
SOLVING ENGINEERING OPTIMIZATION
PROBLEMS WITH THE SIMPLE CONSTRAINED
PARTICLE SWARM OPTIMIZER

Leticia C. Cagnina and Susana C. Esquivel
LIDIC (Research Group)-Universidad Nacional de San Luis

Ej. de los Andes 950. (D5700HHW) San Luis, Argentina.

lcagnina,esquivel@unsl.edu.ar

Carlos A. Coello Coello∗

CINVESTAV-IPN (Evolutionary Computation Group)

Av. IPN 2508. (07300) Mexico D. F., Mexico

ccoello@cs.cinvestav.mx

Abstract This paper introduces a particle swarm optimization algorithm to solve
constrained engineering optimization problems. The proposed approach
uses a relatively simple method to handle constraints and a different
mechanism to update the velocity and position of each particle. The
algorithm is validated using four standard engineering design problems
reported in the specialized literature and it is compared with respect
to algorithms representative of the state-of-the-art in the area. Our
results indicate that the proposed scheme is a promising alternative to
solve this sort of problems because it obtains good results with a low
number of objective function evaluations.

Keywords: Particle Swarm Optimization, Engineering problems, Constrained Op-
timization

1. Introduction

Engineering design optimization problems are normally adopted in the
specialized literature to show the effectiveness of new constrained opti-
mization algorithms. These nonlinear engineering problems have been
investigated by many researchers that used different methods to solve

∗The third author acknowledges support from CONACyT project no. 45683-Y.

1

2

them: Branch and Bound using SQP [15], Recursive Quadratic Pro-
gramming [13], Sequential Linearization Algorithm [7], Integer-discrete-
continuous nonlinear Programming [9], Nonlinear mixed-discrete Pro-
gramming [8], Simulated Annealing [4], Genetic Algorithms [5], Evo-
lutionary Programming [11] and, Evolution Strategies [6] among many
others. These types of problems normally have mixed (e.g., contin-
uous and discrete) design variables, nonlinear objective functions and
nonlinear constraints, some of which may be active at the global opti-
mum. Constraints are very important in engineering design problems,
since they are normally imposed on the statement of the problem and
sometimes are very hard to satisfy, which makes the search difficult and
inefficient.

Particle Swarm Optimization (PSO) is a relatively recent bio-inspired
metaheuristic, which has been found to be highly competitive in a wide
variety of optimization problems. However, its use in engineering opti-
mization problems and in constrained optimization problems, in general,
has not been as common as in other areas (e.g., for adjusting weights
in a neural network). The approach described in this paper contains
a constraint-handling technique as well as a mechanism to update the
velocity and position of the particles, which is different from the one
adopted by the original PSO.

This paper is organized as follows. Section 2 briefly discusses the pre-
vious related work. Section 3 describes in detail our proposed approach.
Section 4 presents the experimental setup adopted and provides an anal-
ysis of the results obtained from our empirical study. Our conclusions
and some possible paths for future research are provided in Section 5.

2. Literature Review

Guo et al. [2] presented a hybrid swarm intelligent algorithm with
an improvement in global search reliability. They tested the algorithm
with two of the problems adopted here (E02 and E04). Despite their
claim that their algorithm is superior for finding the best solutions (in
terms of quality and robustness), the solution that they found for E02
is greater than its best known value and for E04 the results obtained
are not comparable to ours, because they used more constraints in the
definition of that problem.

Shamim et al. [1] proposed a method based on a socio-behavioral sim-
ulation model. The idea behind this approach is that the leaders of all
societies interact among themselves for the improvement of the society.
They tested their using three of the problems adopted here (E01, E02
and E03). The best values reported for these three problems are close

Solving Engineering Optimization Problems with the Simple Constrained Particle Swarm Optimizer3

from the optimal known values. The number of fitness function evalua-
tions was 19,259 for E01, 19,154 for E02 and 12,630 for E03. Mahdavi
et al. [3] developed an improved harmony search algorithm with a novel
method for generating new solutions that enhances the accuracy and
the convergence rate of the harmony search. They used three of the
problems adopted here (E01, E03 and E04) to validate their approach,
performing 300,000, 200,000 and 50,000 evaluations, respectively. For
E01 and E02, the best values reported are not the best known values
because the ranges of some variables in E01 are different from those of
the original description of the problem (x4 is out of range), which makes
such solution infeasible under the description adopted here. The value
reported by them for E04 is very close to the best value known.

Bernardino et al. [12] hybridized a genetic algorithm embedding an
artificial immune system into its search engine, in order to help moving
the population into the feasible region. The algorithm was used to solve
four of the test problems adopted here (E01, E02, E03 and E04), using
320,000, 80,000, 36,000 and 36,000 evaluations of the objective functions,
respectively. The best value found for E01 is close from the best known;
for E02 and E04, the best values obtained are close to the best known,
but for E03 the value reported is better than the best known, because
one of the decision variables is out of range (x5). The values in general,
are good, although the number of evaluations required to obtain them
is higher than those required by other algorithms.

Hernandez Aguirre et al. [24] proposed a PSO algorithm with two new
perturbation operators aimed to prevent premature convergence, as well
as a new neighborhood structure. They used an external file to store
some particles and, in that way, extend their life after the adjustment of
the tolerance of the constraints. The authors reference three algoritms
which obtained good results for the problems adopted in their study:
two PSO-based algorithms and a Differential Evolution (ED) algorithm.
One of the PSO-based approaches compared [26] used three of the prob-
lems adopted here (E01, E02 and E04), performing 200,000 objective
function evaluations. The other PSO-based approach compared [10] was
tested with the same set of problems and the best known values were
reached for E02 and E04 after 30,000 objective function evaluations.
The ED algorithm [27] reported good results with 30,000 evaluations for
the four problems. This same number of evaluations was performed by
the algorithm proposed by Hernandez et al. [24] and their results are
the best reported until now for the aforementioned problems. For that
reason, we used these last two algorithms to compare the performance of
our proposed approach (the best values reached are listed below). The

4

ED algorithm will be referenced as “Mezura” and, the PSO by [24] as
“COPSO”.

3. Our proposed approach: SiC-PSO

The particles in our proposed approach (called Simple Constrained
Particle Swarm Optimizer, or SiC-PSO), consists of n-dimensional val-
ues (continuous, discrete or a combination of both) vectors, where n

refers to the number of decision variables of the problem to be solved.
Our approach adopts one of the most simple constraint-handling meth-
ods currently available. Particles are compared by pairs: 1) if the two
particles are feasible, we choose the one with a better fitness function
value; 2) if the two particles are infeasible, we choose the particle with
lower infeasibility degree; 3) if one particle is feasible and the other is
infeasible, we choose the feasible one. This strategy is used when the
pbest, gbest and lbest particles are chosen. When an individual is found
infeasible, the amount of violation (this value is normalized with respect
to the largest violation stored so far) is added. So, each particle saves
its infeasibility degree reached until that moment.

As in the basic PSO [18], our proposed algorithm records the best po-
sition found so far for each particle (pbest value) and, the best position
reached by any particle into the swarm (gbest value). In other words,
we adopt the gbest model. But so far, we found that the gbest model
tends to converge to a local optimum very often [19]. Motivated by this,
we proposed a formula to update the velocity, using a combination of
both the gbest and the lbest models [20]. Such a formula (equation 1) is
adopted here as well. The lbest model is implemented using a ring topol-
ogy [22] to calculate the neighborhoods of each particle. For a size of
neighborhood of three particles and a swarm of six particles (1,2,3,4,5,6),
the neighborhoods considered are the following: (1,2,3), (2,3,4), (3,4,5),
(4,5,6), (5,6,1) and (6,1,2). The formula for updating particles is the
same that in the basic PSO and it is shown in equation 2.

vid = w(vid + c1r1(pbid − pid) + c2r2(plid − pid) + c3r3(pgd − pid)) (1)

pid = pid + vid (2)

where vid is the velocity of the particle i at the dimension d, w is the
inertia factor [18] whose goal is to balance the global exploration and the
local exploitation, c1 is the personal learning factor, and c2, c3 are the
social learning factors, r1, r2 and r3 are three random numbers within
the range [0..1], pbid is the best position reached by the particle i, plid is
the best position reached by any particle in the neighborhood of particle

Solving Engineering Optimization Problems with the Simple Constrained Particle Swarm Optimizer5

i and, pgd is the best position reached by any particle in the swarm.
Finally, pid is the value of the particle i at the dimension d.

We empirically found that for some difficult functions, a previous
version of our algorithm could not find good values. The reason was
its diversification of solutions which kept the approach from converg-
ing. In previous works [20, 21], we changed the common updating for-
mula (equation 2) of the particles for the update equation presented by
Kennedy [23]. In Kennedy’s algorithm, the new position of each particle
is randomly chosen from a Gaussian distribution with the mean selected
as the average between the best position recorded for the particle and
the best in its neighborhood. The standard deviation is the difference
between these two values. We adapted that formula adding the global
best (gbest) to the best position of the particle and the best in its neigh-
borhood. We also changed the way in which the standard deviation is
determined. We use the pbest and, the gbest instead of the lbest as was
proposed by Kennedy. We determined those changes after several empir-
ical tests with different Gaussian random generator parameters. Thus,
the position is updated using the following equation:

pi = N

(

pi + pli + pg

3
, |pi − pg|

)

(3)

where pi, pli and pg are defined as before and, N is the value retorned by
the Gaussian random generator. SiC-PSO used this equation to update
particles with a certain probability (a 92.5% probability was adopted
to select between equation 3 and, equation 2 the rest of the time). We
chosed that probability after conducting numerous experiments.

4. Parameter Settings and Analysis of Results

A set of 4 engineering design optimization problems was chosen to
evaluate the performance of our proposed algorithm. The detailed de-
scription of the test problems may be consulted in the appendix at the
end of this paper. We performed 30 independent runs per problem,
with a total of 24,000 objective function evaluations per run. We also
tested the algorithm with 27,000 and 30,000 evaluations of the objective
function, but no performance improvements were noticed in such cases.
Our algorithm used the following parameters: swarm size = 8 particles,
neighborhood size = 3, inertia factor w = 0.8, personal learning factor
and social learning factors for c1, c2 and c3 were set to 1.8. These pa-
rameter settings were empirically derived after numerous experiments.

Our results were compared with respect to the best results reported
in the specialized literature. Those values were obtained by Hernandez
Aguirre et al. [24] and Mezura et al. [27]. We reference those results

6

into the tables shown next as “COPSO” and “Mezura”, respectively. It
is important remark that COPSO and Mezura algorithms reached the
best values after 30,000 fitness function evaluations, which is a larger
value than that required by our algorithm. The best values are shown
in Table 1 and, the mean and standard deviations over the 30 runs are
shown in Table 2.

Table 1. Best results obtained by COPSO, Mezura and SiC-PSO.

Prob. Optimal SiC−PSO COPSO Mezura

E01 1.724852 1.724852 1.724852 1.724852
E02 6,059.714335 6,059.714335 6,059.714335 6,059.7143
E03 NA 2,996.348165 2,996.372448 2,996.348094∗

E04 0.012665 0.012665 0.012665 0.012689

∗Infeasible solution. NA Not avaliable.

Table 2. Mean and St. Dev. for the results obtained.

Mean | St. Dev.

Prob. SiC−PSO COPSO Mezura | SiC−PSO COPSO Mezura

E01 2.0574 1.7248 1.7776 0.2154 1.2-05 8.8E-02
E02 6,092.0498 6,071.0133 6,379.9380 12.1725 15.1011 210.0000
E03 2,996.3482 2,996.4085 2,996.3480∗ 0.0000 0.0286 0.0000∗

E04 0.0131 0.0126 0.0131 4.1E-04 1.2E-06 3.9E-04

∗Infeasible solution.

The three algorithms reached the best known values for E01. For E02,
SiC-PSO and COPSO reached the best known, but Mezura reported
a value with a precision of only 4 digits after the decimal point, and
the exact value reached by them is not reported. For E03, SiC-PSO
reached the best value, COPSO reached a value slightly worse than
ours, and Mezura reached an infeasible value. SiC-PSO and COPSO
reached the best value for E04, although Mezura reported a value that is
worse than the best known. In general, COPSO obtained the best mean
values, except for E03 for which best mean was found by our algorithm.
The lower standard deviation values for E01 and E04 was obtained by
COPSO; for E02 and E03, our SiC-PSO found the minimum values.

Tables 3a, 3b, 3c and 3d show the solution vectors of the best solution
reached by SiC-PSO as well as the values of the constraints, for each of
the problems tested.

Solving Engineering Optimization Problems with the Simple Constrained Particle Swarm Optimizer7

Table 3a. SiC-PSO Solution vector
for E01 (welded beam).

Best Solution

x1 0.205729
x2 3.470488
x3 9.036624
x4 0.205729
g1(~x) -1.819E-12
g2(~x) -0.003721
g3(~x) 0.000000
g4(~x) -3.432983
g5(~x) -0.080729
g6(~x) -0.235540
g7(~x) 0.000000
f(~x) 1.724852

Table 3b. SiC-PSO Solution vector
for E02 (pressure vessel).

Best Solution

x1 0.812500
x2 0.437500
x3 42.098445
x4 176.636595
g1(~x) -4.500E-15
g2(~x) -0.035880
g3(~x) -1.164E-10
g4(~x) -63.363404
f(~x) 6,059.714335

Table 3c. SiC-PSO Solution vector
for E03 (speed reducer).

Best Solution

x1 3.500000
x2 0.700000
x3 17
x4 7.300000
x5 7.800000
x6 3.350214
x7 5.286683
g1(~x) -0.073915
g2(~x) -0.197998
g3(~x) -0.499172
g4(~x) -0.901471
g5(~x) 0.000000
g6(~x) -5.000-16
g7(~x) -0.702500
g8(~x) -1.000E-16
g9(~x) -0.583333
g10(~x) -0.051325
g11(~x) -0.010852
f(~x) 2,996.348165

Table 3d. SiC-PSO Solution vector
for E04 (tension/compression spring).

Best Solution

x1 0.051583
x2 0.354190
x3 11.438675
g1(~x) -2.000E-16
g2(~x) -1.000E-16
g3(~x) -4.048765
g4(~x) -0.729483
f(~x) 0.012665

5. Conclusions and Future Work

We have presented a simple PSO algorithm (SiC-PSO) for constrained
optimization problems. The proposed approach uses a simple constraint-

8

handling mechanism, a ring topology for implementing the lbest model
and a novel formula to update the position of particles. SiC-PSO had
a very good performance when applied to several engineering design
optimization problems. We compared our results with respect to those
obtained by two algorithms that had been previously found to perform
well in the same problems. These two algorithms are more sophisticated
than our SiC-PSO. Our algorithm obtained the optimal values for each of
the test problems studied, while performing a lower number of objective
function evaluations. Also, the performance of our approach with respect
to the mean and standard deviation is comparable with that shown by
the other algorithms. Thus, we consider our approach to be a viable
choice for solving constrained engineering optimization problems, due
to its simplicity, speed and reliability. As part of our future work, we
are interested in exploring other PSO models and in performing a more
detailed statistical analysis of the performance of our proposed approach.

References

[1] S. Akhtar, K. Tai and T. Ray. A socio-behavioural simulation model for engineer-
ing design optimization. Engineering Optimization, 34:341–354, 2002.

[2] C. Guo, J. Hu, B. Ye and Y. Cao. Swarm intelligence for mixed-variable design
optimization. Journal of Zheijiang University SCIENCE, 5(7):851–860, 1994.

[3] M. Mahdavi, M. Fesanghary and E. Damangir. An improved harmony search algo-
rithm for solving optimization problems. Applied Mathematics and Computation,
188(2007):1567–1579, 2007.

[4] C. Zhang and H. Wang. Mixed-discrete nonlinear optimization with simulated
annealing. Engineering Optimization, 21:277–291, 1993.

[5] S. Wu and T. Chou. Genetic Algorithms for nonlinear mixed discrete-integer op-
timization problems via meta-genetic parameter optimization. Engineering Opti-
mization, 24:137–159, 1995.

[6] G. Thierauf and J. Cai. Evolution Strategies-parallelization and Applications in
Engineering Optimization. In Parallel and Distributed Precessing for Computa-
tional Mechanics.B. H. V. Topping editors, 1997.

[7] H. Loh, and P. Papalambros. A sequential linearization approach for solving
mixed-discrete nonlinear design optimization problems. ASME Journal of Me-
chanical Design, 113:325–334, 1991.

[8] H. Li and T. Chou. A global approach of nonlinear mixed discrete programming
in design optimization. Engineering Optimization, 22:109–122, 1994.

[9] J. Fu, R. Fenton and W. Cleghorn. A mixed integer-discrete-continuous program-
ming method and its applications to engineering design optimization. Engineering
Optimization, 17:263–280, 1991.

[10] S. He, E. Prempain and Q. Wu. An improved Particle Swarm optimizer for
Mechanical Design Optimization Problems. Engineering Optimization, 36(5):585–
605, 2004.

Solving Engineering Optimization Problems with the Simple Constrained Particle Swarm Optimizer9

[11] Y. Cao and Q. Wu. Mechanical Design optimization by Mixed-variable Evolu-
tionary Programming. In 1997 IEEE International Conference on Evolutionary
Computation. Pages 443–446, 1997.

[12] H. Bernardino, H. Barbosa and A. Lemonge. A Hybrid Genetic Algorithm
for Constrained Optimization Problems in Mechanical Engineering. In IEEE
Congress on Evolutionary Computation. Pages 646–653, 2007.

[13] J. Cha, and R. Mayne. Optimization with discrete variables via recursive
quadratic programming: part II. Transaction of ASME, 111:130–136, 1989.

[14] K. Ragsdell, and D. Phillips. Optimal design of a class of welded structures
using geometric programming. ASME Journal of Engineering for Industries,
98(3):1021–1025, 1976.

[15] E. Sandgren. Nonlinear integer and discrete programming in mechanical design
optimization. ASME Journal of Mechanical Design, 112:223–229, 1990.

[16] J. Arora. Introduction to Optimum Design. McGraw-Hill,New York, 1989.

[17] A. Belegundu. A Study of Mathematical Programming Methods for Structural
Optimization. PhD thesis, Department of Civil Environmental Engineering, Uni-
versity of Iowa, Iowa, 1982.

[18] R. Eberhart and Y. Shi. A modified Particle Swarm Optimizer. In International
Conference on Evolutionary Computation, IEEE Service Center, Anchorage, AK,
Piscataway, NJ, 1998.

[19] L. Cagnina, S. Esquivel and R. Gallard. Particle Swarm Optimization for se-
quencing problems: a case study. In Congress on Evolutionary Computation.
Pages 536–541, Portland, Oregon, USA, 1994.

[20] L. Cagnina, S. Esquivel and C. Coello Coello. A Particle Swarm Optimizer for
Constrained Numerical Optimization. In 9th International Conference - Parallel
problem Solving from Nature - PPSN IX. Pages 910–919, Reykjavik, Island, 2006.

[21] L. Cagnina, S. Esquivel and C. Coello Coello. A Bi-population PSO with a Shake-
Mechanism for Solving Constrained Numerical Optimization. In IEEE Congress
on Evolutionary Computation - CEC2007. Pages 670–676, Singapur, 2007.

[22] J. Kennedy and R. Eberhart. Bores Bones Particle Swarm. In IEEE Swarm
Intelligence Symposium. Pages 80–89. 2003.

[23] J. Kennedy. The Particle Swarm: social adaptation in Information-Processing
Systems. In New Ideas in Organization. 1999. D. Corne and M. Dorigo and
F. Glover editors.

[24] A. Hernandez Aguirre, A. Muñoz Zavala, E. Villa Diharce and S. Botello Rionda.
COPSO: Constrained Optimization via PSO algorithm. Center for Research in
Mathematics (CIMAT). Technical report No. I-07-04/22-02-2007, 2007.

[25] J. Golinski. An adaptive optimization system applied to machine synthesis.
Mechanism and Machine Synthesis. 8(1973), pages 419–436, 1973.

[26] X. Hu, R. Eberhart and Y. Shi. Engineering optimization with particle swarm.
2003.

[27] E. Mezura and C. Coello. Useful Infeasible Solutions in Engineering Optimization
with Evolutionary Algorithms. In Proceedings of the 4th Mexican International
Conference on Artificial Intelligence, MICAI 2005. Lecture Notes on Artificial
Intelligence No. 3789, pages 652–662. 2005.

10

Appendix: Engineering problems
Formulating of the engineering design problems used to test the algorithm proposed.

E01: Welded beam design optimization problem. The problem
is to design a welded beam for minimum cost, subject to some constraints [14]. Figure A.1
shows the welded beam structure which consists of a beam A and the weld required to hold
it to member B. The objective is to find the minimum fabrication cost, considerating four
design variables: x1, x2, x3, x4 and constraints of shear stress τ , bending stress in the beam
σ, buckling load on the bar Pc, and end deflection on the beam δ. The optimization model
is summarized in the next equation:
Minimize: f(~x) = 1.10471x1

2x2 + 0.04811x3x4(14.0 + x2)
subject to:

g1(~x) = τ(~x) − 13, 600 ≤ 0

g2(~x) = σ(~x) − 30, 000 ≤ 0

g3(~x) = x1 − x4 ≤ 0

g4(~x) = 0.10471(x1
2) + 0.04811x3x4(14 + x2) − 5.0 ≤ 0

g5(~x) = 0.125 − x1 ≤ 0

g6(~x) = δ(~x) − 0.25 ≤ 0

g7(~x) = 6, 000 − Pc(~x) ≤ 0

with:

τ(~x) =

√

(τ ′)2 + (2τ ′τ ′′)
x2

2R
+ (τ ′′)2

τ ′ =
6, 000

√
2x1x2

τ ′′ =
MR

J

M = 6, 000

(

14 +
x2

2

)

R =

√

x2
2

4
+

(

x1 + x3

2

)2

J = 2

{

x1x2

√
2

[

x2
2

12
+

(

x1 + x3

2

)2
]}

σ(~x) =
504, 000

x4x3
2

δ(~x) =
65, 856, 000

(30 × 106)x4x3
3

Pc(~x) =
4.013(30 × 106)

√

x3
2
x4

6

36

196



1 −
x3

√

30×106

4(12×106)

28





with 0.1 ≤ x1, x4 ≤ 2.0, and 0.1 ≤ x2, x3 ≤ 10.0.
Best solution: x∗ = (0.205730, 3.470489, 9.036624, 0.205729) where f(x∗) = 1.724852.

E02: Pressure Vessel design optimization problem. A compressed
air storage tank with a working pressure of 3,000 psi and a minimum volume of 750 ft3. A
cylindrical vessel is capped at both ends by hemispherical heads (see figure A.2). Using rolled
steel plate, the shell is made in two halves that are joined by teo longitudinal welds to form a
cylinder. The objective is minimize the total cost, including the cost of the materials forming
the welding [15]. The design variables are: thickness x1, thickness of the head x2, the inner
radius x3, and the length of the cylindrical section of the vessel x4. The variables x1 and x2

Solving Engineering Optimization Problems with the Simple Constrained Particle Swarm Optimizer11

Figure A.1. Weldem Beam. Figure A.2. Pressure Vessel.

are discrete values which are integer multiples of 0.0625 inch. Then, the formal statement is:
Minimize: f(~x) = 0.6224x1x3x4 + 1.7781x2x3

2 + 3.1661x1
2x4 + 19.84x1

2x3

subject to:
g1(~x) = −x1 + 0.0193x3 ≤ 0

g2(~x) = −x2 + 0.00954x3 ≤ 0

g3(~x) = −πx3
2x4

2 −
4

3
πx3

3 + 1, 296, 000 ≤ 0

g4(~x) = x4 − 240 ≤ 0

with 1 × 0.0625 ≤ x1, x2 ≤ 99 × 0.0625, 10.0 ≤ x3, and x4 ≤ 200.0.
Best solution: x∗ = (0.8125, 0.4375, 42.098446, 176.636596) where f(x∗) = 6, 059.714335.

E03: Speed Reducer design optimization problem. The design of
the speed reducer [25] shown in figure A.3, is considered with the face width x1, module of
teeth x2, number of teeth on pinion x3, length of the first shaft between bearings x4, length
of the second shaft between bearings x5, diameter of the first shaft x6, and diameter of the
first shaft x7 (all variables continuous except x3 that is integer). The weight of the speed
reducer is to be minimized subject to constraints on bending stress of the gear teeth, surface
stress, transverse deflections of the shafts and stresses in the shaft. The problem is:
Minimize: f(~x) = 0.7854x1x2

2(3.3333x2
3 + 14.9334x3 − 43.0934) − 1.508x1(x2

6 + x2
7) +

7.4777(x3
6 + x3

7) + 0.7854(x4x2
6 + x5x2

7)
subject to:

g1(~x) =
27

x1x2
2x3

− 1 ≤ 0

g2(~x) =
397.5

x1x2
2x2

3

− 1 ≤ 0

g3(~x) =
1.93x3

4

x2x3x4
6

− 1 ≤ 0

g4(~x) =
1.93x3

5

x2x3x4
7

− 1 ≤ 0

g5(~x) =
1.0

110x3
6

√

(

745.0x4

x2x3

)2

+ 16.9 × 106 − 1 ≤ 0

g6(~x) =
1.0

85x3
7

√

(

745.0x5

x2x3

)2

+ 157.5 × 106 − 1 ≤ 0

g7(~x) =
x2x3

40
− 1 ≤ 0

g8(~x) =
5x2

x1
− 1 ≤ 0

12

g9(~x) =
x1

12x2
− 1 ≤ 0

g10(~x) =
1.5x6 + 1.9

x4
− 1 ≤ 0

g11(~x) =
1.1x7 + 1.9

x5
− 1 ≤ 0

with 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤ x4 ≤ 8.3, 7.8 ≤ x5 ≤ 8.3,
2.9 ≤ x6 ≤ 3.9, and 5.0 ≤ x7 ≤ 5.5.
Best solution: x∗ = (3.500000, 0.7, 17, 7.300000, 7.800000, 3.350214, 5.286683) where f(x∗) =
2, 996.348165.

Figure A.3. Speed Reducer Figure A.4. Tension/Compression
Spring.

E04: Tension/compression spring design optimization prob-
lem. This problem [16] [17] minimizes the weight of a tension/compression spring (fig-
ure A.4), subject to constraints of minimum deflection, shear stress, surge frequency, and
limits on outside diameter and on design variables. There are three design variables: the
wire diameter x1, the mean coil diameter x2, and the number of active coils x3. The mathe-
matical formulation of this problem is:
Minimize: f(~x) = (x3 + 2)x2x2

1
subject to:

g1(~x) = 1 −
x3
2x3

7, 178x4
1

≤ 0

g2(~x) =
4x2

2 − x1x2

12, 566(x2x3
1) − x4

1

+
1

5, 108x2
1

− 1 ≤ 0

g3(~x) = 1 −
140.45x1

x2
2x3

≤ 0

g4(~x) =
x2 + x1

1.5
− 1 ≤ 0

with 0.05 ≤ x1 ≤ 2.0, 0.25 ≤ x2 ≤ 1.3, and 2.0 ≤ x3 ≤ 15.0.
Best solution: x∗ = (0.051690, 0.356750, 11.287126) where f(x∗) = 0.012665.

