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Abstract—In this paper, a simple and effective termination
condition for both single- and multi-objective evolutionary algo-
rithms has been proposed. The termination condition is based on
simply observing objective values of solution candidates during
generations. Effectiveness of the termination condition is self-
evident with single-objective problems but unclear with multi-
objective problems. Therefore, experiments with some well known
bi- and tri-objective test problems have been performed. The
proposed termination condition is implemented in Generalized
Differential Evolution (GDE) that is a general purpose optimiza-
tion algorithm for both single- and multi-objective optimization
with or without constraints. Our preliminary results indicate
that the proposed termination condition is a suitable termination
condition also with multi-objective problems. With the termi-
nation condition and a control parameter adaptation technique
previously introduced, GDE has become a fully automated
optimization algorithm that can be used by any optimization
practitioner.

I. INTRODUCTION

Evolutionary Algorithms (EAs) [1] are population based

stochastic methods useful especially with hard optimization

problems. However, usability of EAs is limited by many

parameters that need to be fixed before optimization. These

parameters include termination condition, population size, and

usually some method specific control parameters, e.g., for

crossover and mutation of an EA.

This paper focuses on finding a termination condition

for both single- and multi-objective EAs. The problem of

deciding a termination condition is as a very old one. The

most commonly used termination condition is the number of

generations or function evaluations. This is suitable with easy

problems and test problems but when dealing with real-world

problems, it would be desirable to have a termination condition

that is automatic and based on convergence of the search,

since otherwise probably too few or too many fitness function

evaluations are performed. Besides the number of generations,

many different types of termination conditions have been used

such as the maximal allowed CPU time elapsed, lack of

improvement in the found fitness value, and/or the population

diversity drops under some given threshold [1, pp. 23–24]

Determining the termination condition for multi-objective

EAs (MOEAs) is harder than for single-objective EAs since

the search does not converge to a single solution but multi-

ple solutions. A taxonomy of online termination criteria for

MOEAs has been proposed in [2]. That paper also contains

a survey of sophisticated termination conditions used with

MOEAs, e.g., in [3], [4]. Those conditions often involve

maintaining an archive for previous generations / best solutions

candidates, different kinds of progress indicators, and the

use of statistics. To the authors’ best knowledge no simple

effective termination condition for MOEAs has been proposed

so far.

The remainder of this paper is organized as follows: Back-

ground of multi-objective optimization and EAs used in this

paper are described in Section II. Section III describes the pro-

posed termination condition. Section IV provides performance

evaluation of the proposed termination condition. Finally, our

conclusions and discussion are provided in Section V.

II. BACKGROUND

A. Constrained Multi-Objective Optimization

A multi-objective optimization problem (MOOP) with con-

straints can be presented in the form [5, p. 37]:

minimize {f1(~x), f2(~x), . . . , fM (~x)}
subject to g1(~x) ≤ 0

g2(~x) ≤ 0
...

gK(~x) ≤ 0

Thus, there are M functions to be minimized and K inequality

constraints. Maximization problems can be converted to mini-

mization problems, and all the constraints can be converted

into the form gk(~x) ≤ 0. Thereby, the formulation above

is without loss of generality. Unconstrained single-objective

optimization is a special case of the above definition with

M = 1 and K = 0.
The goal of evolutionary based multi-objective optimization

is to find an approximation of the Pareto-front, i.e., to find a



set of solutions that are not dominated by any other solution.

A weak dominance relation � between two vectors is defined

in such a way that ~x weakly dominates ~y, i.e., ~x � ~y iff

∀i : fi(~x) ≤ fi(~y). The dominance relation ≺ between two

vectors is defined in such a way that ~x dominates ~y, i.e., ~x ≺ ~y

iff ~x � ~y ∧ ∃i : fi(~x) < fi(~y). The dominance relationship

can be extended to take into consideration constraint values

and objective values at the same time. Constraint-domination

≺c is defined in this paper so that ~x constraint-dominates ~y,

i.e., ~x ≺c ~y iff any of the following conditions is true [6]:

• ~x and ~y are feasible and ~x dominates ~y in objective

function space.

• ~x is feasible and ~y is not.

• ~x and ~y are infeasible and ~x dominates ~y in constraint

function violation space.

The definition for weak constraint-domination �c is analogous

by the dominance relation changed to weak dominance in the

above definition.

B. Differential Evolution

The Differential Evolution (DE) algorithm [7], [8] was

introduced by Storn and Price in 1995. The design principles

of DE are simplicity, efficiency, and the use of floating-point

encoding instead of binary numbers. As a typical EA, DE has a

random initial population that is then improved using selection,

mutation, and crossover operations. Usually a predefined upper

limit (Gmax) for the number of generations to be computed

is used as the termination condition. Other control parameters

for DE are the crossover control parameter (CR), the mutation

factor (F ), and the population size (NP ).

At each generation G, DE goes through each D dimen-

sional decision vector ~xi,G of the population and creates the

corresponding trial vector ~ui,G as follows [9]:

r1, r2, r3 ∈ {1, 2, . . . , NP} , (randomly selected,

except mutually different and different from i)
jrand = floor (rand i[0, 1) ·D) + 1
for(j = 1; j ≤ D; j = j + 1)
{

if(rand j [0, 1) < CR ∨ j = jrand)
uj,i,G = xj,r3,G + F · (xj,r1,G − xj,r2,G)

else
uj,i,G = xj,i,G

}

This is the most common DE version, DE/rand/1/bin,

also known as the classic DE. Functions rand i[0, 1) and

rand j [0, 1) return a random number drawn from the uniform

distribution between 0 and 1 for each i and j. Both CR and

F remain fixed during the entire execution of the algorithm.

Parameter CR ∈ [0, 1], which controls the crossover operation,

represents the probability that an element for the trial vector

is chosen from a linear combination of three randomly chosen

vectors and not from the old vector ~xi,G. The condition

“j = jrand” ensures that at least one element of the trial

vector is different compared to the elements of the old vector.

Parameter F is a scaling factor for mutation and its value

range is (0, 1+] (i.e. larger than 0 and upper limit is around 1

although there is no hard upper limit). In practice, CR controls

rotational invariance of the search, and a small value for it

(e.g., 0.1) is useful with separable problems while larger values

(e.g., 0.9) are useful for non-separable problems. Parameter F

controls the speed and robustness of the search, i.e., a lower

value for F increases the convergence rate but it also increases

the risk of getting stuck into a local optimum. Parameters CR

and NP have a similar effect on the convergence rate as F

has. [10]

After the mutation and crossover operations, the trial vector

~ui,G is compared to the old vector ~xi,G. If the trial vector

has an equal or better objective value, then it replaces the old

vector in the next generation. This can be presented as follows

in the case of minimization of an objective [9]:

~xi,G+1 =

{

~ui,G if f(~ui,G) ≤ f(~xi,G)
~xi,G otherwise

DE is an elitist method since the best population member

is always preserved and the average objective value of the

population will never deteriorate.

C. Generalized Differential Evolution

Generalized Differential Evolution (GDE) [6] is an ex-

tension of DE for constrained multi-objective optimization.

There exist several development versions of GDE that are

shortly described below. All the GDE versions can handle

different numbers of M objectives and a different number of

K constraints, including the cases where M = 0 (constraint

satisfaction problem) and K = 0 (unconstrained problem).

When M = 1 and K = 0, the versions are identical to the

original DE, and this is why they are referred to as Generalized

DEs.

The first version of GDE extended DE for constrained multi-

objective optimization, and it modified only the selection rule

of the basic DE [11]. The basic idea in the selection rule of

GDE is that the trial vector is selected to replace the old vector

in the next generation if it weakly constraint-dominates the

old vector. There was no explicit sorting of non-dominated

solutions [12, pp. 33 – 44] during the optimization process

or any mechanism for maintaining the distribution and extent

of solutions. Also, there was no extra repository for non-

dominated solutions.

The second version, GDE2, made the selection based on

crowdedness when the trial and old vector were feasible and

non-dominating with respect to each other in the objective

space [13]. This improved the extent and distribution of the

obtained set of solutions but slowed down the convergence

of the overall population because it favored isolated solutions

far from the Pareto-front until all the solutions had converged

near the Pareto-front.

The third version is known as GDE3 [14], [15]. Besides

the selection, another part of the basic DE has also been

modified. Now, in the case of feasible and non-dominating

solutions, both solutions are saved for the population of next

generation. Before continuing to the next generation, the size



of the population is reduced using non-dominated sorting

and pruning based on diversity. GDE3 can be conspired as

an improved version of the elitist Non-dominated Sorting

Genetic Algorithm (NSGA-II) [16] that is the most used multi-

objective optimization method in the MOEA literature.

The pruning technique used in the original GDE3 is based

on crowding distance of NSGA-II, which provides a good

crowding estimation in the case of two objectives. However,

crowding distance fails to approximate crowdedness of solu-

tions when the number of objectives is more than two [15] 1.

For problems having more than two objectives, a more general

diversity maintenance technique proposed in [18] is used. The

technique is based on a crowding estimation using the nearest

neighbors of solutions in an Euclidean sense, and an efficient

nearest neighbors search technique. GDE3 has performed well

both in several academic studies [10], [19], [20] and in several

practical applications [21]–[25], e.g., NASA has applied GDE3

for solving some space science optimization problems [26].

Therefore, GDE3 has been selected as an optimization method

of this study.

GDE has the same control parameters as DE. There already

exist studies of automatic control parameter adaptation tech-

niques both for single- and multi-objective DEs. In [27] the

Exponential Weighting Moving Average (EWMA) control pa-

rameter adaptation technique was implemented in GDE3 and

was found to perform well both in single- and multi-objective

optimization. In the same paper, some rules for selecting

the population size are provided. Thus, only an automatic

termination condition is missing from a fully automated GDE

method.

III. THE PROPOSED TERMINATION CONDITION

The basic idea is to calculate an indicator value S that is

the sum of objective values 2 in the population of feasible

solutions. Formally:

SG =

NP
∑

n=1

M
∑

m=1

fG,n,m ,

where fG,n,m is the mth objective value of nth population

member in generation G. Reasoning behind the indicator is

that its value will decrease until reaching convergence since

the goal of optimization is to minimize objectives 3. However,

since the search might temporally stop or fluctuate, the value of

S is not used directly as a termination condition but instead,

the history of S values is used. For this purpose a table H

is used. The length of the table is Hmax and it determines

desired certainty / reliability for the convergence. Last S values

1Although crowding distance works well only with two objectives, it is still
used in studies (such as in [17]) with more than two objectives.

2In this paper objective values are used directly, but they could be
also normalized using magnitudes of objectives determined from the initial
population. Also, instead of calculating sum of objective values, calculating
mean of objective values could be used.

3In multi-objective optimization individual objective values might increase
while other objective values decrease but the sums of objective values are
assumed to decrease during the search if the optimization method is able to
minimize objective values.

are stored in H and the sum of elements in H is used as a

termination condition. At generation G, the sum is:

HG =
∑

H =
∑

[SG, SG−1, SG−2, . . . , SG−Hmax+1]

At the beginning of the search, H is initialized with larger

values than S0 (i.e., S value of the initial population). Search

is continued as long as HG < HG−1 (one can use the maximal

number of generations as a second termination condition just

in case).

IV. PERFORMANCE EVALUATION

All the implementations were made in Matlab and tests were

performed in an ordinary laptop. In all the tests, Hmax =
50 was used for reliability. All the problems have limits for

decision variable values. If these limits were violated 4 then

the violation was corrected using the following rule:

xi =

{

2x
(lo)
i − xi if xi < x

(lo)
i

2x
(up)
i − xi if xi > x

(up)
i

,

where xlo
i and x

up
i represent the lower and upper bounds for

variable xi, respectively. This rule reflects violated variable

values inside violated boundary by the amount of the viola-

tion 5.

A. Single-Objective Optimization

Even without numerical experiments, one can figure out

the behavior of a termination condition in single-objective

optimization with DE or GDE. Since the optimization method

is elitist, the sum of objective values in the population will

not deteriorate. The search terminates when there has not

been improvement in the population during the last Hmax

generations. Termination happens because of stagnation or

convergence. For resolving which one has been the reason

for termination, one can repeat search several times. If the

solution is always the same, there is a good probability that

the solution is optimal.

The termination condition was tested with two classical

single-objective multi-modal test problems, Rastrigin’s and

Schwefel’s functions with 20 variables. In termination, all

the population members had the optimal objective value as

assumed.

B. Multi-Objective Optimization

For evaluating the performance of the proposed termination

condition in multi-objective optimization, it was implemented

in GDE3 and tested with some well known bi- and tri-objective

test problems. Most often problems appearing in studies have

had only two or three objectives [28, p. 305] and therefore no

higher number of objectives were tested. The EWMA control

4DE and GDE are able to create new solutions candidates outside the
original initialization range and / or current population.

5With certain test problems, Pareto-optimal solutions lay on the boundary
of the decision variable space and the constraint violation correction rule
(especially such one that corrects the violation to the boundary) can have a
great impact on convergence. The reflection rule is general and does to take
advantage of the problem’s features.



0 5 10 15 20 25 30

Volume (in
3
)

0.5

1

1.5

2
S

tr
e

s
s
 (

p
s
i)

×105 Generations: 98

Fig. 3. The final population at termination for the Spring Design problem.

parameter adaption technique and diversity maintenance tech-

nique for many-objective (more than two) optimization were

also implemented with GDE3. The population size and initial

control parameter values are NP = 100 · (M − 1), CR = 0.2,
and F = 0.2.
The first validation was performed with the ZDT test

problems [12, pp. 356–360] that are bi-objective and were

very popular at the beginning of this century. For assessing the

quality of obtained solutions, Inverted Generational Distance

(IGD) [29] was used. IGD measures the average distance

of the Pareto-front to the solutions and it measures overall

quality of the solution candidates. The optimal value is zero.

Figure 1 shows the final populations and IGD curves for the

ZDT problems. It can be observed that all the ZDT problems

have a good convergence to the true Pareto-fronts.

The second validation was performed with the DTLZ test

problems [30] that are well-known tri-objective test problems.

Figure 2 shows the final populations and IGD curves for the

DTLZ problems. Well-converged good approximations of the

Pareto-fronts can be observed also with these problems 6

Since the previous test problems are artificial with the same

value range for the objectives and without constraints, the

termination condition was tested also with the Spring Design

problem [31], [32]. The problem has two objectives that have

totally different value ranges (magnitude difference is about 10

000). Besides the objectives, the problem has eight constraints.

Figure 3 illustrates the final population at termination. This

problem does not have an analytical Pareto-front but based on

earlier experiments with the problem (e.g., in [6]) the obtained

solution is optimal.

V. CONCLUSIONS AND DISCUSSION

A termination condition, which is suitable for both single-

and multi-objective optimization has been proposed and eval-

uated. Based on our experiments, the condition is suitable

for multi-objective optimization although the condition is very

simple. The condition has one parameter value, but fixing it

is much easier than fixing, e.g., the number of generations.

6For DTLZ2, IGD value does not reach absolute zero because the popula-
tion size is not large enough to cover the Pareto-front totally.

One should note that this termination condition does not

guarantee convergence to the global optimum. If the problem is

difficult and / or the optimization method is not capable to find

the global optimum, it is clear that the proposed termination

condition cannot guarantee convergence either. Therefore, it

is recommended to perform several independed optimization

runs. If the solution is the same in several repetitions, one can

assume with good confidence that the solution is optimal.

The termination condition was implemented in Generalized

Differential Evolution (GDE). Other parameters were also

automatically set / adapted. Therefore, GDE performed now

fully automatically without any user-defined parameters. This

would make the method usable for any practitioner.

There are probably several improvements that one can make

to GDE, but the method is already now suitable for general

optimization. This completes the work of the first author on

GDE started in 2003. The next step would be to publish the

program codes of the method.
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