other values that drive the performance quite close to the ideal
scenario. For the tests carried out in this stage, this implied
reaching a success rate of over 90% (about 10% higher than
the best heuristic, which required almost thrice the number
of consistency checks) while requiring slightly above 20%
more checks than the Oracle, but with a reduction of more
than 20% when compared to the heuristic with lowest checks
(which had a success rate lower than 65%). It is also important

Fig. 9. Adjusted consistency checks (ACC) and success rates (SR) for all
heuristics, as well as for the Oracle and for all hyper-heuristics (averaged).

to highlight that, on average, all tested values of K required
less checks than most heuristics (including the one with the
highest success rate), while maintaining a success rate higher
than most heuristics.

2) Performance of hyper-heuristics without feature trans-
formation: Since there were 13 available results for the
best value of K, we generated the same number of hyper-
heuristics but disregarding feature transformations. There is
an evident benefit in doing a proper transformation, since it
helps in improving and stabilizing the success rate (Figure 10)
and the number of consistency checks required for solving
the dataset (Figure 11). For hyper-heuristics with no feature
transformations, it is normal to expect success rates between
60% and 90%, with consistency checks ranging from below
200000 and all the way up to over 350000. However, when
using K = 5, most of the data are concentrated on success
rates of around 90% and consistency checks below 200000.
Nonetheless, there are a few outliers with success rates of
about 70% and with consistency checks of about 450000. But,
they are precisely that (i.e., outliers) and not the core of our
data.

A Welch’s two-sample t-test carried out over all 13 samples
of each set showed that there is a significant difference in the
performance of both approaches, with 5% of significance. The
statistical evidence suggests that the averaged results of the
hyper-heuristics produced with feature transformation (K = 5)
are better than the ones produced without such transformation
in terms of adjusted consistency checks and success rate (p-
values of 0.0310 and 0.0082, respectively).

VI. CONCLUSIONS AND FUTURE WORK

This work described a feature transformation approach
that improves the heuristic selection process conducted by
hyper-heuristics. Incorporating feature transformations al-
lowed hyper-heuristics to outperform the heuristics considered
for this study when applied in isolation, while showing to be

Fig. 10. Box plot of the success rates using feature transformation with
K = 5 (top) and without it (bottom).

Fig. 11. Box plot of the adjusted consistency checks using feature transfor-
mation with K = 5 (top) and without it (bottom).

statistically as competent as a synthetic Oracle. Specifically,
and compared to the heuristic with highest success rate (SR),
we managed to reduce the number of adjusted consistency
checks (ACC) by 2/3 while increasing SR by about 10%.
When compared to the heuristic with lowest ACC, we man-
aged to increase the SR by about 25% while reducing the
number of ACC by more than 20%.

The hyper-heuristics generated in this work by incorporating
feature transformation (particularly those with K = 5) were
more stable than the ones produced with no transformation.
It seems that the transformation not only represents an im-
provement to the heuristic selection process, but a reduction
in the deviation of the hyper-heuristics produced through the
messy genetic algorithm model [5]. In terms of the success
rate (SR), using K = 5 increased the median by more than
13% while reducing its standard deviation in about 7%. At the
same time, the median of the number of adjusted consistency
checks (ACC) were reduced by almost 30%.

Some really interesting results that need to be analyzed in

more detail are depicted in Fig. 8. At the moment, all we can
conclude from these figures is that there are similar regions
assigned to one particular heuristic, but a further study needs
to be conducted to get more insights into what these results
really mean.

We are aware that the model requires to be refined. For
example, the selection of the transformation is, at this point,
completely arbitrary. We expect to extend this work and
provide more ideas on how to properly define the most suitable
transformation by using a semi-automatic methodology for
this purpose. Other important trends for future work lies in
fuzzy logic, since we have found similarities between our
feature-transformation approach and some concepts in fuzzy
logic. For example, the latter incorporates a set of membership
functions to estimate the degree in which a given input state
belongs to each rule. We think that exploring how these
membership functions can be used as an equivalent to feature-
transformation may represent an interesting idea for further
study.

Finally, another path worth exploring is the use of different
strategies for estimating the distance between the features of
the problem state and the conditions in the rules. We think
that a modification to the distance function can also improve
the performance of rule-based hyper-heuristics.

ACKNOWLEDGMENTS

This research was supported in part by CONACyT Basic
Science Projects under grant 241461 and ITESM Research
Group with Strategic Focus in intelligent Systems. The last au-
thor gratefully acknowledges support from CONACyT project
no. 221551.

REFERENCES

[1] J. R. Rice, “The algorithm selection problem,” Advances in Computers,
vol. 15, pp. 65–118, 1976.

[2] S. L. Epstein, E. C. Freuder, R. Wallace, A. Morozov, and B. Samuels,
“The adaptive constraint engine,” in Proceedings of the 8th International
Conference on Principles and Practice of Constraint Programming, ser.
CP ’02. London, UK, UK: Springer-Verlag, 2002, pp. 525–542.

[3] E. OMahony, E. Hebrard, A. Holland, C. Nugent, and B. OSullivan,
“Using case-based reasoning in an algorithm portfolio for constraint
solving,” in Irish conference on artificial intelligence and cognitive
science, 2008, pp. 210–216.

[4] S. Petrovic and R. Qu, “Case-based reasoning as a heuristic selector
in a hyper-heuristic for course timetabling problems,” in Proceedings
of the 6th International Conference on Knowledge-Based Intelligent
Information Engineering Systems and Applied Technologies (KES’02),
vol. 82, 2002, pp. 336–340.

[5] J. C. Ortiz-Bayliss, H. Terashima-Marı́n, and S. E. Conant-Pablos, “A
neuro-evolutionary hyper-heuristic approach for constraint satisfaction
problems,” Cognitive Computation, vol. 8, no. 3, pp. 429–441, 2016.

[6] K. Sim, E. Hart, and B. Paechter, “A lifelong learning hyper-heuristic
method for bin packing,” Evol. Comput., vol. 23, no. 1, pp. 37–67, Mar.
2015.

[7] Y. Malitsky, “Evolving instance-specific algorithm configuration,” in
Instance-Specific Algorithm Configuration. Springer International Pub-
lishing, 2014, pp. 93–105.

[8] E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Özcan,
and R. Qu, “Hyper-heuristics: a survey of the state of the art,” Journal
of the Operational Research Society, vol. 64, no. 12, pp. 1695–1724,
2013.

[9] E. K. Burke, G. Kendall, and E. Soubeiga, “A tabu-search hyperheuristic
for timetabling and rostering,” Journal of Heuristics, vol. 6, no. 9, pp.
451–470, 2003.

[10] G. L. Pappa, G. Ochoa, M. R. Hyde, A. x. Freitas, J. Woodward, and
J. Swan, “Contrasting meta-learning and hyper-heuristic research: the
role of evolutionary algorithms,” Genetic Programming and Evolvable
Machines, vol. 15, no. 1, pp. 3–35, 2014.

[11] M. Misir, K. Verbeeck, P. Causmaecker, and G. Berghe, “A new hyper-
heuristic as a general problem solver: an implementation in HyFlex,”
Journal of Scheduling, vol. 16, no. 3, pp. 291–311, 2013.

[12] G. Ochoa, M. Hyde, T. Curtois, J. Vazquez-Rodriguez, J. Walker,
M. Gendreau, G. Kendall, B. McCollum, A. Parkes, S. Petrovic, and
E. Burke, HyFlex: A Benchmark Framework for Cross-domain Heuristic
Search, ser. LNCS. Heidelberg: Springer, 2012, vol. 7245, pp. 136–147.

[13] W. Van Onsem, B. Demoen, and P. De Causmaecker, Learning a Hidden
Markov Model-Based Hyper-heuristic. Cham: Springer International
Publishing, 2015, pp. 74–88.

[14] E. Özcan, M. Misir, G. Ochoa, and E. K. Burke, “A reinforcement
learning-great-deluge hyper-heuristic for examination timetabling,” Int.
J. Appl. Metaheuristic Comput., vol. 1, no. 1, pp. 39–59, Jan. 2010.

[15] E. K. Burke, S. Petrovic, and R. Qu, “Case-based heuristic selection for
timetabling problems,” Journal of Scheduling, vol. 9, no. 2, pp. 115–132,
2006. [Online]. Available: http://dx.doi.org/10.1007/s10951-006-6775-y

[16] J. Berlier and J. McCollum, “A constraint satisfaction algorithm for
microcontroller selection and pin assignment,” in Proceedings of the
IEEE SoutheastCon 2010 (SoutheastCon), march 2010, pp. 348–351.

[17] S. V. Bochkarev, M. V. Ovsyannikov, A. B. Petrochenkov, and S. A.
Bukhanov, “Structural synthesis of complex electrotechnical equipment
on the basis of the constraint satisfaction method,” Russian Electrical
Engineering, vol. 86, no. 6, pp. 362–366, 2015.

[18] P. W. Purdom, “Search rearrangement backtracking and polynomial
average time,” Artificial Intelligence, vol. 21, pp. 117–133, 1983.

[19] R. Dechter and I. Meiri, “Experimental evaluation of preprocessing
algorithms for constraint satisfaction problems,” Artificial Intelligence,
vol. 38, no. 2, pp. 211–242, 1994.

[20] I. P. Gent, P. Prosser, and T. Walsh, “The constrainedness of search,” in
Proceedings of AAAI’96, 1999, pp. 246–252.

[21] F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais, “Boosting sys-
tematic search by weighting constraints,” in European Conference on
Artificial Intelligence (ECAI’04), 2004, pp. 146–150.

[22] J. M. Cruz-Duarte, A. Garcia-Perez, I. M. Amaya-Contreras, and
C. R. Correa-Cely, “Designing a microchannel heat sink with
colloidal coolants through the entropy generation minimisation
criterion and global optimisation algorithms,” Applied Thermal
Engineering, vol. 100, pp. 1052–1062, 2016. [Online]. Available:
http://dx.doi.org/10.1016/j.applthermaleng.2016.02.109

