
An alternative ACOR algorithm for continuous
optimization problems

Guillermo Leguizamón1⋆ and Carlos A. Coello Coello2⋆⋆

1 UMI LAFMIA 3175 CNRS
CINVESTAV-IPN

Departmento de Computación
México D.F., MÉXICO
legui@unsl.edu.ar

2 CINVESTAV-IPN (Evolutionary Computation Group)
Departamento de Computación

México D.F., MÉXICO
ccoello@cs.cinvestav.mx

Abstract. The Ant Colony Optimization (ACO) metaheuristic embod-
ies a large set of algorithms which have been successfully applied to a wide
range of optimization problems. Although ACO practitioners have a long
tradition in solving combinatorial optimization problems, many other re-
searchers have recently developed a variety of ACO algorithms for dealing
with continuous optimization problems. One of these algorithms is the
so-called ACOR, which is one of the most relevant ACO algorithms cur-
rently available for continuous optimization problems. Although ACOR

has been found to be successful, to the authors’ best knowledge its use in
high-dimensionality problems (i.e., with many decision variables) has not
been documented yet. Such problems are important, because they tend
to appear in real-world applications and because in them, diversity loss
becomes a critical issue. In this paper, we propose an alternative ACOR

algorithm (DACOR) which could be more appropriate for large scale un-
constrained continuous optimization problems. We report the results of
an experimental study by considering a recently proposed test suite. In
addition, the parameters setting of the algorithms involved in the exper-
imental study are tuned using an ad hoc tool. Our results indicate that
our proposed DACOR is able to improve both, the quality of the results
and the computational time required to achieve them.

1 Introduction

Several extensions of the Ant Colony Optimization (ACO) metaheuristic [1, 2] for
solving continuous problems currently exist. The first ACO extension designed

⋆ On leave of absence from LIDIC - Universidad Nacional de San Luis, San Luis,
Argentina.

⋆⋆ The second author is also affiliated to the UMI LAFMIA 3175 CNRS at
CINVESTAV-IPN.



2 Guillermo Leguizamón and Carlos A. Coello Coello

to operate on continuous search spaces was introduced by Bilchev et al. [3].
After that, several others were introduced (see [4–11]). The version adopted for
our study is the one originally proposed by Socha [12]) and further extended by
Socha & Dorigo [13].

In this work, we propose an alternative ACOR algorithm for solving large di-
mensional continuous optimization problems. This study has a recent antecedent
(see [14]) in which it was detected that ACOR [13] had some limitations when
dealing with large dimensional problems. Its main problem was a quick loss of
diversity, which had a clear negative impact on the quality of the results achieved
by the algorithm. In order to deal with such problem, a simple diversity main-
tenance mechanism was introduced. Here, we propose a mechanism different to
the one adopted in [14], which aims to avoid the loss of diversity by using an
alternative mechanism to select the kernels that produce new samples on the
search space.

Our experimental study includes a recently proposed test suite of continuous
optimization problems which are useful to assess the capacity of an algorithm to
deal with large dimensional problems. For determining the parameters setting
to be used in the experimental study, we used an automatic tool that approx-
imates a prediction model based on a set of observations (outputs of the real
algorithm) for specific design points. Such a proposal intends to be the first step
towards improving the ACO metaheuristic in order to achieve a design of a more
advanced ACO algorithm which is competitive with respect to other state-of-
the-art metaheuristic algorithms used for continuous optimization problems.

The remainder of this paper is organized in the following way: Section 2
briefly describes the original version of the ACOR algorithm and Section 3
presents the alternative ACOR algorithm (called DACOR). The section about
the experimental study (Section 4) involves three important subsections: Sec-
tion 4.1 describes the set of test problems adopted; Section 4.2 presents the
results of a preliminary study of ACOR and DACOR on the test suite by using
an ad hoc tool to tune some selected parameters of the algorithms, and Sec-
tion 4.3 shows a comparative analysis of the obtained results from algorithms
ACOR and DACOR. Finally, in Section 5 we discuss the main achievements of
the experimental study. In addition, some lines of future research are also con-
sidered.

2 The ACOR algorithm

The ACOR algorithm was designed with the aim of obtaining a set of probability
density functions (PDFs). Each PDF is obtained from the search experience and
is used to incrementally build a solution x ∈ R

n considering in turn each compo-
nent xj (∀j = 1 . . . n). To approximate a multimodal PDF, Socha & Dorigo [13]
proposed a Gaussian kernel which is defined as a weighted sum of several one-
dimensional Gaussian functions gij(x) as follows:



An alternative ACOR algorithm for continuous optimization problems 3

Gj(x) =
k

∑

i=1

ωigij(x) =
k

∑

i=1

ωi

1

σij

√
2π

e
−

(x−µij)2

2(σij )2 (1)

where j ∈ {1, . . . , n} identifies the number of dimension, i.e., ACOR uses as many
Gaussian kernel PDFs as the number of dimensions of the problem. In addition,
Gj is parameterized with three vectors: ω, the vector of weights associated with
the individual Gaussian functions; µj , the vector of means; and σj , the vector
of standard deviations. All these vectors have cardinality k, which constitutes
the number of Gaussian functions involved.

In ACOR, a solution archive called T is used to keep track of a number of
solutions. The cardinality of archive T is k, that is, the number of kernels that
conform the Gaussian kernel. For each solution xi ∈ R

n, ACOR maintains the
corresponding values of each problem dimension, i.e., xi1, . . . , xin, and the value
of the objective function f(xi) which are stored satisfying that f(x1) ≤ . . . ≤
f(xi) ≤ . . . f(xk). On the other hand, the vector of weights ω should satisfy that
ω1 ≥ . . . ≥ ωl ≥ . . . ≥ ωk. The solutions in T are, therefore, used to dynamically
generate probability density functions involved in the Gaussian kernels. More
specifically, in order to obtain the Gaussian kernel Gj , the three parameters ω,
µj , and σj need to be calculated. Thus, for each Gj , the values of the j-th
variable of the k solutions in T become part of the elements of vector µj , that
is, µj = (µ1j , . . . , µkj) = (x1j , . . . , xkj). On the other hand, each component of
the deviation vector σj = (σ1j , . . . , σkj) is obtained as:

σij = ξ

k
∑

e=1

|xej − xij |
k − 1

(2)

where i ∈ {1, . . . , k} is the kernel number with respect to which the deviation is
calculated and ξ > 0 which is the same for all dimensions, has an effect similar
to that of the pheromone evaporation rate in ACO. Thus, the higher the value
of ξ, the lower the convergence speed of the algorithm.

The pheromone update is achieved by considering a set A3 of size Na which
maintains the newly generated solutions regarding equation (1). The new T (in
the next algorithm iteration) is obtained as T (t + 1) = FIRSTk(Rank(T (t) ⊕
A(t))), i.e., the old solutions in the archive T plus the set of newly created
solutions A are ranked and then, the first k best k solutions are selected. In
other words, the old solutions compete against the newly generated ones to
conform the updated T which maintains its cardinality (k) through the whole
search process.

3 The proposed alternative ACOR algorithm (DACOR)

The proposed alternative ACOR algorithm is straightforward. The main objec-
tive is to keep the diversity as long as possible in order to explore more regions

3 Set A represents the set of ants according to Socha & Dorigo [13].



4 Guillermo Leguizamón and Carlos A. Coello Coello

of the search space before converging to a possible local optimum from which is
usually impossible to escape unless some mechanism is implemented to improve
the diversity in the population. Our proposed algorithm, called DACOR (‘D’
stands for Diversity) is designed following the same basic principle of ACOR,
i.e., from a set of k kernels, a new set of Na solutions is generated via the mul-
timodal kernels (see equation (1)). However, DACOR always generates Na = k
new solutions by considering an alternative approach to select the kernels. More
precisely, DACOR starts from an initial population of k kernels distributed evenly
on the whole problem search space. In our case, we have adopted Latin Hyper-
cube Sampling (LHS) under which the search space is divided into k intervals.
Figure 1 shows a possible LHS distribution of k = 5 kernels on a hypothetical
search space of dimension n = 2.

x

y

1

2

3

4

5

4′

Fig. 1. A possible LHS distribution for k = 5 on a hypothetical search space of di-
mension n = 2. The center point in the circle represents the current kernel (number 4)
from which a new point is generated by considering the remaining 5 − 1 kernels.

To generate the new set of solutions A(t) from the actual set of kernels
T (t), DACOR considers two different ways of selecting the kernel from T (t) to
produce the corresponding solution in A(t). The first one is as follows: when
generating solution i in A(t), the selected kernel from T (t) is the number i, i.e.,
the solution generated at position i in A(t) will be obtained through a Gaussian
distribution with µ = xi and a deviation σ determined by the remaining set
{1, . . . , i−1, i+1, . . . , k} of k−1 kernels in T (t). The newer solution is included
in A(t) only if its corresponding objective value is improved with respect to
kernel i in T (t); otherwise, the old kernel is copied to A(t) as the new solution
generated. In this way, the algorithm behaves as a local explorer around each
kernel.

The second approach to generate a solution is by considering the current
best kernel in T (t) to generate a particular solution in A(t). Thus, the algorithm
globally exploits the best solution in the current population T (t), i.e., the solution
generated at position i in A(t) will be obtained through a Gaussian distribution
with µ = xibest

and a deviation σ determined by the remaining set {1, . . . , ibest−
1, ibest +1, . . . , k} of k−1 kernels in T (t). The newer solution is included in A(t)
only if its corresponding objective value is improved with respect to kernel i in
T (t); otherwise, the old kernel is copied to A(t) as the new solution generated.



An alternative ACOR algorithm for continuous optimization problems 5

Algorithm 1 Outline of DACOR algorithm

1: Init LHS(T );
2: Get s( σ );
3: for t ∈ 1 : tmax do

4: A = BuildSolsNew(T , σ);
5: T = Sel Best one to one(T ,A);
6: Get s(σ);
7: end for

To choice between the two ways of constructing A(t) is determined by a
parameter q as expressed in equation (3). It should be noticed that parameter
q in DACOR is different from parameter q in ACOR. In our DACOR algorithm,
q determines the way of obtaining some element in A(t) whereas in ACOR, this
parameter determines the relative weight of the ranked kernels. In addition, it
also important to note that our DACOR algorithm does not need to sort, at each
iteration, the set of kernels as required in ACOR. Parameter ξ is used in DACOR

in the same way as in ACOR.

Aij =

{

gen xj(Tij , σi
j), q > rand(0, 1) (exploration);

gen xj(Tibj , σib

j ), otherwise (exploitation).

where i = 1, . . . , Na (recall that Na = k) and j = 1, . . . , n,
and

ib is the index to the best current solution in T (t).

(3)

Algorithm 1 outlines the main components of DACOR. Init LHS() gives the
initial set of k kernels through LHS; BuildSolsNew() is in charge of generating
A(t) by following the procedure explained before, i.e., either by using a local or a
global mechanism. Sel Best one to one() selects in a one-to-one correspondence
the best solutions between A(t) and T (t); and Get s() obtains the new deviation
vectors according to the new populations of kernels recently generated T (t + 1).

4 Experimental Study

In this section, we present the experimental study that includes: a) a short
description of the test suite adopted to assess the performance of the ACOR

and DACOR algorithms; b) a preliminary study to determine an appropriate
parameters setting of the algorithms (for that sake, we have used an automatic
tool proposed by Bartz-Beielstein [15] called SPOT [16] (Sequential Parameter
Optimization Tool); and c) a comparison between ACOR and DACOR for the
adopted test suite by considering n ∈ {30, 50, 100, 200, 500} dimensions for each
of the six problems. All the experiments, except for those corresponding to the
preliminary study, were run on a PC having an Intel Pentium (R) 4 processor,
running at 3.00Gz, and with 1Gb of RAM. The ACOR and DACOR algorithms
were implemented in the C programming language.



6 Guillermo Leguizamón and Carlos A. Coello Coello

Table 1. Test suite proposed by Tang et al. [17].

Benchmark Problems Search Range f(x∗)

f1(x) =
Pn

j=1
zj + f bias1, z = x − o [-100,100] -450

o = (o1, o2, . . . , on); the shifted global optimum

f2(x) = maxj{|zj |, 1 ≤ j ≤ n} + f bias2, z = x − o [-100,100] -450
o = (o1, o2, . . . , on); the shifted global optimum

f3(x) =
Pn−1

j=1
(100 · (z2

j − zj)
2 + (zj − 1)2) + f bias3, [-100,100] 390

z = x− o + 1; o = (o1, o2, . . . , on); the shifted global optimum

f4(x) =
Pn

j=1
(z2

j − 10 · cos(2πzj) + 10) + f bias4, z = x − o [-5,5] -330

o = (o1, o2, . . . , on); the shifted global optimum

f5(x) =
Pn

j=1

z2
j

4000
−

Qn

j=1
cos(

zj√
j
) + 1 + f bias5, z = x − o [-600,600] -180

o = (o1, o2, . . . , on); the shifted global optimum

f6(x) = −20 exp(−0.2
q

1

n

Pn

j=1
z2

j ) [-32,32] -140

− exp( 1

n

Pn

j=1
cos(2πzj)) + 20 + f bias6),

z = x− o; o = (o1, o2, . . . , on); the shifted global optimum

4.1 The Adopted Test Suite

We selected 6 problems from the benchmark functions prepared for the “Special
Session and Competition on Large Scale Global Optimization” at the 2008 IEEE
Congress on Evolutionary Computation (CEC’08) [17]. The problems represent
a set of scalable functions for high-dimensional optimization. See Table 4.1 for a
description of these problems and their corresponding optimum values. Particu-
larly, the objective of this special session was to bring to the research community
newer and more challenging problems to assess current nature-inspired optimiza-
tion algorithms as well as other, novel optimization algorithms.

4.2 Parameters Settings for ACOR and DACOR

In order to conduct the preliminary study and establish the most appropriate
parameters setting for our proposed approach, it was necessary the integration
of the algorithms ACOR and DACOR (implemented in C) with SPOT (imple-
mented in MATLAB) through the compiler MEX. After tuning the correspond-
ing parameters, all the algorithms ran as standalone processes in the usual way.

As an optimization algorithm, SPOT includes several specific parameters
that must be provided when applied to a particular algorithm. In our case, we
used the default parameters setting for this tool (e.g., the sampling procedure
applied is the Latin Hypercube Sampling where the number of design points is set
to 16 by default). Additionally, SPOT needs to run the algorithm (either ACOR

or DACOR) to fit a model based on a sample of observations; accordingly, some
fixed parameters (not included in the algorithm’s design, explained below) of the
respective algorithm under study need to be provided. For example: the problem
dimension (n = 100 was the chosen setting), the maximum number of iterations
(was set to tmax = 1000), and the number of kernels and ants (they were set



An alternative ACOR algorithm for continuous optimization problems 7

respectively to k = 50 and Na = 50). It should be noticed that for DACOR,
Na is always set as k (i.e., Na = k). In addition, the setting for the number of
dimensions and maximum number of iterations, was only used to calibrate the
selected parameters (q and ξ) as explained next. For the comparative study (see
Section 4.3) the respective settings for these parameters are different (except for
k and Na).

The definition of the Problem Design (XP regarding the terminology taken
from [15]) for both algorithms includes function F which is expressed as:

F (x, n) =
6

∑

i=1

(fi(x, n) − f∗

i )/f∗

i (4)

where fi represents one of the six functions from the test suite studied (presented
in Table 4.1), n is the problem’s dimensionality (all these functions are scalable),
and f∗

i represents the optimal value for function i (it must be noticed that for
any dimension n, the optimal values remain the same). Thus, F expresses the
summation of the percentage error over the six functions. In this way, we apply
SPOT as considering only one problem in the process of tuning the corresponding
algorithms’ parameters.

We first define the Algorithm Design for DACOR (see [15]) as XDACOR
, the

region determined by parameters q and ξ as follows: 0 ≤ q ≤ 1 and 0 ≤ ξ ≤ 1.
After the initial application of SPOT to calibrate these parameters, we observed
that the regions determined by q ∈ (0.5, 1] and ξ ∈ [0, 0.5) can be eliminated from
the experimental study due to the poor performance of the algorithm for such
parameter values. Accordingly, we redefined XDACOR

as the region determined
by 0 ≤ q ≤ 0.5 and 0.5 ≤ ξ ≤ 1. The best parameters setting for DACOR was:
q = 0.1172 and ξ = 0.6063. Figure 2 shows the output from SPOT for the regions
considered of the algorithm’s design (XDACOR

) with respect to parameters q
and ξ. On the left, we can observe the response surface of the predicted values
(PV) of function F for DACOR. On the right, we show the corresponding surface
of the Mean Square Error (MSE).

Similarly, for ACOR, XACOR
was determined by considering the region 0 ≤

q ≤ 0.5 and 0.5 ≤ ξ ≤ 1 from which SPOT reported q = 0.0103 and ξ = 0.8257
as the best corresponding parameters for the ACOR algorithm.

Finally, it must be remarked that for both algorithms (ACOR and DACOR),
the initial population of kernels was obtained from input files previously gener-
ated by using the MATLAB function lhsdesign.

4.3 Performance of ACOR and DACOR on the selected problems

This section presents a comparative study of ACOR and DACOR on the six
problems presented in Section 4.1. The parameters settings for these algorithms
are as follows. For both algorithms, k = Na = 50, tmax was set respectively to
6000, 10000, 14000, 20000, 40000, and 100000 when running the algorithms with
problems of dimensions n = 30, n = 50, n = 70, n = 100, n = 200, and n = 500.
These values for tmax were selected considering the criteria followed in [17].



8 Guillermo Leguizamón and Carlos A. Coello Coello

Fig. 2. Regions of the algorithm’s design (XDACOR
) with respect to parameters q and

ξ. (Left)- response surface of the predicted values (PV) of function F for DACOR and
(Right)- the corresponding surface of the Mean Square Error (MSE).

0
0.2

0.4
0.6

0.8

0.50.60.70.80.91
−2

0

2

4

6

8

10

x 10
5

qξ

P
V

0
0.1

0.2
0.3

0.4
0.5

0.4

0.6

0.8

1
0

1

2

3

4

x 10
10

qξ

M
S
E

Particularly, we considered twice the maximum number of function evaluations
(FES) proposed for dimension n = 100. Accordingly, we obtained the corre-
sponding tmax values proportionally for each dimension studied. Under these
parameters settings, both algorithms ran for the same number of function eval-
uations for each of the problems and dimensions considered. With respect to
the remaining parameters (i.e., q and ξ), the used values were those reported by
SPOT which are, for DACOR, q = 0.1172 and ξ = 0.6063; whereas for ACOR,
are q = 0.0103 and ξ = 0.8257. Both algorithms were run considering 25 random
seeds for each combination of problem, dimension, and parameters setting.

The results are shown in all the figures displayed in the Appendix. We
adopted boxplots to show the distribution of the results expressed as the percent-
age of the error with respect to the optimum values. We divided the presentation
of the results based on the problem’s dimension. On the one hand, Figures 3 and
4 show respectively the results for dimensions n = 30, 50 and n = 70, 100. On the
other hand, and because of the large differences found in the percentage error for
the larger dimensions considered in this work (n = 200 and n = 500), we split
the presentation in three figures for: i) problems 1,2,4, and 5 with n = 200, 500
(Figure 5); ii) problems 3 and 6 with n = 200 (Figure 6); and iii) problems 3 and
6 with n = 500 (Figure 7). The x-axis in each figure indicates the problem num-
ber whereas the corresponding super-index represents the corresponding applied
algorithm (a stands for ACOR and d stands for DACOR). The non-parametric
Mann-Whitney-Wilcoxon test at a level of 5% of confidence was applied to assess
the significance on the differences on the corresponding medians of DACOR with
respect to ACOR. Thus, a p-value < 0.05 indicates that based on the median
values DACOR outperforms ACOR. It is worth mentioning that the statistical
test was applied considering, for each dimension, a sample of 25× 6 points (i.e.,
all the percentage error values for each problem and run were collected as one
sample). The p-values are respectively 4.0459e − 007, 3.7094e − 0051, 0.0083,
0.0117, and 2.6185e − 005 for dimensions 30, 50, 70, 100, 200, and 500. From



An alternative ACOR algorithm for continuous optimization problems 9

this statistical point of view, DACOR outperforms ACOR for all problems and
dimensions considered. More precisely, when taking into account the shape and
location of the boxplots for all dimensions and considering one problem in turn,
we can observe a similar behavior of both algorithms. On the one hand, the
algorithms scale fairly well with larger dimensions for problems 1, 2, and 5. Also
for these problems, it can be seen that both algorithms preformed robustly and
achieved high quality results (mainly for dimensions n ∈ {30, 50, 70, 100}). How-
ever, DACOR found the best results for these problems with all the dimensions
tested. When increasing the problems’ dimensionality for problems 1,2, and 5
(i.e., n = 200 and n = 500) we found a less robust behavior and results of
lower quality for algorithm ACOR. On the other hand, problems 3, 4, and 6
represent a challenge for both algorithms. It can be clearly observed that there
was a large increase in the percentage error as the problem dimensionality in-
creased. Although both algorithms have difficulties to solve and scale on these
three problems, the behavior of DACOR is superior to that of ACOR. Finally,
is it worth remarking that DACOR needed less CPU time to complete the same
number of function evaluations than the ACOR algorithm. Indeed, our proposed
approach required about 25% less CPU time, on average, than ACOR , for all
the problems and dimensions tested in our study. This can be explained based
on the fact that our proposed DACOR algorithm does not include the sorting
procedure used by the original ACOR to produce, at each iteration, a ranked set
of kernels. In DACOR, it is only necessary to maintain an index to the current
best kernel (ibest in equation (3)).

5 Discussion and Conclusions

In this work we presented DACOR, an alternative to the ACOR algorithm for
dealing with large dimensional continuous problems. The achieved results show
the potential of our proposed DACOR algorithm to solve large scale optimiza-
tion problems. Our results lead us to think about other possible modifications,
including more sophisticated mechanisms to control the intensification and the
diversification during the search. This could strengthen the position of the ACO
metaheuristic with respect to state-of-the-art algorithms in current use for large
dimensional continuous optimization problems (e.g., differential evolution and
evolution strategies). Our future work will include the incorporation of a mecha-
nism to better control the region of local exploration as well as to automatically
decide between a global and a local exploration based on the diversity observed in
the current population of kernels. Improved versions of DACOR should certainly
be compared with some state-of-the-art metaheuristics for continuous optimiza-
tion problems. Additionally, it is important to acquire more experience in the
use of tools (either SPOT or some other approach) to appropriately set the main
parameters of the future version of the algorithms to be studied.

Acknowledgments The first author acknowledges the support from the UMI-
LAFMIA 3175 CNRS at CINVESTAV-IPN and from the Universidad Nacional



10 Guillermo Leguizamón and Carlos A. Coello Coello

de San Luis, Argentina. The second author gratefully acknowledges support from
CONACyT project no 103570.

References

1. Corne, D., Dorigo, M., Glover, F., eds.: New Ideas in Optimization. McGraw-Hill
International, London, UK (1999)

2. Dorigo, M., Stützle, T.: Ant Colony Optimization. Mit-Press (2004)
3. Bilchev, G., Parmee, I.: The Ant Colony Metaphor for Searching Continuous

Design Spaces. In Fogarty, T.C., ed.: Evolutionary Computing. AISB Workshop.
Springer, Sheffield, UK (April 1995) 25–39

4. Monmarché, N., Venturini, G., Slimane, M.: On how pachycondyla apicalis ants
suggest a new search algoritm. Future Generation Computer Systems 16 (2000)
937–946

5. Ling, C., Jie, S., Ling, Q., Hongjian, C.: A Method for Solving Optimization Prob-
lems in Continuous Space Using Ant Colony Algorithm. In Dorigo, M., Caro, G.D.,
Sampels, M., eds.: Proceedings of the Third International Workshop, (ANTS’2002),
Brussels, Belgium, Springer Verlag. Lecture Notes in Computer Science Vol. 2463
(2002) 288–289

6. Dréo, J., Siarry, P.: A New Ant Colony Algorithm Using the Heterarchical Concept
Aimed at Optimization of Multiminima Continuous Functions. In Dorigo, M., Di
Caro, G., Sampels, M., eds.: Proceedings of the Third international Workshop on
Ant Algorithms - ANTS 2002. Springer-Verlag. Lecture Notes in Computer Science
Vol. 2463, Brussels, Belgium (September 2002) 216–221

7. Dréo, J., Siarry, P.: Continuous Interacting Ant Colony Algorithm Based on Dense
Heterarchy. Future Generation Comp. Syst. 20(5) (2004) 841–856

8. Ling Chen, J. Shen, L.Q., Chen, H.: An improved ant colony algorithm in con-
tinuous optimization. Journal of Systems Science and Systems Engineering 12(2)
(2003) 224–235

9. Pourtakdoust, S., Nobahari, H.: An Extension of Ant Colony Systems to Continuos
Optimization Problems. In Dorigo, M., Birattari, M., Blum, C., Gambardella,
L.M., Mondada, F., Stützle, T., eds.: Proceedings of Ant Colony Optimization and
Swarm Intelligence, 4th International Workshop, ANTS Workshop 2004, Brussels,
Belgium, Springer-Verlag (2004) 294–301. Lecture Notes in Computer Science Vol.
3172

10. Kong, M., Tian, P.: A direct application of ant colony optimization to function
optimization problem in continuous domain. In: ANTS Workshop. (2006) 324–331

11. Hu, X., Zhang, J., Li, Y.: Orthogonal methods based ant colony search for solving
continuous optimization problems. J. Comput. Sci. Technol. 23(1) (2008) 2–18

12. Socha, K.: ACO for continuos and mixed-variable optimization. In Dorigo, M., Bi-
rattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T., eds.: Proceed-
ings of Ant Colony Optimization and Swarm Intelligence, 4th International Work-
shop, ANTS Workshop 2004, Brussels, Belgium, Springer-Verlag. Lecture Notes in
Computer Science Vol. 3172 (2004) 25–36

13. Socha, K., Dorigo, M.: Ant colony optimization for continuous domains. European
Journal of Operational Research 185(3) (2008) 1155–1173

14. Leguizamón, G., Coello Coello, C.A.: A Study of the Scalability of ACOR for
Continuous Optimization Problems. Technical Report EVOCINV-01-2010, Evo-
lutionary Computation Group at CINVESTAV, Departamento de Computación,
CINVESTAV-IPN, México (February 2010)



An alternative ACOR algorithm for continuous optimization problems 11

15. Bartz-Beielstein, T.: Experimental Research in Evolutionary Computation: The
New Experimentalism (Natural Computing Series). Springer-Verlag New York,
Inc., Secaucus, NJ, USA (2006)

16. Bartz-Beielstein, T., Preuss, M.: Spot (sequential parameter optimiza-
tion tool). http://www.gm.fh-koeln.de/campus/personen/lehrende/thomas.bartz-
beielstein/00489/

17. Tang, K., Yao, X., Suganthan, P.N., MacNish, C., Chen, Y.P., Chen, C.M., Yang,
Z.: Benchmark Functions for the CEC’2008 Special Session and Competition on
Large Scale Global Optimization. Technical report, Nature Inspired Computation
and Applications Laboratory, USTC, China (2007)

0

0.1

0.2

0.3

0.4

0.5

1a
1d 2a

2d 3a
3d 4a

4d 5a
5d 6a

6d

(a) Dimension n = 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1a
1d 2a

2d 3a
3d 4a

4d 5a
5d 6a

6d

(b) Dimension n = 50

Fig. 3. Percentage error for the six benchmark problems with dimension n ∈ {30, 50}.

0

0.5

1

1.5

2

1a
1d 2a

2d 3a
3d 4a

4d 5a
5d 6a

6d

(a) Dimension n = 70

0

0.5

1

1.5

2

2.5

3

1a
1d 2a

2d 3a
3d 4a

4d 5a
5d 6a

6d

(b) Dimension n = 100

Fig. 4. Percentage error for the six benchmark problems with dimension n ∈ {70, 100}.



12 Guillermo Leguizamón and Carlos A. Coello Coello

0

5

10

15

20

1a
1d 2a

2d 4a
4d 5a

5d

(a) Dimension n = 200

0

5

10

15

20

1a
1d 2a

2d 4a
4d 5a

5d

(b) Dimension n = 500

Fig. 5. Percentage error for problems 1, 2, 4, and 5 with dimension n ∈ {200, 500}.

x 10

0

2

6

6

8

4

10

3a
3d

(a) Dimension n = 200, problem 3

0.1

0.02

0.04

0.06

0.08

0.12

0.14

6a
6d

(b) Dimension n = 200, problem 6

Fig. 6. Percentage error for problems 3 and 6 with dimension n = 200.

x 10

0

1

2

3

5

6

7

7

4

3a
3d

(a) Dimension n = 500, problem 3

0.1

0.05

0.06

0.07

0.08

0.09

0.11

0.12

0.14

0.13

0.15

6a
6d

(b) Dimension n = 500, problem 6

Fig. 7. Percentage error for problems 3 and 6 with dimension n = 500.


