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ABSTRACT
This paper introduces two new algorithms to reduce the
number of objectives in a multiobjective problem by iden-
tifying the most conflicting objectives. The proposed algo-
rithms are based on a feature selection technique proposed
by Mitra et. al. [11]. One algorithm is intended to determine
the minimum subset of objectives that yields the minimum
error possible, while the other finds a subset of objectives of
a given size that yields the minimum error. To validate these
algorithms we compare their results against those obtained
by two similar algorithms recently proposed. The compar-
ative study shows that our algorithms are very competitive
with respect to the reference algorithms. Additionally, our
approaches require a lower computational time. Also, in this
study we propose to use the inverted generational distance
to evaluate the quality of a subset of objectives.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: Artificial Intelligence—
Problem Solving, Control Methods and Search

General Terms
Algorithms, Performance, Experimentation

Keywords
Multiobjective Optimization, feature selection, many-objective
problems, objective reduction, nonessential objectives

1. INTRODUCTION
Nowadays Multi-objective Evolutionary Algorithms

(MOEAs) have shown an acceptable performance in many
real-world problems with their origins in engineering, sci-
entific and industrial areas [4]. Nonetheless, most of the
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publications consider problems with two or three objectives,
in spite of the fact that many real-world problems involve a
large number of objectives (4 or more). Besides the difficulty
to analyze the Pareto front when there are more than three
objectives, recent studies have shown that MOEAs based
on Pareto optimality have difficulties to find a good Pareto
front approximation in higher dimensions [10, 9, 14]. One of
the reasons for this is that the proportion of non-dominated
solutions (i.e., equally good solutions) in a population in-
creases rapidly with the number of objectives. In [8] it is
shown that this number goes to infinity when the number
of objectives approaches to infinity. This implies that in the
presence of many objectives the selection of new solutions
is carried out almost at random since a large number of the
solutions are equally good in the Pareto sense.

Currently, there are mainly two approaches to deal with
problems involving many objectives, namely: i) to propose
relaxed forms of Pareto optimality as in [1, 8, 7, 12], and ii)
to reduce the number of objectives of the problem to ease
the decision making or the search processes [6, 2]).

In some problems it is possible that although a conflict
exists between some objectives, others behave in a non-
conflicting manner. In this case, we can discard these objec-
tives to obtain a lower-dimensional problem. The reduction
of objectives can be helpful both for decision making and
search. That is, the decision maker would have to analyze
fewer objectives and a lower number of non-dominated so-
lutions. On the other hand, Pareto-based optimizers can be
improved if the number of objectives is reduced adaptively
during the search.

In this paper we propose an algorithm to reduce the num-
ber of objectives of a given problem by identifying the non-
conflicting objectives (also called, non-essential or redundant
objectives). The algorithm is based on an unsupervised fea-
ture selection technique proposed by Mitra et al. [11] where
the goal is to identify the subset of essential objectives of
a problem. We developed two variants of the algorithm,
namely: i) an algorithm that finds the minimum subset
of objectives with the minimum error possible, and ii) an
algorithm that finds a subset of objectives of a given size
and that yields the minimum error possible. A comparative
study shows that the algorithms achieve competitive results
with respect to two algorithms recently proposed [6, 2]. Be-
sides, the proposed approaches have a lower time complexity,
which make them good candidates to be incorporated into



a multiobjective optimization algorithm.
The remainder of this paper is organized as follows. Sec-

tion 2 presents two algorithms similar to our approach. In
Section 3 we describe in detail the two proposed algorithms.
The validation of these algorithms is presented in Section 4.
Finally, in Section 5 we draw some conclusions about the
proposed algorithms, as well as some possible paths for fu-
ture research.

2. RELATED WORK
Deb and Saxena [6] proposed a method for reducing the

number of objectives based on principal component analysis.
The main assumption is that if two objectives are negatively
correlated (taking the generated Pareto front as the data
set), then these objectives are in conflict with each other.
To determine the most conflicting (i.e., the most essential)
objectives the authors analyze in turn the eigenvectors (i.e.,
the principal components) of the correlation matrix. That is,
by picking the most-negative and the most-positive elements
from the first eigenvector, we can identify the two most im-
portant conflicting objectives. To aggregate more objectives
to the set of essential objectives the remainder of the eigen-
vectors are analyzed in a similar way until the cumulative
contribution of the eigenvalues exceeds a threshold cut (TC).
This method is incorporated into an iterative scheme which
uses a multiobjective optimizer (the actual implementation
uses NSGA-II [5]) to obtain a reduced objective set con-
taining only the non-redundant objectives according to the
analysis of the eigenvectors. First, the evolutionary multi-
objective optimizer is run and then the correlation analysis
is carried out to obtain a reduced set of objectives. This
process is repeated using the new reduced set of objectives.
The process stops when the current subset is equal to the
subset generated in the previous iteration.

Brockhoff and Zitzler [2] defined two kinds of objective re-
duction problems and two corresponding algorithms to solve
them. Here the conflict is defined using the change in the
dominance relation induced by the set of objectives over a
solution set in the objective space. That is, if the domi-
nance relation among the vectors does not change when an
objective is discarded, then that objective is not in conflict
with the other objectives and therefore is considered as re-
dundant. This way, the degree of change in the dominance
relation induced on the solution set can be regarded as a
measure of conflict between two sets of objectives. One of
the problems defined consists of finding the minimum objec-
tive subset that yields a given error δ (degree of change in
the dominance relation) (the δ-MOSS problem, which stands
for Minimum Objective Subset problem). The other prob-
lem consists of finding an objective subset of size k with
the minimum error possible (the k-EMOSS problem). Since
both problems are NP-hard , the authors proposed both
an exact and a greedy algorithm for each of them. The
exact algorithms for both problems have time complexity
O(m2s2s), where m is the size of the given non-dominated
set and s is the number of objectives. On the other hand,
the greedy algorithm for the δ-MOSS problem has time com-
plexity O(min{m2s3, m4s2}), while the greedy algorithm for
the k-EMOSS problem has time complexity O(m2s3).

3. PROPOSED OBJECTIVE REDUCTION
ALGORITHMS

In this paper, we propose an unsupervised feature selec-
tion technique to identify the most conflicting objectives in
order to reduce the number of objectives of an optimization
problem. The technique employed was originally proposed
by Mitra et. al. [11] to preprocess data prior to classification
by selecting a subset of the original features.

As in Deb and Saxena’s approach, this technique also uses
a correlation matrix to measure the conflict between each
pair of objectives. This matrix is computed using an ap-
proximation set of the Pareto front generated by some opti-
mizer, for instance, a multiobjective evolutionary algorithm
as we did in this study.

The original algorithm as proposed by Mitra et. al., used
1 − |ρ(x, y)| (where ρ(x, y) is the correlation coefficient be-
tween random variables x and y) as the similarity measure
between features, which only determines the degree of corre-
lation (positive or negative) between features (objectives in
our context) x and y. However, in the case of objective se-
lection we are interested in measuring only the negative cor-
relation between objectives in the approximation set of the
Pareto Front. For this purpose, we used 1 − ρ(x, y) ∈ [0, 2]
instead. Thus, a result of zero indicates that objectives x
and y are completely positively correlated and a value of 2
indicates that x and y are completely negatively correlated.

A negative correlation between a pair of objectives means
that one objective increases while the other decreases and
vice versa. On the other hand, if the correlation is positive,
then both objectives increase or decrease at the same time.
This way, we could interpret that the more negative the cor-
relation between two objectives, the more conflict between
them.

We propose the following algorithms to identify the essen-
tial objectives in a multiobjective problem:

1. Algorithm 1 finds the minimum subset of non-redun-
dant objectives with the minimum error possible.

2. Algorithm 2 finds a subset of non-redundant objectives
of a given size, k, yielding the minimum error possible.

The central part of the two proposed algorithms can be
divided in three steps:

1. Divide the objective set into homogeneous neighbor-
hoods of size q around each objective. The conflict be-
tween objectives takes the role of the distance. That
is, the more conflict between two objectives, the more
distant they are in the objective space. Figure 1(a)
shows only two neighborhoods of a hypothetical situ-
ation with eight objectives and q = 2.

2. Select the most compact neighborhood. That is, the
neighborhood with the minimum distance to its neigh-
bor q-th (i.e., the farthest one in the neighborhood).
Figure 1(b) shows the farthest neighbor for each of the
two neighborhoods. As it can be seen in the example,
the neighborhood on the left is the most compact one.

3. Retain the center of that neighborhood and discard
its q neighbors (the objectives with least conflict in
the current set). In this process, the distance to the
neighbor q-th can be thought of as the error committed
by removing the q objectives (see Figure 1(c)).

The process described above is repeated until some stop-
ping criterion is met. It is important to mention that the
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(a) Divide the objective set into
neighborhoods around each
objective.

(b) Select the most compact
neighborhood.

(c) Retain the center and re-
move the neighbors.

Figure 1: Main scheme of the proposed objective reduction algorithms 1 and 2.

size of the neighborhoods q is a parameter that is reduced
during the search.

Algorithm 1 is described in Figure 2, where rq
i is an en-

try of the correlation matrix denoting the conflict between
objective Fi and its q-th nearest-neighbor. Since the cor-
relation matrix is computed at the beginning of Algorithm
1, we do not have to compute the rq

i value each time we
need it, but just take it from the corresponding entry of the
correlation matrix.

Finally, we have to make some changes to the correlation
matrix in order to use it to select the most conflicting objec-
tives properly. If we use this matrix, it is possible that some
important conflicting objectives are discarded. For instance,
if objective F2 is in conflict with F3 but not with F1, then
F1 will be very close to F2 and, thus F2 can be removed
even if it is one of the most conflicting objectives. To over-
come this problem we carried out the following process to
the correlation matrix:

• Find the maximum conflict value ci,max of each row i
in the matrix (i.e., the maximum negative correlation
value for each objective).

• Add the value ci,max to the column i. This means
that we are assuming that if objective Fi is in conflict
with some objectives, then it is in conflict with all the
objectives.

Algorithm 2 only differs from Algorithm 1 in the stopping
criterion and in the input parameters. Figure 3 shows the
modifications required to obtain Algorithm 2.

The main advantage of both algorithms is their
low-computational complexity since unlike other algorithms
(e.g., Brockhoff and Zitzler’s algorithm), the search for the
best subset is not involved. Regarding the number of objec-
tives the proposed algorithms have complexity O(s2), where
s is the number of objectives of the given non-dominated
set. The computation of the correlation for each pair of
objectives has complexity O(m), where m is the size of
the non-dominated set. Thus, the total complexity of both
algorithms is O(ms2). For comparison purposes, Table 1
summarizes the complexities of the objective reduction al-
gorithms included in this work. The time complexity of Deb
and Saxena’s algorithm corresponds to only one iteration,
since the number of iterations depends on the threshold cut
parameter. Usually, when this parameter is near to one,
more iterations are required to converge. Also, we are con-
sidering that the NSGA-II is used as the optimizer of the

overall algorithm. The second term of the complexity cor-
responds to the NSGA-II as was published in [5], where g is
the number of generations.

For practical purposes, Figure 4 shows the running times
of the three algorithms implemented in MATLAB. In a first
experiment we fixed the size of the input nondominated set
to 240 solutions and for Deb and Saxena’s algorithm (DS

Input: Set of non-dominated solutions, A
Initial objective set O = {Fi, i = 1, ..., s}.
Number of neighbors q ≤ s − 1.

Step 0: Compute the correlation matrix using A

(each entry i, j corresponds to rj
i ).

Step 1: R ← O.
Step 2: Find objective Fi,min which corresponds to

rq
i,min ← minFi∈R {rq

i }.
Step 3: Retain Fi,min and discard its q neighbors.

Let error ← rq
i,min.

Step 4: If q > |R| − 1 then q ← |R| − 1.
Step 5: If q = 1 then go to Step 8 to stop.

Compute again rq
i,min ← minFi∈R {rq

i }.
Step 6: While rq

i,min > error do:
q ← q − 1.
rq

i,min ← minFi∈R {rq
i }.

If q = 1 then go to Step 8.
Step 7: Go to Step 2.
Step 8: Return set R as the reduced objective set.

Figure 2: Pseudocode of the proposed objective re-
duction Algorithm 1.

Input: Set of non-dominated solutions, A.
Initial objective set O = {Fi, i = 1, ..., s} and
Size of the desired objective subset, t.
...

Step 4: If |R| = t then go to Step 8 to stop.
Compute again rq

i,min ← minFi∈R {rq
i }.

Step 5: While rq
i,min > error and q > 1 do:

...

Figure 3: Modifications to obtain objective reduc-
tion Algorithm 2.



Table 1: Time complexity of the objective reduc-
tion algorithms considered in this study (m is the
size of the nondominated set, s the number of ob-
jectives and g the number of generations for each
run of NSGA-II).

Algorithm Complexity

Brockhoff and Zitzler

(δ-MOSS)

O(min{m2s3, m4s2})

Brockhoff and Zitzler

(k-EMOSS)

O(m2s3)

Deb and Saxena† O(ms2 + s3) + O(gm2s)

Algorithms 1 and 2 O(ms2)
†
Complexity of each iteration of the algorithm.

algorithm) we used 50 generations for each run of NSGA-II.
As we can see in the leftmost plot of Figure 4, the running
time of the DS algorithm is too much greater than those of
the other two algorithms. In a second experiment we analyze
only the Brockhoff and Zitzler’s algorithm (BZ algorithm)
and Algorithm 2 fixing m=300 (middle and rightmost plots
corresponds to these two algorithms respectively). Each of
these plots shows the running time for the worst, “median”
and best cases, depending on the size of the final objective
subset size (k). Note that the worst and best cases for the
these algorithms is presented for opposite values of k. Leav-
ing trivial cases aside, for Algorithm 2, the worst case is
presented when k = 2, while for BZ algorithm the worst
case is presented when k = s − 1. For both algorithms, the
median case is presented when k = s/2 for even s.

We want to end this section with two important remarks.
First, it should be noted that although Algorithm 2 is in-
tended to solve the k-EMOSS problem, Algorithm 1, as
shown, does not solve the δ-MOSS problem, but a slightly
different problem. Besides the difference between the se-
mantic of the error involved, the δ-MOSS problem asks for
the minimum subset with a given δ error, while Algorithm 1
finds the minimum subset with the minimum error possible.
Second, we have to note that both algorithms proposed fol-
low a top-down approach instead of a bottom-up approach
like in the Brockhoff and Zitzler’s algorithm or in Deb and
Saxena’s algorithm. That is, our algorithm starts with the
whole set of objectives and iteratively removes some ob-
jectives until the minimum non-redundant objective set is
obtained. In contrast, the other algorithms start with an
empty set to which some objectives are aggregated at each
iteration.

4. COMPARISON STUDY

4.1 Evaluation of Algorithm 1
To evaluate the effectiveness of the proposed

Algorithm 1, we compare its results against those obtained
by the approach proposed by Deb and Saxena (DS algo-
rithm) and the greedy algorithm proposed by Brockhoff and
Zitzler to solve the δ-MOSS (with δ = 0). In this exper-
iment, we employed a variation of the well-known DTLZ5
problem defined in [6]. This variation, denoted by
DTLZ5(I,M), allows to fix a priori the number of essen-
tial objectives, I, from the total number of objectives, M .

We apply the three algorithms to four instances of the
DTLZ5(I,M) problem, namely: DTLZ5(2,3), DTLZ5(2,5),

Table 2: Essential objectives identified by the pro-
posed Algorithm 1, Deb and Saxena’s algorithm and
Brockhoff and Zitzler’s algorithm.

Problem Reduced set of objectives
DTLZ5(2,3) f1, f2

DTLZ5(2,5) f1, f5

DTLZ5(2,10) f1, f10

DTLZ5(3,10) f1, f9, f10

DTLZ5(2,10), DTLZ5(3,10). For the proposed approach
and for Brockhoff and Zitzler’s algorithm we use as input
data a non-dominated set of 500 solutions generated by the
NSGA-II. We use an implementation of Deb and Saxena’s
algorithm following the instructions in [6] and for each run
of the NSGA-II we use a population size of 500 and 300
generations (i.e., a total of 150 000 evaluations).

In all problems, the three algorithms were able to iden-
tify the essential objectives (which are the same as reported
in [6]). Table 2 shows the essential objectives identified in
each case.

4.2 Evaluation of Algorithm 2
The validation of Algorithm 2, intended to solve prob-

lem k-EMOSS (see Section 2), was carried out comparing
its results with respect to the greedy algorithm proposed
by Brockhoff and Zitzler (BZ algorithm) to solve the same
problem. We also used Deb and Saxena’s algorithm in this
problem, however, since it does not address the k-EMOSS
problem directly, we tried different values of the threshold
cut (TC) to obtain different sizes of the final reduced ob-
jective set. In this comparison we considered two problems.
First, two instances with 10 and 20 objectives of the 0/1
knapsack problem with 100 items. Second, two instances
with 10 and 20 objectives of a variation, proposed in [3], of
the well-known problem DTLZ2, which is denoted here by
DTLZ2BZ .

For the proposed approach and the BZ algorithm we used
as input a non-dominated set with 500 solutions generated
by the NSGA-II, while for Deb and Saxena’s approach we
employed a population of 500 individuals and 400 genera-
tions (i.e., a total of 200 000 evaluations) for each run of the
NSGA-II. We had to use this higher number of objectives
in order to obtain a good approximation of the true Pareto
front and therefore achieve a good effectiveness of the algo-
rithm.

In this evaluation, we adopted two different measures.
First, we used the δ-error defined by Brockhoff and Zit-
zler [2]. This error measures the degree of change between
the dominance relation induced by a subset of objectives F ′

and the whole set of objectives, F , with respect to a given
solution set. Thus, a value of 0 in this metric means that
the subset F ′ contains only essential objectives since the
dominance relation does not change.

Ultimately, when we remove some objectives from a prob-
lem, we would want that the obtained Pareto front by using
the objective subset is as near as possible to the Pareto front
of the original problem (i.e., that obtained considering all
the objectives). This way, we can evaluate the quality of two
reduced subsets using some quality indicators usually used
to measure the convergence of a generated Pareto front to
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Figure 4: Running times (in seconds) of the three objective reduction algorithms. Leftmost plot shows the
running times of the three algorithms using k = s/2, m = 240 and, for the DS algorithm, 50 generations for
NSGA-II. Middle and rightmost plots show the running times for the worst (k = s − 1, 2), median (k = s/2)
and best (k = 2, s − 1) cases for the BZ algorithm and Algorithm 2 respectively.

the true Pareto front (PFtrue). The detailed process to make
such a comparison is the following. First, we have to obtain
the Pareto optimal sets generated by using the two objec-
tive subsets. Then, we evaluate the two corresponding sets
of Pareto optimal solutions using all the objectives to obtain
its known Pareto fronts (PFknown). The closeness of these
known Pareto fronts to the true Pareto front can be used as
a measure of quality of the reduced objective subsets. Be-
sides the closeness to the true Pareto front we are interested
in how well it is covered by the Pareto fronts obtained with
the subsets of objectives. These two objectives are taken
into account by the inverted generational distance, so this is
a natural candidate to evaluate the quality of two objective
subsets.

The inverted generational distance (IGD), which is a vari-
antion of a metric proposed in [13], is defined by IGD =
“

p
Pn

i=1
d2

i

”

/n, where n = |PFtrue| and di is the Euclid-

ian distance between each vector of PFtrue and the nearest
member of PFknown. In addition, this metric measures the
spread of PFknown onto PFtrue. That is, a non-dominated
set whose vectors are located on a reduced area of the Pareto-
optimal set, will be penalized in the value of this metric even
though its vectors belong (or are near) to PFtrue. Lower
values are preferred for this metric.

4.2.1 Evaluation Using the Change in the Dominance
Relation

The results corresponding to the 0/1 knapsack problem
with a total of 10 objectives and using the δ-error measure,
are shown in Table 3. The first column indicates the size of
the obtained reduced objective set, while the last line con-
siders all the objectives, therefore, the error in this case is
zero. Additionally, the best result of each row are empha-
sized with boldface.

The results show that the proposed algorithm obtained its
best results when the number of objectives removed is small
(from 1 to 5 objectives). In this problem, the BZ algorithm
achieved the best result in 5 of the 8 cases, our approach
obtained the best result in 3 cases, and the DS algorithm
obtained the best result in only 1 case. Thus, with respect
to the δ-error, we can consider that the BZ algorithm had
the best performance on this particular instance, while the
DS algorithm had the worst performance.

In the instance with 20 objectives (see Table 4), Algorithm

2 obtained the best result in 12 of the 18 cases, while BZ
algorithm achieved the best result in 7 cases. On the other
hand, DS algorithm obtained the worst result in 14 cases.
We conclude that, in this instance, the proposed algorithm
had the best performance and the DS algorithm the worst
performance.

Table 5 shows the results for the problem DTLZ2BZ us-
ing a total of 10 objectives. In this instance, the proposed
algorithm achieved the best results in 5 of the 8 cases, the
BZ algorithm obtained the best results in 3 cases, and the
DS algorithm obtained the best result only once. From this
results, we can say that the proposed algorithm had the
best performance on this problem. However it is not clear
which algorithm had the worst performance. On the one
hand, the DS algorithm obtained the worst result in 2 cases
and, on the other, although the BZ algorithm achieved the
best result in 3 cases, it showed the worst result in 4 cases.
Additionally, it is interesting to note that for a subset of 9
objectives, unlike the two reference algorithms, Algorithm
2 was unable to find a subset with a δ-error equal to zero.
That is to say, a subset that does not change absolutely the
dominance relation.

With respect to the instance DTLZ2BZ with a total of
20 objectives (see Table 6), the BZ algorithm obtained the
best performance achieving the best result in 12 cases, while
the proposed algorithm achieved the best result in 10 of the
18 cases. One more time, the DS algorithm was the worst
algorithm since it obtained the worst results in 10 cases. In
this problem we can observe that 4 objectives are completely
redundant, since the dominance relation does not change
absolutely from 16 to 20 objectives. Brockhoff and Zitzler’s
approach was the only algorithm that reflected this fact,
while the DS algorithm and Algorithm 2 found a subset
with zero δ-error until sizes of 19 and 18, respectively.

4.2.2 Evaluation Using the Inverted Generational
Distance

To evaluate the convergence of the obtained Pareto front
by using an objective subset we used the inverted genera-
tional distance (IGD). This performance measure takes into
account the convergence of the known Pareto front and how
well it covers the extension of the true Pareto front. In some
way, it measures how similar is the Pareto front obtained by
using a subset of the objectives with respect to the“original”



Table 3: Comparison with respect to the δ-error us-
ing the 0/1 knapsack problem with 10 objectives.

δ-error
# obj BZ DS Algorithm 2

2 1458 1466 1595
3 1412 1513 1596
4 1331 1533 1466
5 1158 1362 1148
6 954 859 988
7 881 1148 822
8 822 1148 822
9 569 859 614

Table 4: Comparison with respect to the δ-error us-
ing the 0/1 knapsack problem with 20 objectives.

δ-error
# obj BZ DS Algorithm 2

2 1467 1599 1589
3 1434 1580 1304
4 1388 1433 1304
5 1286 1406 1304
6 1243 1405 1304
7 1164 1233 1100
8 1158 1225 1003
9 1149 1164 993
10 1075 1075 918
11 1056 1055 804
12 993 1153 804
13 937 918 804
14 871 1036 804
15 793 843 785
16 785 805 785
17 699 793 785
18 359 586 785
19 41 104 785

Table 5: Comparison of the three algorithms with
respect to the δ-error, using the DTLZ2BZ problem
with 10 objectives.

δ-error
# obj BZ DS Algorithm 2

2 0.6959 0.7353 0.7353
3 0.6688 0.7051 0.7051
4 0.6610 0.6239 0.5455
5 0.6051 0.5890 0.4908
6 0.5916 0.5799 0.4682
7 0.5707 0.5799 0.3787
8 0.5151 0.5130 0.3054
9 0.0000 0.0000 0.3054

Table 6: Comparison of the three algorithms with
respect to the δ-error, using the DTLZ2BZ problem
with 20 objectives.

δ-error
# obj BZ DS Algorithm 2

2 0.5931 0.7442 0.7326
3 0.5925 0.7326 0.5761
4 0.5570 0.6275 0.5761
5 0.4818 0.5059 0.4818
6 0.4441 0.5171 0.3706
7 0.3257 0.4799 0.2877
8 0.3056 0.3257 0.2877
9 0.2877 0.4532 0.2877
10 0.2461 0.3036 0.2877
11 0.0569 0.3706 0.0279
12 0.0532 0.4125 0.0216
13 0.0068 0.4125 0.0216
14 0.0038 0.3056 0.0216
15 0.0001 0.1014 0.0216
16 0.0000 0.3056 0.0216
17 0.0000 0.0038 0.0068
18 0.0000 0.0038 0.0000
19 0.0000 0.0000 0.0000

Pareto front of the problem which includes all the objectives.
The objective subsets to assess the three algorithms with

the IGD metric are those used in the previous section to com-
pute the δ-error. Likewise, in the present study the known
Pareto fronts corresponding to each objective subset were
obtained using the NSGA-II. For each objective subset the
following parameters were used: 500 individuals and 1000
generations. The large number of generations was intended
to produce Pareto fronts with a small standard deviation of
IGD for each subset. The IGD values shown in this section
are the average of 20 runs for each objective subset. More-
over, instead of using the true Pareto front, we used the
non-dominated set resulting from the union of the known
Pareto fronts generated using the objective subsets of the
three algorithms, as well as the known Pareto front used as
input in the objective reduction algorithms.

Table 7 shows the results for the 0/1 knapsack problem
with 10 objectives with respect to the IGD metric. As we
can see, in 4 of the 8 cases, the proposed algorithm achieved
the best results, while the BZ and DS algorithms obtained
the best result in 3 and 1 cases, respectively. With respect
to the IGD metric the proposed approach had the best per-
formance on this problem. It is worthwhile to remember
that regarding the δ-error, in this instance the BZ algorithm
obtained the best performance. This shows a clear inconsis-
tency between the results based on the performance measure
adopted. In particular, the DS algorithm obtained the worst
result for the subset of 4 objectives using the δ-error, while
using the IGD metric it achieved the best result.

Regarding the 0/1 knapsack instance with 20 objectives
(see Table 8), we can clearly see that the proposed algorithm
had the best performance, which agrees with the conclusion
obtained using the δ-error. However, the DS algorithm had
the second best performance in this instance, while it was
the worst algorithm with respect to the δ-error.

With respect to the DTLZ2BZ with 10 objectives, both



Table 7: Comparison of the three algorithms with
respect to the inverted generational distance (IGD),
using the 0/1 knapsack problem with 10 objectives.

IGD
# obj BZ DS Algorithm 2

2 5.7834 7.5759 5.7452
3 7.5212 8.9904 7.5425
4 5.8694 5.4537 5.8445
5 3.7525 5.2474 3.7406
6 3.4633 3.6170 3.4318
7 3.2607 3.6615 3.2473
8 3.1893 3.7855 3.2001
9 3.1521 3.3678 3.1541

Table 8: Comparison of the three algorithms with
respect to the inverted generational distance (IGD),
using the 0/1 knapsack problem with 20 objectives.

IGD
# obj BZ DS Algorithm 2

2 7.7657 8.0942 10.0344
3 6.7232 6.4659 6.9511
4 5.8777 5.1232 5.4373
5 4.8191 4.4417 4.1027
6 5.0627 4.8973 4.7977
7 5.1815 4.9218 4.4888
8 4.8017 5.0338 4.7557
9 4.8552 4.6459 4.6217
10 5.0189 5.0132 4.9704
11 4.7852 4.6779 4.6470
12 4.8673 4.8582 4.7358
13 4.9812 4.7996 4.8880
14 5.2370 5.0018 4.9121
15 5.1767 5.1215 4.9753
16 5.1166 5.0791 4.9389
17 5.0209 5.0534 5.0534
18 5.2423 5.1553 5.1639
19 5.1714 5.1661 5.2538

Algorithm 2 and the DS algorithm obtained the best IGD
values in 5 of the 9 cases (see Table 9). Algorithm BZ ob-
tained the best result in 3 cases, although it presented the
worst result in 5 cases.

Nonetheless, we can observe a discrepancy between some
results obtained by the two performance measures. On the
one hand, using the δ-error, the DS algorithm showed the
worst performance, but in the other hand, it is the best
algorithm regarding the IGD metric.

In the DTLZ2BZ instance using 20 objectives (see Ta-
ble 10), the BZ algorithm showed the best performance. It
obtained the best results in 13 cases. The proposed problem
obtained the second best performance achieving the best re-
sults in 5 cases. Finally, the DS algorithm obtained the worst
results in 13 cases. Therefore it was the worst algorithm in
this instance considering the IGD metric.

4.3 Final Remarks
Since Algorithm 2 follows a top-down approach one would

Table 9: Comparison of the three algorithms with
respect to the inverted generational distance (IGD),
using the DTLZ2BZ problem with a total of 10 ob-
jectives.

IGD
# obj BZ DS Algorithm 2

2 0.00226 0.00089 0.00089
3 0.00243 0.00071 0.00080
4 0.00082 0.00089 0.00082
5 0.00115 0.00092 0.00090
6 0.00115 0.00099 0.00102
7 0.00093 0.00102 0.00114
8 0.00093 0.00082 0.00082
9 0.00077 0.00077 0.00077

Table 10: Comparison of the three algorithms with
respect to the inverted generational distance (IGD),
using the DTLZ2BZ problem with a total of 20 ob-
jectives.

IGD
# obj BZ DS Algorithm 2

2 0.00235 0.00115 0.00115
3 0.00144 0.00253 0.00078
4 0.00104 0.00233 0.00094
5 0.00094 0.00110 0.00103
6 0.00115 0.00124 0.00148
7 0.00126 0.00115 0.00128
8 0.00115 0.00104 0.00110
9 0.00103 0.00123 0.00120
10 0.00100 0.00104 0.00102
11 0.00097 0.00104 0.00099
12 0.00094 0.00108 0.00097
13 0.00094 0.00104 0.00095
14 0.00092 0.00107 0.00097
15 0.00091 0.00095 0.00092
16 0.00094 0.00101 0.00098
17 0.00095 0.00096 0.00095
18 0.00092 0.00093 0.00093
19 0.00092 0.00093 0.00092



expect that it would achieve its best results when the size
of the objective subset is close the total number of objec-
tives, specially when k = s − 1. However for this case, in
3 of the problems considered (both knapsack instances and
DTLZ2BZ with 10 objectives), Algorithm 2 was unable to
obtain the least δ-error. Although in general, the IGD tends
to decrease as the size of the objective subset increases, in
some particular cases the IGD values increase when an ob-
jective is added. One possible reason for this behavior is that
the number of objectives affects the optimizer degrading its
performance as the number of objectives is increased.

5. CONCLUSIONS AND FUTURE WORK
This paper presented two algorithms to identify the most-

conflicting objectives of a problem so that we can obtain a
reduced set objectives that makes the search (or the decision
making process) easier. Both algorithms are based on the
correlation between each pair of objectives to detect the es-
sential objectives. One algorithm finds the minimum subset
of objectives with the minimum error possible (Algorithm
1), and the other finds a subset of objectives with a given
size yielding the minimum error possible (Algorithm 2).

The results showed that the proposed algorithms are very
competitive with respect to other two similar algorithms re-
cently proposed [6, 2]. One advantage of the proposed algo-
rithms over the two reference algorithms is their low com-
putational time. To compare the effectiveness of the algo-
rithms we adopted the δ-error defined in [2]. Additionally,
we proposed the use of the inverted generational distance
to measure the quality of the obtained reduced set of ob-
jectives. Algorithm 1 was able to identify all the essential
objectives of the problem considered. With regard to the δ-
error, Algorithm 2 achieved the best performance in 2 of the
4 problem instances included (0/1 knapsack with 20 objec-
tives and DTLZ2BZ with 10 objectives), while it showed the
best performance in 3 of the 4 instances regarding the IGD
metric. In general, the DS algorithm presented the worst
performance in the 4 instances considered.

Although, in general, the performance measures yielded
consistent results, in some specific cases they yielded com-
pletely contradictory results. This calls for the need to de-
termine which performance measure is better to evaluate the
quality of a reduced set of objectives.

As part of our future work it would be interesting to study,
in more depth, the behavior of the two performance mea-
sures considered in this article to discover the source of the
discrepancy observed here. Also, we are interested in adopt-
ing another performance measure, for instance the hypervol-
ume indicator [15], to evaluate the quality of two objective
subsets. Finally, given the low complexity of the proposed
algorithms, we intend to develop a multiobjective evolution-
ary algorithm that integrates the proposed Algorithm 2 and
assess its performance in a real-world application having a
high number of objectives.

6. REFERENCES
[1] P. J. Bentley and J. P. Wakefield. Finding Acceptable Solutions

in the Pareto-Optimal Range using Multiobjective Genetic
Algorithms. In P. K. Chawdhry, R. Roy, and R. K. Pant,
editors, Soft Computing in Engineering Design and
Manufacturing, Part 5, pages 231–240, London, June 1997.
Springer Verlag London Limited. (Presented at the 2nd On-line
World Conference on Soft Computing in Design and
Manufacturing (WSC2)).

[2] D. Brockhoff and E. Zitzler. Are All Objectives Necessary? On
Dimensionality Reduction in Evolutionary Multiobjective
Optimization. In Parallel Problem Solving from Nature IX,
pages 533–542. Springer-Verlag, 2006.

[3] D. Brockhoff and E. Zitzler. Offline and Online Objective
Reduction in Evolutionary Multiobjective Optimization Based
on Objective Conflicts. TIK Report 269, Institut für Technische
Informatik und Kommunikationsnetze, ETH Zürich, Apr. 2007.
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