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Abstract—In this paper, an Exponential Weighting Moving
Average (EWMA) control parameter adaptation technique is
tested with Generalized Differential Evolution 3 (GDE3) using a
set of multi-objective test problems and performance metrics. The
results with and without EWMA control parameter adaptation
are compared. EWMA has been earlier proposed with the orig-
inal unconstrained single-objective Differential Evolution (DE),
and EWMA adapts crossover and mutation control parameter
values.

From the results, it is observed that if good initial control
parameter values are used, then there is not clear performance
difference between GDE3 with and without EWMA. However, if
the initial control parameter values are not good, then EWMA
gives clear improvement in performance.

Based on the results, the same control parameter adaptation
technique can be used both in the case of single- and multi-
objective optimization with GDE3. However, different initial
control parameter values should be used in different cases, and
recommendations for initial values are given at the end of the
paper.

I. INTRODUCTION

Generalized Differential Evolution 3 (GDE3) is a general

purpose Evolutionary Algorithm (EA) for problems having

different number of constraints and objectives. GDE3 is an

extension of Differential Evolution (DE) that is meant for

unconstrained single-objective optimization. GDE3 has been

applied for several real optimization problems and in sci-

entific comparative studies [1]. As many other EAs, GDE3

has control parameters, whose values have to be set before

optimization. Setting these parameter values is not an easy

task even for an experienced user, let alone for a non-

experienced practitioner. Therefore, there is a need to automate

the selection of control parameter values.

In this paper, one recent proposal for control parameter

adaptation with DE has been implemented and tested with

GDE3. The proposal is namely Exponential Weighting Moving

Average (EWMA) control parameter adaptation technique that

has provided good results with single-objective DE [2]. Here,

GDE3 with and without EWMA control parameter adaptation

is tested. Comparison is done experimentally using multi-

objective problems and performance metrics defined for the

CEC 2007 Special Session on Performance Assessment of

Multi-Objective Optimization Algorithms [3]. The problems

have two, three, or five objectives, and the number of decision

variables varies from 3 to 30. Difficulty of the problems varies

in terms of separability, modality, and geometry of the Pareto-

front.

The remainder of this paper is organized as follows: Multi-

objective optimization with constraints is briefly defined in

Section II. Section III describes the multi-objective optimiza-

tion method and control parameter adaptation technique used.

Section IV describes experiments and results. Finally, our

conclusions, discussion, and some possible paths for future

research are provided in Section V.

II. MULTI-OBJECTIVE OPTIMIZATION WITH

CONSTRAINTS

A multi-objective optimization problem (MOOP) with con-

straints can be presented in the form [4, p. 37]:

minimize {f1(~x), f2(~x), . . . , fM (~x)}
subject to g1(~x) ≤ 0

g2(~x) ≤ 0
...

gK(~x) ≤ 0

Thus, there are M functions to be optimized and K inequality

constraints. Maximization problems can be converted to min-

imization problems, and all the constraints can be converted

into the form gk(~x) ≤ 0. Thereby the formulation above is

without loss of generality.

The objective of Pareto-optimization is to find an approxi-

mation of the Pareto-front, i.e., to find a set of solutions that are

not dominated by any other solution. Weak dominance relation

� between two vectors is defined in such a way that ~x weakly

dominates ~y, i.e., ~x � ~y iff ∀i : fi(~x) ≤ fi(~y). Dominance

relation ≺ between two vectors is defined such a way that ~x
dominates ~y, i.e., ~x ≺ ~y iff ~x � ~y ∧ ∃i : fi(~x) < fi(~y).
The dominance relationship can be extended to take into



consideration constraint values and objective values at the

same time. Constraint-domination ≺c is defined in this paper

so that ~x constraint-dominates ~y, i.e., ~x ≺c ~y iff any of the

following conditions is true [1]:

• ~x and ~y are feasible and ~x dominates ~y in objective

function space.

• ~x is feasible and ~y is not.

• ~x and ~y are infeasible and ~x dominates ~y in constraint

function violation space.

The definition for weak constraint-domination �c is analogous

by the dominance relation changed to weak dominance in the

above definition. Constraint-domination is a special case of

a more general concept including goals and priorities that is

presented in [5].

III. METHODS

A. Differential Evolution

The Differential Evolution (DE) algorithm [6], [7] was

introduced by Storn and Price in 1995. The design principles

of DE are simplicity, efficiency, and the use of floating-point

encoding instead of binary numbers. As a typical EA, DE

has a random initial population that is then improved using

selection, mutation, and crossover operations. Several ways

exist to determine a stopping criterion for EAs but usually a

predefined upper limit (Gmax) for the number of generations

to be computed provides an appropriate stopping condition.

Other control parameters for DE are the crossover control

parameter (CR), the mutation factor (F ), and the population

size (NP ).

At each generation G, DE goes through each D dimen-

sional decision vector ~xi,G of the population and creates the

corresponding trial vector ~ui,G as follows [8]:

r1, r2, r3 ∈ {1, 2, . . . , NP} , (randomly selected,

except mutually different and different from i)
jrand = floor (rand i[0, 1) ·D) + 1
for(j = 1; j ≤ D; j = j + 1)
{

if(rand j [0, 1) < CR ∨ j = jrand)
uj,i,G = xj,r3,G + F · (xj,r1,G − xj,r2,G)

else
uj,i,G = xj,i,G

}

This is the most common DE version, DE/rand/1/bin,

also known as the classic DE. Functions rand i[0, 1) and

rand j [0, 1) return a random number drawn from the uniform

distribution between 0 and 1 for each i and j. Both CR and

F remain fixed during the entire execution of the algorithm.

Parameter CR ∈ [0, 1], which controls the crossover operation,

represents the probability that an element for the trial vector

is chosen from a linear combination of three randomly chosen

vectors and not from the old vector ~xi,G. The condition

“j = jrand” ensures that at least one element of the trial

vector is different compared to the elements of the old vector.

Parameter F is a scaling factor for mutation and its value

range is (0, 1+] (i.e. larger than 0 and upper limit is around 1

although there is no hard upper limit). In practice, CR controls

rotational invariance of the search, and a small value for it

(e.g., 0.1) is useful with separable problems while larger values

(e.g., 0.9) are useful for non-separable problems. Parameter F
controls the speed and robustness of the search, i.e., a lower

value for F increases the convergence rate but it also increases

the risk of getting stuck into a local optimum. Parameters CR
and NP have the similar effect on the convergence rate as F
has. [9]

After the mutation and crossover operations, the trial vector

~ui,G is compared to the old vector ~xi,G. If the trial vector

has an equal or better objective value, then it replaces the old

vector in the next generation. This can be presented as follows

in the case of minimization of an objective [8]:

~xi,G+1 =

{

~ui,G if f(~ui,G) ≤ f(~xi,G)
~xi,G otherwise

DE is an elitist method since the best population member

is always preserved and the average objective value of the

population will never deteriorate.

B. Generalized Differential Evolution

The first version of Generalized Differential Evolution

(GDE) extended DE for constrained multi-objective optimiza-

tion, and it modified only the selection rule of the basic

DE [10]. The basic idea in the selection rule of GDE is that

the trial vector is selected to replace the old vector in the next

generation if it weakly constraint-dominates the old vector.

There was no explicit sorting of non-dominated solutions [11,

pp. 33 – 44] during the optimization process or any mechanism

for maintaining the distribution and extent of solutions. Also,

there was no extra repository for non-dominated solutions.

The second version, GDE2, made the selection based on

crowdedness when the trial and old vector were feasible and

non-dominating with respect to each other in the objective

function space [12]. This improved the extent and distribution

of the obtained set of solutions but slowed down the con-

vergence of the overall population because it favored isolated

solutions far from the Pareto-front until all the solutions had

converged near the Pareto-front.

The third version is GDE3 [13], [14]. Besides the selection,

another part of the basic DE has also been modified. Now, in

the case of feasible and non-dominating solutions, both solu-

tions are saved for the population of next generation. Before

continuing to the next generation, the size of the population

is reduced using non-dominated sorting and pruning based on

diversity. The pruning technique used in the original GDE3 is

based on crowding distance, which provides a good crowding

estimation in the case of two objectives. However, crowding

distance fails to approximate crowdedness of solutions when

the number of objectives is more than two [14]. Since, the

problem set adopted in [3] consists of problems with more

than two objectives, a more general diversity maintenance

technique proposed in [15] is used. The technique is based on

a crowding estimation using the nearest neighbors of solutions



in an Euclidean sense, and an efficient nearest neighbors search

technique.

All the GDE versions can handle different number of M
objectives and number of K constraints, including the cases

where M = 0 (constraint satisfaction problem) and K = 0
(unconstrained problem). When M = 1 and K = 0, the

versions are identical to the original DE, and this is why they

are referred to as Generalized DEs.

C. Exponential Weighting Moving Average Control Parameter

Adaptation Technique

Exponential Weighting Moving Average (EWMA) control

parameter adaptation technique has been recently proposed

for single-objective DE. The technique was first proposed for

adaptation of CR and F separately, and then the technique was

proposed to be used for adapting both CR and F simultane-

ously [2]. According to the results presented in [2], EWMA

applied to adapt both CR and F simultaneously outperforms

the classic DE and separate control parameter adaptation

approaches. While EWMA adapts CR and F , population size

NP and number of generations Gmax are kept fixed.

EWMA performs control parameter adaptation by updat-

ing weighted average history of successful control parameter

values. Two new variables, EWMACR and EWMAF , are

used to store successful control parameter history of CR and

F , respectively. EWMA values start from the same values

as CR and F . EWMA values are then later on updated

according to successful CR and F values meaning that their

values are updated whenever new trial solution replaces the

corresponding target solution. CR and F values are generated

anew at the beginning of each generation using current EWMA

values added with a random value. Formally, at beginning of

a generation, new CR and F values are created as follows:

CR = EWMACR + rand [−x, x]
F = EWMAF + rand [−x, x],

where rand [−x, x] is a uniformly distributed random variable

in the range [−x, x]. After creation, new values are checked

and changed if they exceed given lower and upper bounds.

Also, a c value describing the effect of crossover and mutation

operations to the standard deviation of the population is

calculated and a check is enforced so that defined lower

and upper bounds are not violated. The c value is calculated

as [16]:

c =

√

2F 2CR − 2CR/NP + CR2/NP + 1

Checking and updating control parameter values is done as

follows:

if F < Fmin ∨ F > Fmax,
then F = EWMAF

if CR < CRmin ∨ CR > CRmax ∨ c < cmin ∨ c > cmax,
then CR = EWMACR

Checking and updating is done in this order so the c value is

calculated after checking and possibly correcting the F value.

EWMA values are updated based on control parameter

values that were used to create the successful trial solution.

The update is done in the following way:

EWMACR = α · CR + (1− α) · EWMACR

EWMAF = α · F + (1− α) ·EWMAF

Thus, the idea is to update EWMA values to the direction of

successful CR and F values remembering also the history of

previous EWMA values.

The EWMA adaptation technique involves several new

parameters, but these are going to have chosen fixed values

that are not to be changed by the user.

Something nice about the presented adaptation technique is

that it is simple and only modifies the control parameter part of

the algorithm. In GDE3, EWMA values are updated whenever

the trial vector weakly constraint-dominates the target vector.

This way the function is identical to [2] in the case of single-

objective optimization and therefore also the results in [2] are

directly applicable.

IV. EXPERIMENTS

A. Configuration

GDE3 with and without the EWMA control parameter

adaptation was implemented in the ANSI-C programming

language. With both approaches, the same initial control

parameter values were used. Tests with each test problem were

repeated 100 times and the same random number generator

seeds were used for both approaches in order to have the same

initial random populations. Two different approaches for initial

control parameter values were used: in one approach the fixed

initial control parameter values were used through repetitions

and in another approach different random values (but the same

for both approaches) were used through repetitions. For fixed

control parameter values three different setups were used:

CR = 0.1 & F = 0.5; CR = 0.2 & F = 0.2; and CR = 0.9
& F = 0.9. The first setup (CR = 0.1 & F = 0.5) is the same

as used in [17] and this setup was found with a preliminary

test to be quite optimal for the given set of test problems. The

second setup (CR = 0.2 & F = 0.2) is found to be suitable in

general in the case of multi-objective problems [1]. The third

setup (CR = 0.9 & F = 0.9) is the one often recommended

for single-objective optimization and also used in [2].

For the population size and number of generations, fixed

values NP = 100, and Gmax = 4999 were used. These values

were the same as used in [17]. The size of the population was

set according to the smallest desired approximation set size

given in [3]. With chosen NP and Gmax values, the number

of function evaluations (FES) is exactly 500 000, which was

an upper limit given in [3]. The performance was measured

after 5 000, 50 000, and 500 000 FES.

In [3], approximation sets of different sizes were demanded

for different problems. In GDE3, the size of the approximation

set is usually the same as NP . Now, NP was kept fixed

for all the problems, and solutions for the approximation set

were collected during generations. Populations of the 200 last

generations (49 last generations in the case of 5 000 FES) were



merged together and non-dominated solutions were selected

from this merged set of solutions. If the size of the non-

dominated set was larger than the desired approximation set

size, then the set was reduced to the desired size using the

pruning technique described in [15].

The performance was measured using the Hypervolume and

the R indicator as in [3], [17]. These indicators measure overall

quality of the obtained sets of non-dominated solutions. Both

indicators were used in unary form with the help of provided

reference sets, and for both indicators, smaller values mean

better results (if the value is less than 0, then the obtained

solution is better than the corresponding reference set).

The variable values used in the EWMA technique were the

same as used in [2], and these values were x = 0.1, α = 0.1,

Fmin = 0.2, Fmax = 1.0, CRmin = 0.0, CRmax = 1.0,

cmin = 1.0, and cmax = 1.5. The values were deliberately

kept same as in [2] to have identical control value adaptation in

both single- and multi-objective cases without problem specific

tuning. It could be possible to have some better values for

a given set of problems but then there would be danger of

loosing generality.

Each test problem given in [3] has a predefined range of

variables, thus there are boundary constraints. In the case of

boundary constraint violations, violating variable values were

reflected back from the violated boundary by the amount of

violation as in [1], [9], [17]

B. Results of Experiments

The problems given in [3] were solved 100 times and

achieved results are presented in Tables I–XII. The tables

show the mean values of indicators. The results in Tables I–

VI correspond to the case when CR = 0.1 and F = 0.5.

The results in Tables VII–XII correspond to the case when

random values CR ∈ [0.0, 1.0] and F ∈ [0.2, 1.0] were used

as initial values for the approaches. The tables contain also

statistical significance comparison between approaches. The

value of Wilcoxon rank-sum test 1 is shown under mean

indicator values. If one approach has obtained significantly

better results according to Wilcoxon rank-sum test (with 1%

significance level) than the other one, then the better value is

printed with boldface.

From Tables I–VI it can be seen that when good control

parameter values are used for CR and F , there is no clear

evidence if EWMA provides clear improvement to the results.

It appears that with a small number of FES, fixed parameter

values provide slightly better results, but with a large number

of FES, EWMA provides slightly better results. Anyway, the

results are contradicting and a clear judgment cannot be made.

From Tables VII–XII it can be seen that when control

parameter values for CR and F are randomly selected, EWMA

provides a clear improvement to the results. Improvement is

especially clear for larger numbers of FES.

1Wilcoxon rank-sum test was chosen since the test does not expect the
random variables to follow a normal distribution. According to the histograms
of the indicator values, the performance metric values are not normally
distributed.

Numerical results for the cases CR = 0.2 & F = 0.2 and

CR = 0.9 & F = 0.9 are not shown here but in the first

case, the results were similar compared to the shown case of

good control parameter values. In the second case, EWMA

was even more clearly better than in the case of randomly

selected control parameter values.

As anticipated, better initial control parameter values lead

to better performance according to the performance metrics.

However, with EWMA the performance difference between

good and bad control parameter values is very small and in

some few cases EWMA with bad initial control parameter val-

ues resulted better performance metric values than with good

initial control parameter values. One should note that EWMA

adjusts control parameter values only based on dominance

relation between the trial and old solution, but the performance

metrics here measure overall performance.

Figure 1 shows history of EWMACR and EWMAF values

as box plots during generations when random CR and F
values were used with OKA2. It can be seen that EWMACR

and EWMAF did not converge to some certain values but

rather to some value ranges. This same was observed with the

other problems. Value ranges for EWMACR were smaller and

having smaller values than for EWMAF .

V. CONCLUSIONS AND DISCUSSION

Generalized Differential Evolution 3 (GDE3) with and

without Exponential Weighting Moving Average (EWMA)

control parameter adaptation has been experimentally eval-

uated using the problems and metrics defined for the CEC

2007 Special Session on Performance Assessment of Multi-

Objective Optimization Algorithms. EWMA adapts values of

crossover control parameter CR and mutation parameter F
while population size and stopping condition are kept constant.

EWMA has been earlier proposed for single-objective DE,

but the technique can be adapted to GDE3 in such a way

that methods are identical in the case of a single-objective

problem. Since EWMA has already been evaluated in the case

of single-objective optimization, EWMA was evaluated only

for multi-objective optimization in this paper.

Tests were performed using fixed and randomly selected

initial control parameter values. According to the numerical

results, when initial control parameter values are good, it is

not clear if GDE3 is better with or without EWMA control

parameter adaptation. It can be said that the results are

comparable with both ways. When initial control parameter

values are not good, then GDE3 with EWMA provides clear

improvement over GDE3 without EWMA.

Based on the results of this paper and results of single-

objective DE with EWMA published in [2], it is advisable

to use EWMA with GDE3 in the case of single- and multi-

objective problems. However, different initial control parame-

ter values should be used based on the number of objectives.

In single-objective optimization, suitable control parameter



TABLE I
THE RESULTS FOR R INDICATOR (IR2) ON TEST FUNCTIONS 1–7 WHEN CR = 0.1 & F = 0.5

FES OKA2 SYMPART S ZDT1 S ZDT2 S ZDT4 R ZDT4 S ZDT6

GDE3 -7.4741e-05 2.6338e-02 4.5234e-02 9.7147e-02 7.6181e-02 1.7341e-02 1.3424e-01

5e3 GDE3+EWMA -3.6186e-05 3.1989e-02 4.8330e-02 1.0524e-01 8.3744e-02 2.0254e-02 1.3688e-01
Wilcoxon 6.5742e-01 1.0859e-05 6.6689e-02 9.4194e-08 1.2387e-08 3.6312e-06 2.9686e-06

GDE3 -9.8804e-04 2.2664e-05 1.1541e-04 1.3115e-03 6.8281e-03 9.4912e-04 2.0003e-02

5e4 GDE3+EWMA -1.0109e-03 2.8472e-05 1.9509e-04 8.4648e-03 7.0592e-03 1.0807e-03 2.6633e-02
Wilcoxon 4.4006e-04 3.3143e-01 1.1033e-04 3.7786e-14 9.1148e-01 3.1586e-01 2.0224e-06

GDE3 -1.0585e-03 1.5688e-06 6.2936e-06 8.0821e-04 2.2293e-05 7.2145e-04 -1.0788e-06
5e5 GDE3+EWMA -1.0595e-03 1.4489e-06 2.4906e-06 8.0125e-03 4.8615e-05 6.2342e-04 -9.1228e-07

Wilcoxon 1.2048e-01 3.2081e-04 1.7887e-10 9.8530e-04 2.0341e-02 2.7102e-02 3.2217e-01

TABLE II
THE RESULTS FOR R INDICATOR (IR2) ON TEST FUNCTIONS 8–13 WITH M = 3 AND CR = 0.1 & F = 0.5

FES S DTLZ2 R DTLZ2 S DTLZ3 WFG1 WFG8 WFG9

GDE3 2.2619e-04 4.2988e-04 4.7575e-04 8.0696e-02 -1.0764e-02 -4.0342e-03
5e3 GDE3+EWMA 2.2195e-04 4.3675e-04 4.8801e-04 8.0386e-02 -1.0166e-02 -4.2093e-03

Wilcoxon 2.2321e-01 3.4498e-01 4.3213e-01 1.4976e-01 5.5882e-02 9.6200e-01

GDE3 4.9709e-05 1.2210e-04 1.7305e-05 5.5880e-02 -2.5996e-02 -9.0437e-03
5e4 GDE3+EWMA 3.8010e-05 9.1176e-05 1.6893e-05 6.1670e-02 -2.5526e-02 -9.0061e-03

Wilcoxon 3.8066e-06 2.9575e-25 1.1032e-01 6.0236e-16 1.8116e-05 8.8634e-01

GDE3 6.6288e-06 2.2875e-05 4.3575e-07 2.3419e-03 -2.8498e-02 -9.3978e-03
5e5 GDE3+EWMA 5.2820e-06 2.3095e-05 9.2820e-07 8.8549e-03 -2.8483e-02 -9.5445e-03

Wilcoxon 1.7492e-02 8.9020e-01 3.4772e-10 3.9697e-30 6.8773e-01 8.4302e-02

TABLE III
THE RESULTS FOR R INDICATOR (IR2) ON TEST FUNCTIONS 8–13 WITH M = 5 AND CR = 0.1 & F = 0.5

FES S DTLZ2 R DTLZ2 S DTLZ3 WFG1 WFG8 WFG9

GDE3 1.8990e-04 1.8701e-04 2.2249e-04 5.6353e-02 5.7327e-03 6.8174e-03
5e3 GDE3+EWMA 2.0156e-04 1.8681e-04 2.2716e-04 5.6515e-02 6.0145e-03 6.4938e-03

Wilcoxon 2.2978e-01 8.7285e-01 3.2779e-01 3.1061e-02 3.9584e-01 3.2418e-01

GDE3 3.6094e-05 5.6739e-05 1.2955e-05 4.5486e-02 -7.2376e-03 2.5055e-03
5e4 GDE3+EWMA 2.6311e-05 5.2087e-05 1.3472e-05 4.7855e-02 -7.4687e-03 2.4960e-03

Wilcoxon 3.1193e-15 3.0320e-04 6.3462e-01 5.7702e-17 1.3640e-02 9.3865e-01

GDE3 2.0631e-05 3.4022e-05 2.0241e-07 4.5620e-03 -1.1490e-02 1.9538e-03
5e5 GDE3+EWMA 2.0061e-05 2.2859e-05 1.9460e-07 1.1460e-02 -1.1627e-02 1.5916e-03

Wilcoxon 3.7708e-01 4.6801e-19 8.1549e-01 8.6930e-30 3.7760e-05 9.3931e-05

TABLE IV
THE RESULTS FOR HYPERVOLUME INDICATOR I

H̄
ON TEST FUNCTIONS 1–7 WHEN CR = 0.1 & F = 0.5

FES OKA2 SYMPART S ZDT1 S ZDT2 S ZDT4 R ZDT4 S ZDT6

GDE3 4.3175e-04 7.4974e-02 1.5673e-01 2.3549e-01 2.3089e-01 5.3839e-02 3.3980e-01

5e3 GDE3+EWMA 3.1182e-04 9.0588e-02 1.6824e-01 2.5942e-01 2.5543e-01 6.2261e-02 3.4660e-01
Wilcoxon 3.6403e-01 1.0617e-05 1.2391e-02 8.1400e-07 3.5911e-09 3.6744e-06 5.1608e-06

GDE3 -1.1451e-03 6.7904e-05 5.7510e-04 1.9345e-03 2.0401e-02 3.2832e-03 4.5048e-02

5e4 GDE3+EWMA -1.1702e-03 8.5014e-05 9.0484e-04 1.0777e-02 2.1051e-02 3.6692e-03 6.0730e-02
Wilcoxon 1.4147e-04 3.4748e-01 4.6817e-10 1.3997e-16 8.9213e-01 2.9736e-01 1.9269e-06

GDE3 -1.2265e-03 4.6798e-06 1.8072e-04 1.1643e-03 5.2785e-05 2.4401e-03 -2.3044e-04

5e5 GDE3+EWMA -1.2266e-03 4.3086e-06 1.8237e-04 9.7306e-03 1.1616e-04 1.8021e-03 -2.2790e-04
Wilcoxon 9.7369e-01 2.7585e-04 2.2845e-02 1.8003e-02 1.7636e-13 2.7398e-05 4.2663e-34



TABLE V
THE RESULTS FOR HYPERVOLUME INDICATOR I

H̄
ON TEST FUNCTIONS 8–13 WITH M = 3 AND CR = 0.1 & F = 0.5

FES S DTLZ2 R DTLZ2 S DTLZ3 WFG1 WFG8 WFG9

GDE3 1.8887e-03 1.0813e-02 7.0896e-03 4.0785e-01 -7.3777e-02 -2.4175e-02
5e3 GDE3+EWMA 2.2946e-03 1.1268e-02 9.5670e-03 4.0616e-01 -7.0913e-02 -2.5211e-02

Wilcoxon 3.1586e-01 3.2900e-01 6.8950e-12 1.0550e-01 8.9709e-02 8.9986e-01

GDE3 1.1015e-04 5.2459e-04 2.6520e-06 2.9004e-01 -1.6083e-01 -5.7386e-02
5e4 GDE3+EWMA 8.7776e-05 2.6033e-04 2.9440e-06 3.1623e-01 -1.5834e-01 -5.7249e-02

Wilcoxon 4.7527e-03 7.3976e-28 6.0020e-01 6.5339e-15 9.4548e-07 6.0873e-01

GDE3 -3.4539e-06 9.1015e-06 2.6768e-09 8.9850e-03 -1.7450e-01 -6.0593e-02
5e5 GDE3+EWMA -7.4541e-06 1.0390e-05 8.5377e-09 4.6398e-02 -1.7407e-01 -6.1344e-02

Wilcoxon 2.9935e-02 1.4702e-01 2.6243e-08 1.3600e-30 2.3787e-03 1.0558e-02

TABLE VI
THE RESULTS FOR HYPERVOLUME INDICATOR I

H̄
ON TEST FUNCTIONS 8–13 WITH M = 5 AND CR = 0.1 & F = 0.5

FES S DTLZ2 R DTLZ2 S DTLZ3 WFG1 WFG8 WFG9

GDE3 1.4577e-03 3.2829e-03 2.4495e-03 6.3377e-01 -4.3075e-02 5.3230e-02
5e3 GDE3+EWMA 1.6588e-03 3.0503e-03 3.1149e-03 6.3537e-01 -3.6512e-02 4.8610e-02

Wilcoxon 3.1350e-01 5.4640e-02 1.7701e-06 4.5510e-02 2.4349e-02 4.2218e-01

GDE3 4.5072e-05 3.9071e-05 7.6578e-06 5.2194e-01 -2.6798e-01 -9.8845e-02
5e4 GDE3+EWMA 2.2997e-05 -2.5670e-05 9.0885e-06 5.4658e-01 -2.6485e-01 -9.7592e-02

Wilcoxon 2.8480e-14 7.4803e-15 5.6006e-01 5.2016e-17 3.7314e-01 3.7183e-01

GDE3 8.6042e-06 -1.2978e-04 1.4090e-09 5.2020e-02 -3.4919e-01 -1.1087e-01
5e5 GDE3+EWMA 7.8945e-06 -1.6136e-04 1.1693e-09 1.4329e-01 -3.4915e-01 -1.1721e-01

Wilcoxon 3.3143e-01 3.5811e-29 3.1116e-01 1.4392e-30 9.0954e-01 9.6811e-10

TABLE VII
THE RESULTS FOR R INDICATOR (IR2) ON TEST FUNCTIONS 1–7 WHEN CR ∈ [0.0, 1.0] & F ∈ [0.2, 1.0]

FES OKA2 SYMPART S ZDT1 S ZDT2 S ZDT4 R ZDT4 S ZDT6

GDE3 9.0990e-05 3.5094e-02 6.2706e-02 1.2094e-01 9.6459e-02 3.2893e-02 1.4265e-01
5e3 GDE3+EWMA -4.3284e-05 3.3678e-02 5.9992e-02 1.1947e-01 9.4186e-02 3.1326e-02 1.4187e-01

Wilcoxon 5.5023e-01 5.5023e-01 2.0000e-01 4.5539e-01 5.6501e-01 2.6468e-01 2.8839e-01

GDE3 -1.0158e-03 3.1885e-03 1.6729e-02 5.4585e-02 5.4063e-02 1.1513e-02 7.9917e-02
5e4 GDE3+EWMA -1.0122e-03 2.6746e-05 1.7832e-03 2.4310e-02 8.8899e-03 8.1009e-03 3.3218e-02

Wilcoxon 4.3644e-01 1.9589e-07 1.5245e-10 1.2564e-05 6.3391e-23 1.8976e-04 3.5383e-09

GDE3 -1.0609e-03 7.2397e-05 2.7517e-03 3.0470e-02 2.4523e-02 3.1585e-03 2.4354e-02
5e5 GDE3+EWMA -1.0599e-03 1.5470e-06 2.4239e-06 2.2831e-02 5.2030e-05 1.4516e-03 -9.1228e-07

Wilcoxon 2.3139e-02 5.2712e-22 2.4079e-18 3.8528e-06 3.0608e-27 9.8076e-08 1.6828e-17

TABLE VIII
THE RESULTS FOR R INDICATOR (IR2) ON TEST FUNCTIONS 8–13 WITH M = 3 AND CR ∈ [0.0, 1.0] & F ∈ [0.2, 1.0]

FES S DTLZ2 R DTLZ2 S DTLZ3 WFG1 WFG8 WFG9

GDE3 3.4579e-04 5.8574e-04 5.2718e-04 8.1095e-02 -6.2897e-03 1.8273e-03
5e3 GDE3+EWMA 2.7527e-04 5.8557e-04 4.8553e-04 8.1006e-02 -7.1069e-03 1.1363e-03

Wilcoxon 4.2684e-02 9.2699e-01 1.7725e-02 5.2445e-01 1.8177e-01 2.5948e-01

GDE3 6.6249e-05 3.2790e-04 2.2070e-04 6.8865e-02 -1.7439e-02 -7.2564e-03
5e4 GDE3+EWMA 4.1566e-05 2.7058e-04 4.1792e-05 6.4482e-02 -2.3024e-02 -8.4256e-03

Wilcoxon 1.0924e-03 1.6367e-02 3.2137e-19 3.5667e-08 4.2630e-10 1.0050e-02

GDE3 1.7416e-05 2.3852e-04 1.3866e-04 4.6443e-02 -2.1816e-02 -9.7485e-03
5e5 GDE3+EWMA 6.0494e-06 1.5643e-04 7.6268e-07 9.7516e-03 -2.8486e-02 -1.1727e-02

Wilcoxon 1.4799e-11 4.0237e-05 6.2159e-30 4.3803e-19 3.5986e-22 1.2706e-05



TABLE IX
THE RESULTS FOR R INDICATOR (IR2) ON TEST FUNCTIONS 8–13 WITH M = 5 AND CR ∈ [0.0, 1.0] & F ∈ [0.2, 1.0]

FES S DTLZ2 R DTLZ2 S DTLZ3 WFG1 WFG8 WFG9

GDE3 2.6985e-04 2.1436e-04 2.5445e-04 5.7103e-02 9.1420e-03 1.0199e-02
5e3 GDE3+EWMA 2.4499e-04 2.1287e-04 2.4646e-04 5.7063e-02 8.5124e-03 1.0271e-02

Wilcoxon 1.8825e-01 8.6708e-01 3.5126e-01 8.1929e-01 1.1588e-01 8.3834e-01

GDE3 6.9061e-05 1.1395e-04 7.8860e-05 5.1477e-02 5.8853e-04 4.6295e-03
5e4 GDE3+EWMA 3.9147e-05 9.7612e-05 2.0456e-05 4.9750e-02 -3.6495e-03 4.2931e-03

Wilcoxon 1.6743e-09 8.4089e-03 1.9817e-18 2.6034e-06 7.0909e-07 2.0519e-01

GDE3 4.8841e-05 9.9389e-05 6.1632e-05 4.1544e-02 -3.9953e-03 3.1471e-03
5e5 GDE3+EWMA 2.1112e-05 4.1464e-05 1.9587e-07 1.5381e-02 -1.0855e-02 2.4592e-03

Wilcoxon 4.6451e-03 8.1327e-16 2.8330e-30 2.1069e-20 3.3280e-18 2.1106e-04

TABLE X
THE RESULTS FOR HYPERVOLUME INDICATOR I

H̄
ON TEST FUNCTIONS 1–7 WHEN CR ∈ [0.0, 1.0] & F ∈ [0.2, 1.0]

FES OKA2 SYMPART S ZDT1 S ZDT2 S ZDT4 R ZDT4 S ZDT6

GDE3 2.5323e-04 9.8927e-02 2.2127e-01 3.1221e-01 2.9633e-01 1.0027e-01 3.6282e-01
5e3 GDE3+EWMA 1.3165e-04 9.4993e-02 2.0911e-01 3.0623e-01 2.8917e-01 9.6022e-02 3.6028e-01

Wilcoxon 5.8500e-01 5.5187e-01 1.5967e-01 4.8544e-01 5.9851e-01 3.3754e-01 2.2789e-01

GDE3 -1.1727e-03 9.1281e-03 6.0981e-02 1.1954e-01 1.6328e-01 3.4939e-02 1.9707e-01
5e4 GDE3+EWMA -1.1706e-03 7.9881e-05 6.8085e-03 3.1003e-02 2.6436e-02 2.4691e-02 7.6408e-02

Wilcoxon 7.8904e-01 2.7522e-07 6.5885e-10 4.3318e-06 7.1585e-23 2.0111e-04 6.0097e-09

GDE3 -1.2244e-03 2.0987e-04 1.0373e-02 4.4906e-02 7.3195e-02 9.7340e-03 5.9312e-02
5e5 GDE3+EWMA -1.2272e-03 4.5890e-06 1.8245e-04 2.7344e-02 1.2369e-04 4.3148e-03 -2.2767e-04

Wilcoxon 1.0553e-03 8.2778e-22 4.7871e-13 6.8117e-05 5.8259e-26 7.5873e-08 5.8632e-06

TABLE XI
THE RESULTS FOR HYPERVOLUME INDICATOR I

H̄
ON TEST FUNCTIONS 8–13 WITH M = 3 AND CR ∈ [0.0, 1.0] & F ∈ [0.2, 1.0]

FES S DTLZ2 R DTLZ2 S DTLZ3 WFG1 WFG8 WFG9

GDE3 5.8959e-03 2.7836e-02 2.0730e-02 4.0926e-01 -4.9622e-02 1.2810e-02
5e3 GDE3+EWMA 4.6389e-03 2.7487e-02 1.8234e-02 4.0882e-01 -5.3346e-02 8.4944e-03

Wilcoxon 1.2582e-01 7.0036e-01 1.3450e-01 5.4211e-01 2.0695e-01 2.8508e-01

GDE3 9.3504e-04 9.4541e-03 7.4475e-03 3.4973e-01 -1.1333e-01 -4.4725e-02
5e4 GDE3+EWMA 2.9793e-04 7.7124e-03 8.3533e-04 3.2935e-01 -1.4400e-01 -5.1400e-02

Wilcoxon 6.6871e-11 1.5828e-02 1.0102e-20 3.1035e-08 3.0183e-10 5.5292e-03

GDE3 1.3654e-04 4.0382e-03 3.5082e-03 2.3789e-01 -1.3454e-01 -5.8255e-02
5e5 GDE3+EWMA -2.5727e-06 2.9037e-03 3.3828e-09 5.1084e-02 -1.7417e-01 -7.1978e-02

Wilcoxon 2.7249e-17 2.6241e-05 2.9971e-30 3.8364e-19 2.5041e-23 2.4811e-08

TABLE XII
THE RESULTS FOR HYPERVOLUME INDICATOR I

H̄
ON TEST FUNCTIONS 8–13 WITH M = 5 AND CR ∈ [0.0, 1.0] & F ∈ [0.2, 1.0]

FES S DTLZ2 R DTLZ2 S DTLZ3 WFG1 WFG8 WFG9

GDE3 3.9840e-03 5.6178e-03 6.8908e-03 6.4070e-01 -2.7673e-03 1.1580e-01
5e3 GDE3+EWMA 3.2311e-03 5.4464e-03 6.3435e-03 6.4046e-01 -8.1061e-03 1.1841e-01

Wilcoxon 1.3324e-01 5.6832e-01 6.0702e-01 8.6131e-01 2.9286e-01 6.9133e-01

GDE3 4.9999e-04 1.8309e-03 2.0270e-03 5.8175e-01 -1.3082e-01 -3.8205e-02
5e4 GDE3+EWMA 2.0378e-04 1.4084e-03 1.7882e-04 5.6514e-01 -2.0052e-01 -4.6213e-02

Wilcoxon 2.4282e-16 2.7722e-03 8.5948e-21 2.8644e-06 4.0373e-06 1.5823e-01

GDE3 3.3757e-04 1.5353e-03 1.6889e-03 4.7174e-01 -1.8015e-01 -6.6889e-02
5e5 GDE3+EWMA 9.2885e-06 2.3457e-04 1.1889e-09 1.8951e-01 -3.3240e-01 -9.4063e-02

Wilcoxon 8.5941e-14 4.1942e-16 4.3099e-28 2.3621e-20 4.8987e-18 7.1863e-08
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Fig. 1. Box plots of EWMA values on every 25 generations when random initial control parameter values were used with OKA2.

values could be CR = 0.9, F = 0.9, and NP = 10 · D 2.

In the case of multi-objective optimization, suitable control

parameter values could be CR = 0.2, F = 0.2, and NP =
100 · (M − 1) 3.

As a future work remains to investigate and compare any

other control parameter techniques that could be applicable

with GDE3 in both single- and multi-objective optimization.

Also, automatic stopping condition for GDE3 should be stud-

ied.
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