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Abstract— The performance of ant colony optimization structures that allow the ants (alternatively to the tiadal
(ACO) algorithms significantly improves when hybridized with  probabilistic approach) to choose solution components in a

local search procedures which strongly bias the search towds  geterministic way, influenced by the values stored in this
promising regions of the search space. In this work, we study memory '

a recently proposed Memory based ACO algorithm (M- : o .
ACO) which incorporates some tabu search principles into tle As this memory stores specific information about the
solution construction process. This algorithm has also bee search history since the beginning of the algorithm’s ex-
hybridized with two local search procedures: 2-opt (M-ACO-  ecution, it allows to focus into non-visited regions of the

2o0pt) and Tabu Search (M-ACO-TS). The performances of ; ; ; ;
the two hybrid versions of M-ACO are analyzed on a set of search space (i.e., regions not yet registered in the mgmory

instances of the Quadratic Assignment Problem (QAP). The Wh”e QISO cpncentrgting on a!ready V_iSited and promis-
results show that the hybrid versions of M-ACO are able to iNg regions (i.e., registered regions). Different souragad
improve the quality of the best known solutions for several & combinations of information were considered in this early

the instances studied. work, which allowed us to apply alternative intensifica-
l. INTRODUCTION tion/diversification mechanisms in order to avoid prematur

Ant colony optimization (ACO) algorithms generate soconvergence and improve the algorithm’s performance with

. L .respect to a well-known ACO algorithm that has been
lutions for an optimization problem through a construction”” ™. . : .
previously applied to the quadratic assignment problem

mechanism in which the selection of the solution compone
to be added at each step is probabilistically influenced %ﬁzzhra\/téﬁ — MIN Ant System (MMAS-QAP)

pheromone trails and (in most cases) by heuristic infor- Hereafter. the paper is organized as follows. Section Il
mation [6] from which a probabilistic model is evolved ' pap 9 '

to better explore the search space. Accordingly, this Copr)]r_esents the QAP. In Section lll, we provide a general oatlin

. g . of the variants of the memory-based algorithm presented
struction process probabilistically builds, step by sté@ . . - . L
roblem solutions. However, a solution construction px;e;ceIn [3] and descnbe t_he specn_‘lc variant adopted in thls_work_.
P ' ' - The two hybrid versions studied here are shortly described i

can be designed such that the pheromone trails, heuristic” . : N
9 P : ection IV. Section V reports the results of the applicatibn
values, or any other source of information, can be used O

- . e hybrid memory-based ACO algorithms to a set of well-
deterministically determine the next problem component {0 . . . . :
[lown instances of the QAP including a comparison with

be added to the solution under construction. The propos ; . .
) : - e best known solutions for the set of instances considered
of Acan [1], [2], Tsutsui [14] and Wiesemann & Stitzle [15]_. . ;

inally, Section VI presents some relevant conclusions of

constitute some examples of the use of an external memory . . S
. . . . our study and a discussion about future research directions

as an alternative selection mechanism for the solution com-

ponents. More recently, Arito and Leguizamon [3] studied Il. QUADRATIC ASSIGNMENT PROBLEM

the possibility of alternating the way in which the ants stle h is anAP-hard bl hich i I

the next solution component. This was done by introducir%gT el QA&P IS E‘ P-blar pfro em [8], whic f|s g_sua y

an external memory as auxiliary mechanisnto help in formulated as the problem of assigning a set of objects to a

the process of deciding the next problem component to et of locations with given distances between the locations

chosen at each step of the solution construction process.and given flows between the objects. The objective is to

Such a proposal was inspired by the well-known optimizzi‘-Chie"e an optimal assignment of these objects to locations
tion technique Tabu Search (TS) [7]. in such a way that the sum of the product between flows
The memory-based ACO proposed in [3] included &"d distances is minimal:
deterministic mechanism represented by different memory
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ufacturing, process communications, statistical datdyana 1) Recency based memor¥his type of memory stores
sis, hospital layout, among many others, as well as maogmponents of the solutions that have changed in the recent
combinatorial optimization problems such as the Traveliqmast. The usual way of exploiting this type of memory
Salesman Problem (TSP), the Maximum Clique Probleim labeling the selected components of recently visited
(MCP), and the Graph Partitioning Problem (GPP) can t®lutions. What this approach is trying to achieve is to
formulated as instances of the QAP [4]. This reflects the highspectively “forbid” or “encourage” certain choices that
importance of this problem, and has motivated the designmfevent us from exploring a larger region of the search space

a wide variety of metaheuristics to solve it. by concentrating on a particular region based on solutions
already visited in the recent past.
[1l. A MEMORY-BASED ACO ALGORITHM It is important to have in mind that for some instances,

Our memory-based ACO algorithm proposed and studiéd good search process would result in visiting again a
in [3] shares some characteristics with thé.AX — MZN previously found solution. Thus, this mechanism aims at
Ant System (MMAS-QAP) algorithm [9], [11], which is continuously stimulating the discovery of new solutions of
considered the best performing ACO algorithm for the QABIGh quality. _
currently available [12]. The solutions iIMMAS-QAP  For the QAP, the recency based memory stores the iter-
are constructed by assigning at each construction step #fgn at which the algorithfnassigned objecf to location
element to some location. Pheromone traj) indicates © for 1 < i,j < n. First, this memory allows the ants
that we want to assign elemepitto locationi. MMAS- O make decisions taking into account what objects are the
QAP does not use any heuristic information in the solutidfioSt recentlyassigned to a particular location since they
construction procedure. The pheromone updating is done}jve an associated value close to the current iteration of
lowering the pheromone trails by a constant fagioand the algorithm. Second, it allows to make decisions taking

depositing pheromone on the individual solution compomer|Pt0 account what objects are theast recentlyassigned to
of either: i) the best solution in the current iteration, thip & Particular location since they have an associated vatue fa

best solution found so far by the algorithm, o iii) the best s TOM the current iteration of the algorithm. ,

lution found since the last re-initialization of the phermme ~ When the memory-based ACO algorithm takes into ac-
trails. More precisely, in the originaMMAS-QAP two coun_t th(=T mos_t re_centlyas&gned objects to a parucular
ways of constructing solutions were proposed. The fircation, it maintains & x n recency based matrix called
one makes at each construction step a probabilistic cholc@€ncy, whererecency[i, ] stores the most recent
similar to the rule in the Ant System algorithm [6], wherealiération (the last one) at which the objetthas been
the second one uses the pseudo-random proportional acfigiigned to the locatiog during the execution of the
choice rule similar to the one adopted by the Ant CO|On§Igor_|thm. Therefqre,_th|s matr|x_|s used in the process of
System [5]. Solution construction in two possible ways:

In our a|gorithm_ we make use of a mechanism similar to ¢ Intensification: choose the object that was the most
the second one mentioned above (further explained in this recently assigned to the current location (i.e., if the
paper). Additionally, our approach does not use at all the current location isi, the object; is chosen such that
pheromone reinitialization process. recency[i,]] has the highest iteration number).

Similarly to the approach followed itMMAS-QAP in « Diversification: choose the object that was the least
which a local search procedure is applied for improving recently assigned to the current location (i.e., if the
each candidate solution generated by the ants, we used in current location isi, the object;j is chosen such that
our early work [3] an iterative improvement algorithm (the ~ recency[i,j] has the lowest iteration number).
2—exchange neighborhopdvhere two candidate solutions 2) Frequency based memor¥his type of memory stores
are neighbors if they differ in the assignment of exactly 2omponents of the solutions that appear more frequently in
units to locations. This local search procedure uses a bestsolution (i.e., it accounts for the number of times that a
improvement pivoting rule. component is either present in a solution or in a specific

In the following, we present the general design of thposition of the solution). The usual way of exploiting this
memory-based ACO algorithm for QAP. However, for théype of memory is by labeling the selected components of
experimental study presented here, we have chosen ondhef most frequently chosen solutions. This memory allows
the variants presented in [3] as will be explained at the emal “forbid” that an ant chooses a solution component when

of this section. it has been frequently chosen in the previous solutions.
Thus, the “prohibition” aims at generating solutions that
A. Memory structures indeed differ from those already generated. In this way, the

The memory structures in Tabu Search operate by refgggploration of the search space is extended. Inversely, thi

ence to four main dimensions: recency, frequency, qua"&formanon can be used to “promote” their selection since

and influence. Our approach makes use of two of them;_ _ N o o
This value is not the iteration value of the algorithm itsdléit it is a

_recency and frequency. Next, We_ explain how they are usggl,e computed according to the number of ants and to thermiteration
in our memory-based ACO algorithm. number.



most of the ants have chosen them as part of their soluticar® random variables with a probability distribution given
and therefore they can be considereddasirablemembers by equations (2) and (3), respectively as explained in the
for a new solution. following.

For the QAP, the frequency based memory stores theTo promote exploitation, we used the rule:
times that objectj has been assigned to locatian for

1 < i,j < n. Then, this memory allows the ants to make { argmasx, e {memory[i, 11} if r < ro

decisions taking into account those elements that were tHg = .
arg max;e {7} if >

most frequentlassigned to a particular location because they
have a high assignment frequency associated to them. On the
other hand, it allows to make decisions taking into account ) ) ) N
those elements that were theast frequentlyassigned to a !N this rule, with a fixed probabilityry (0 < 7o <
particular location, since they have the lowest assignmeht the chosen object is the one that was assigned the
frequency associated to them. highest number of times to the current Iocatmen_(mry
When the memory-based ACO algorithm takes into ag- | F €quency) or that was most recently assigned to
count the most recentlyassigned objects to a particulafN® current locationrenory = recency). Also, with a
location, it maintains & x n frequency-based matrix calledProbapility (1 — o), the most desirable object is chosen
frequency, in which thef r equency[i,j] stores the according to the ph_ero_mone _tra|ls. \_/anab*les a randokm
number of times that the objegthas been assigned to thd'umber uniformly distributed in the intervéd, 1] and
location during the execution of the algorithm. Then, thidS the set of still unassigned elements for the anthat is,

matrix is used in the process of constructing a solution HF1OS€ elements that are still to be assigned to location
two possible ways: To promote exploration, we used the rule:

« Intensification: choose the object that was assigned the

)

highest number of times to the current location (i.e., if argminge e {memory[i, 11} if p<po

the current location ig, the chosen object is that for  p _ A3)
i i,jl i i 75 (t) i

which f requency[i, j] is the highest). m if p> po

« Diversification: choose the object that was assigned the
lowest number of times to the current location (i.e., if
the current location i$, the chosen object is that for

which  r equency[i ] is the lowest). In this rule, with a fixed probabilitypy (0 < py < 1), we

choose the element that was assigned the lowest number of
B. Constructing Solutions times to the current locatioménor y=f r equency) or the

It must be noticed that during the solution constructiolément that was the least recently assigned to the current
process for QAP, the ants assign each object exactly to dRgation (remor y=r ecency). Also, with probability(1 —
location and no location is used by more than one objeép): We choose that element according to the basic selection
Thus, each constructed solution corresponds to a permatatiule similar to the rule of the Ant System algorithm (notice
¢ € ®(n). The solution construction process involves tw@at in this case we do not use heuristic information at all).
steps. In the first step, a location is chosen and then, in tf&/iablep is a uniformly distributed random number in the
second step, an object is assigned to that location. To erval (0, 1.
that, we randomly choose a locatioramong those not yet [N the experimental study conducted in [3], we considered
occupied. For the second step, we use the pheromone trafl¥ariants of the memory-based ACO algorithm which were
7;; referring to the desire of assigning the objgcto the respectively calledMMAS-ff, MMAS-fr, MMAS-rf,
locationi. To assign an object to an unoccupied location @d MMAS-IT according to the way of combining the dif-

i we use the following rule: ferent memories—i.e., the frequency-based memory (equa-
tion (2)) and recency-based memory (equation (3)). Thus,
MMAS-fr stands for the variant that uses the frequency-
based matrix in equation (2) and the recency-based matrix
in equation (3). A similar reasoning applies to the remajnin
algorithms’ names.

This rule is similar to the one used by the Ant Colony As a first result, we found the all these variants out-
System [6]: with a fixed probabilityy (0 < ¢qo < 1) the performed to MMAS-QAP in the instances considered
ant chooses the “best possible element” according to tfthis could be statistically corroborated). In additionge w
acquired knowledge (it can be based on the external memdoynd that MMAS-rf was the best performer among the
or based on the pheromone trails). With probability- ¢o), 4 variants of the memory-based ACO algorithm (this was
it is carried out a controlled exploration of new solutionslso statistically corroborated). From these results waseh
(also in this case, it can be based on the external memoy MAS-rf to conduct the experimental study presented
or based on the pheromone trails), wherés a random here. In the rest of this paper, we will use the name
number uniformly distributed in the intervf), 1]. 7 andR  ACO to refer to the algorithmMMAS-rf. In order to

) T ifg< Exploitation
j= { q < qo (Exp ) (1)

R if ¢ > qo (Exploration)



improve its performance, in the following, we present aflgorithm 2 ConstructAntsSolutiongfor the QAP

alternative for hybridizingM-ACO which will be applied
in our experimental study.

for k =0 to number of ants do
Generate a random order of location’s assignment
for step =0 ton do

IV. M-ACO AND ITS TWO HYBRID VERSIONS

This section presents a simple alternative to hybridize
ACO by using a more powerful local search procedure. In
our case, we have chosen Tabu Search (TS) to apply it to
the solutions found at each iteration #ff-ACO. TS has
shown to be a powerful metaheuristic technique to solve
many combinatorial optimization problems. Indeed, S&itz
and Fernandes [10] used this approach to obtain a new
benchmark for the set of instances specially created to
assess the dependence of the performance of metaheuristics
on different instance characteristics as further expthime
the next section.

TS (as a local search procedure) is applied to each solution
for a very small number of iterations in order to avoid
that TS behaves as the most important search engine in the
exploration of the search space (i.e., to avoid an excessive
bias of TS in M-ACO). According to this, we obtained
a highly hybridized algorithm in which the exploration
and exploitation is achieved by the the ant colony and an
additional exploitation process is performed by the local
search procedure. Thus, we have two hybrid versionstef
ACO: (1) the one obtained by usirty-exchange neighbor-

if ¢<gqo then
if r<ry then
Choose the object more recently or more fre-
quently assigned to the current location.
Assign the chosen object to that location.
else
Choose the maximum pheromone matrix value
for the current location.
Assign the chosen object (represented by the
matrix value) to that location.
end if
else
if p<po then
Choose the less recently or less frequently ob-
ject assigned to the current location.
Assign the chosen object to that location.
else
Choose the object to be assigned to location
i+ by the probabilistic rule:

7ij (1)

Sens 7a)

hood (M-ACO-20pt) which corresponds t&M1 MAS-rf as end if
presented in [3] and (2) another one obtained by applying end if
TS (specifically RoT$ [13]) as a local search procedure  onq for
(M-ACO-TS). end for

A general outline of the proposed algorithm is presented in
Algorithms 1 and 2. In Algorithm 2 is presented, regarding

tEe Q'?“P' hthe outl|rfle hOf the SOIlIJt'On construcduonh ProCe¥aracteristics of the instances are systematically drame
through the use of the external memory and p eromons they are large enough to allow systematic studies on

values.

Algorithm 1 Hybrid Memory-based ACO algorithm
Initialize pheromone trails
Initialize external memory
{ Main loop }
while termination conditions not meto
ConstructAntsSolutions
ApplyLocalSearch 2-opt or Tabu Search
UpdatePheromones
UpdateMemory{ Recency or Frecuency baséd
end while

V. COMPUTATIONAL STUDY
We testedM-ACO-20pt andM-ACO-TS on a set of QAP

instances proposed by Stiitzle and Fernandes [10] ofsize
(we chosel6 instances from each of the four classes). This
set of instances was generated in such a way that (i) the

2|t was obtained from the corresponding authors upon request
3A re-implementation in C of RoTS was obtained from the Metaistics
Networks.

the dependence of the performance of the metaheuristics on
the different instance characteristics. It is worth noticthat

this new benchmark contains the best known solution values
for each instance, and many of them are not necessarily the
optimal ones. The tested instances include:

o GridRandom (GR): Grid-based distance matrix and
random flows;

o GridStructured (GS): Grid-based distance matrix and
structured flows;

o GridStructuredPlus (GSP): Grid-based distance ma-
trix and structured flows with connections among clus-
ters of objects.

« RandomRandom (RR): Random distance matrix and
random flows;

o RandomsStructured (RS): Random distance matrix and
structured flows;

o RandomsStructuredPlus (RSP): Random distance ma-

trix and structured flows with connections among clus-

ters of objects;

All the experimental results were measured across 30
independent trials of the algorithms and the code was run
on an Intel Pentium (R) 4, CPU 3.00Gz, and 1Gb RAM; OS



Linux. For all the instances we ran both algorithms untilthealgorithms with respect to the remaining instances (ckasse
completed 500,000 function evaluations. This number &S, RSP, GS, and GSP), it can be observed here that the
function evaluations was chosen in order to further compatd-ACO-TS algorithm was capable of improving the best
our results (Section V-A) with the respective benchmark olsnown values for at least one instance of each class (in the
tained by applying RoTS with the same number of functiomext section we show each of the improved results). On the
evaluations. side of M-ACO-opt, it can be seen that it was only capable
We compared the algorithms using the average percentagemproving the best values of the instance of class RSP
excess (%Error) over the best-known solutions (as merdion@ee Figure 4). It must be recalled that in [3] it was reported
before, they were provided to us by the authors of [10]). lone improved result for one instance of this class.
order to assess the statistical significance of the observed
differences in the algorithms’ performance we applied the

non-parametric Mann-Whitney-Wilcoxon test. +

Preliminary experimentation was conducted in order to 0.05
detect the regions of parameters values that produced th £
0.041 v

best performance. Particularly, we considered the paemet
o, To, Po, andp; all of them varying in the rang&, 1). In —
order to do that, we used Latin Hypercube Sampling (LHS) |
to obtain a number of design points in a space filling way and
considering a subset of instances randomly selected. Fror
these experiments, we found the following setting for the 0.01]
parameters considereg = 0.2, o = 0.7, po = 0.001, and
p = 0.55. The number of ants was set &, which is a of
similar value to the one used in [3]. In the caseMfACO-

TS, we applied RoTS foR00 iterations each time that this

local search procedure takes place. See Algorithms 1 and 2

for details.
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Fig. 1. Random Random (p-value = 8.3723e-162)
A. Comparison of M-ACO under two hybridization ap-
proaches

This section shows the results obtained ofACO-20pt
and M-ACO-TS for the selected instances. In fact, we chose |
the complete set of instances for classes GS, GSP, RS, ar oo !
RSP, except for RR and GR for which 16 instances were }

|

selected out of the 36 available for each class. We preser ~ *%|
the results for each class condensed in Figures 1, 2, 3, 4
5, and 6 that respectively represent, through boxplots, the
percentage error with respect the current benchmark values 0!
Each boxplot displays, faM-ACO-TS (left) andM-ACO- ! .
2opt (right), a sample of6 x 30 percentage error values 0.01f
corresponding tal6 instances belonging to each class and %
30 trials for each of these instances. The caption of eacl
figure includes the respective p-value, which shows in all
cases a large statistical significant difference. Theyrllea
indicate thatM-ACO-TS outperformsM-ACO-2opt in all

the instances considered. Let us analyze first the behavior Fig. 2. Grid Random (p-value = 2.9541e-153)

of M-ACO-TS. It can be readily observed a very robust

behavior across the whole set of instances (intticéasses). ) .

Particularly, for classes RS (Figure 1) and GS (Figure 23, Comparison ofM-ACO -TS with the QAP benchmark
the shape of the respective boxplots indicate that in almostin order to explicitly show the new best known results,
all cases the best known value was reached. However, wives present in this section a short comparison of the results
the best known values were not achieved, the algorithm stibtained fromM-ACO-TS and the up-to-date best known
performs well since it gives values (see the outliers) thegsults for the set of instances considered. Before amajyzi
are below the 3% (RS) and 2% (GS) from the best knowthe improved results, it should be noticed that for all
For the same classed/(-ACO-20pt gives also high quality the remaining instances not shown herd-ACO-TS was
solutions, although it shows a less robust behavior as well@pable to achieve the corresponding best known values.
solutions of lower quality. Although the situation is siaril  Table | shows the particular instances for whiefrACO-
when considering the robustness observed above for bdth lowered the benchmarks. The improved instances are

0.031

%Error

++

1 2
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Fig. 3. Random Structured (p-value = 8.6968e-119) Fig. 6. Grid Structured Plus (p-value = 1.7168e-101)
TABLE |
o] N COMPARISON OF THE IMPROVED RESULTS OAM{-ACO WITH RESPECT
TO THE BESFKNOWN SO FAR DUE TO SPACE CONSTRAINTSTHE
i + 1 INSTANCES ARE IDENTIFIED BY A REFERENCE NAME THE
osl i CORRESPONDING ORIGINAL NAMES CAN BE FOUND INTABLE Il (SEE
S THE APPENDIX).
5 Off |
;{3 : Instance BF avg(FES) BK FES Pol
41 ‘ (med(BF))
0ok rsl 15574 26400 16107 | 251617 | 3.30%
' (16643)
ol % , ] rsb 5218 199720 5427 468518 | 3.80%
! (5230)
o2l + - ] rs9 3672 138623 | 4088 | 182257 10.17%
1 2 (3739)
rs10 75170 143600 76534 | 213452 | 1.78%
(77577)
rs13 4883 193200 5824 83812 | 16.15%
(4883)
Fig. 4. Random Structured Plus (p-value = 4.5455e-084) rs14 48875 118800 49366 | 251110 0.99%
(48875)
rspl 7053 247200 7646 359448 | 7.75%
(7383)
al + rsp5 3913 228000 4153 283311 | 5.53%
. (4094)
i rsp9 3675 240300 4513 | 169387 | 18.56%
' . (3775)
ol + rspl10 94804 56520 100341 | 133321 | 5.51%
+ (94804)
3 sl rspl3 1410 161320 1607 151734 | 12.58%
g~ (1525)
W N rspl4 50907 74800 50958 | 369209 | 0.10%
4 (53130)
—— gsp10 11250 14920 11276 26328 0.23%
057 * ‘ (11292)
+
o E | gspid 5598 196280 | 5645 | 168692 0.83%
% (5640)
1 2 gs2 25914 122520 25986 | 428576 | 0.27%
(26048)
gs10 9126 179200 9152 | 171611| 0.28%
(9237)
gsl4 4729 200000 4747 415116 | 0.37%
Fig. 5. Grid Structured (p-value = 8.6968e-119) (4745)

identified by a reference name (first column). The corre- For each instance, Table | shows: the Best Found (BF)
sponding original names can be found in Table Il (see twalue and the median of the best found values ouB®f
Appendix). trials (in parentheses), the average number of functiok eva



uations required to reach the best found values (avg(FES)),
the Best Known (BK) value, the corresponding number of
iterations (or function evaluations) required to reacht tha
value obtained by RoTS (this information can be found in
the benchmark), and the percentage of improvement (Pol).
It can be clearly observed a large variation on the values in
columnPol where the values range from 0.1% to 18.56%.
The larger improvements were achieved for instances of
classes RS and RSP, i.e., the Random Structured and Ran-
dom Structured Plus. Regarding the number of function
evaluations, the results show that in geneyad;ACO-TS
was able to reduce the number of visited solutions required
to reach the best found values with respect to the numbers
reported in the benchmark. However, it should be noticed
that we report the average values out36falgorithm trials
whereas in the benchmark is reported the number of function
evaluations necessary to reach the best found value out of
10 trials.

VI. CONCLUSIONS

In this paper, we presented the study of two alternative
local search procedures to improve the performance of an
early proposed memory-based ACO algorithm [3] which
showed to be competitive with respect to a state-of-the-art
ant algorithm for the QAP. In this work, we have shown,
through the validation on an important number of QAP
instances, that an ACO algorithm can be easily combined
with a powerful technique such as TS to produce a hybrid
approach which presents an improved performance with
respect to the combined technique working alone.

As part of our future work, we will perform a study
focused on developing an advanced strategy to determine
whenandhow manyiterations should be applied of a local
search procedure in order to reach an appropriate balani®
betweenintensification(which is incorporated by the local
search process and some componentd6ACO-TS) and
exploration (which is incorporated by some other compo-
nents ofM-ACO-TS). Furthermore, additional experimental

(2]

TABLE Il

REFERENCES AND COMPLETE NAMES OF THA7 IMPROVED QAP

INSTANCES
Reference Nameg Original Name
rsl RandomStructured.974823931.n50.
K10.m10.A100.00.B1.00.sp10.00.da
rs5 RandomStructured.974823935.n50.
K10.m10.A10.00.B2.00.sp10.00.dat
rs9 RandomStructured.974823939.n50.
K10.m10.A4.00.B3.50.sp10.00.dat
rs10 RandomStructured.974823940.n50.
K10.m10.A4.00.B3.50.sp20.00.dat
rs13 RandomStructured.974823943.n50.
K10.m10.A2.00.B7.00.sp10.00.dat
rsl4 RandomStructured.974823944.n50.
K10.m10.A2.00.B7.00.sp20.00.dat
rspl RandomStructuredPlus.974824391.n50.
K10.m10.A100.00.B1.00.sp10.00.da
rsp5 RandomStructuredPlus.974824395.n50.
K10.m10.A10.00.B2.00.sp10.00.dat
rsp9 RandomStructuredPlus.974824399.n50.
K10.m10.A4.00.B3.50.sp10.00.dat
rsp10 RandomStructuredPlus.974824400.n50.
K10.m10.A4.00.B3.50.sp20.00.dat
rspl3 RandomStructuredPlus.974824403.n50.
K10.m10.A2.00.B7.00.sp10.00.dat
rspl4d RandomStructuredPlus.974824404.n50.
K10.m10.A2.00.B7.00.sp20.00.dat
gspl0 GridStructuredPlus.974826016.n50.
G10.A4.00.B3.50.sp20.00.dat
gspl4a GridStructuredPlus.974826020.n50.
G10.A2.00.B7.00.sp20.00.dat
gs2 GridStructured.974825926.n50.
G10.A100.00.B1.00.sp20.00.dat
gs10 GridStructured.974825934.n50.
G10.A4.00.B3.50.sp20.00.dat
gsl4 GridStructured.974825939.n50.
G10.A2.00.B7.00.sp20.00.dat
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