
Cooperative Co-Evolutionary Genetic
Programming for High Dimensional Problems

Lino Rodriguez-Coayahuitl1[0000−0002−7541−4772], Alicia
Morales-Reyes1[0000−0001−5052−7554], Hugo J. Escalante1,2[0000−0003−4603−3513],

and Carlos A. Coello Coello2[0000−0002−8435−680X]

1 Instituto Nacional de Astrof́ısica, Óptica y Electrónica,
Tonantzintla PUE 72840, Mexico {linobi,a.morales,hugojair}@inaoep.mx
2 CINVESTAV-IPN,? Departamento de Computación, Mexico City, Mexico.

ccoello@cs.cinvestav.mx

Abstract. We propose a framework for Cooperative Co-Evolutionary
Genetic Programming (CCGP) that considers co-evolution at three dif-
ferent abstraction levels: genotype, feature and output level. A thorough
empirical evaluation is carried out on a real-world high dimensional ML
problem (image denoising). Results indicate that GP’s performance is
enhanced only when cooperation happens at an output level (ensemble-
alike). The proposed co-evolutionary ensemble approach is compared
against a canonical GP implementation and a GP customized for im-
age processing tasks. Preliminary results show that the proposed frame-
work obtains superior average performance in comparison to the other
GP models. Our most relevant finding is the empirical evidence showing
that the proposed CCGP model is a promising alternative to specialized
GP implementations that require knowledge of the problem’s domain.

Keywords: Genetic Programming · Evolutionary Machine Learning ·
Co-Evolutionary Algorithms · Ensemble methods · Image processing.

1 Introduction

High dimensional problems have been traditionally challenging for both Machine
Learning [2] (ML) methods and Evolutionary Algorithms [31] (EAs). This issue
is critical for Genetic Programming (GP), which in this case is the evolution-
ary learning algorithm, because of its complex structures and its need for large
populations to reach acceptable solutions. Therefore, large scale learning prob-
lems have been out of the scope of GP-based solutions, hindering its raise as a
competitive learning model.

In ML, several techniques have been devised to adapt learning algorithms
to high dimensional problems. A successful example are convolutional neural
networks that process images at a pixel-level [13]. In contrast, a mechanism

? The last author gratefully acknowledges support from CONACyT grant no. 2016-
01-1920 (Investigación en Fronteras de la Ciencia 2016) and from a SEP-Cinvestav
grant (application no. 4).



2 Rodriguez-Coayahuitl et al.

commonly adopted in GP to deal with high dimensional problems (e.g., im-
age processing) uses special (high-level) primitives capable of processing groups
of features from the input representation altogether. Thus, nodes in GP can
represent sets of features or functions to process them (e.g., a mean function
over an input space region) [1, 22]. This approach has resulted in satisfactory
performance in some domains [7, 26, 16]. However, it usually requires a form of
problem’s domain knowledge, which contravenes the spirit of automated ML
systems.

From a pure evolutionary computation (EC) standpoint, an approach that
has been used for a long time to tackle large scale problems is Cooperative
Co-Evolutionary Algorithms [21] (CCA). Potter & De Jong [21] originally pro-
posed the CCA framework to tackle complex optimization problems through
Genetic Algorithms (GA) by splitting the search space into multiple, smaller,
sub-problems that are solved by semi-independent GA populations cooperat-
ing to solve the original (larger) problem. It is well documented that CCA has
enabled several EAs to operate on very high dimensional optimization prob-
lems [17, 31, 19]. This evidence motivated us to explore CCA’s suitability in a
GP context for high-dimensional learning problems.

We propose alternative mechanisms for implementing a Cooperative Co-
evolutionary GP (CCGP) and assess their performance in a high dimensional
learning problem composed by more than four hundred feature variables: image
denoising. Our working hypothesis is that a cooperative co-evolutionary ap-
proach will allow GP to scale its performance in ML problems with hundreds of
input feature variables, without having to resort on high-level primitives. There-
fore, the main contributions of this work are threefold:

– We introduce cooperative co-evolution in GP as a way to tackle high-di-
mensional ML problems. The proposed GP formulation obtains competitive
performance in very high-dimensional and complex problems while directly
processing raw data (pixels).

– We propose three different approaches to perform cooperative co-evolution
in GP aiming at high dimensional problems. We experimentally compare
their performance in a real-world, high-dimensional ML problem (natural
image denoising).

– The best performing CCGP approach is evaluated extensively and compared
to highly competitive baseline algorithms. Our experimental results show the
superiority and competitiveness of our proposed approach.

Results indicate that CCGP is a viable alternative to the standard GP ap-
proach for high dimensional problems. This is important because in the proposed
CCGP scheme, no special nodes are defined for the problem at hand, whereas in
the typical GP model for high dimensional problems, those special nodes repre-
sent the weakest link in the design process of a GP-based ML solution, mainly
because special nodes may require human expert knowledge of the problem’s
domain. In contrast, our proposed CCGP approaches are completely agnostic,
therefore posing GP a step towards automation, and closer to modern general
purpose ML frameworks, such as Deep Learning.



Cooperative Co-Evolutionary Genetic Programming 3

2 Related Work

According to [12], when approaching ML problems with GP, there are different
abstraction levels to perform CCGP: (1) genotypic, (2) subroutine or feature,
and (3) output or ensemble levels. In genotypic CCGP, co-evolving components
fusion takes place at the individual representation level, by merging trees di-
rectly (in tree-based GP); for CCGP at feature level, co-evolving GP processes
generate intermediate input data representations that can be fed into a ML
model in order to enhance its performance (i.e., feature extraction). Finally, in
a CCGP ensemble, multiple co-evolved species’ outputs vote or average in order
to achieve higher accuracy in classification or regression problems. In this pa-
per we propose a novel framework to perform cooperative co-evolution at those
abstraction levels, and experimentally compare their performance.

CCGP has been mostly studied at ensemble and feature levels [10, 11, 33,
20]. It should be noted, however, that the originally proposed CCA framework
considers fusion at a genotypic level [21]. CCA research at a genotypic level in
GP is scarce; one of the few works that covers this subject is presented in [12].
Krawiec & Bhanu presented several works on feature-level CCGP [10, 11], and
in [12] they proposed a genotype-level CCGP and compared it to their previous
approaches. However, it should be noted that [12] covers CCGP only for linear
GP [3], and not for the original tree-based GP. A possible reason for this lack
of interest could be the fact that performing genotype-level CCGP with the
standard tree individual representation is difficult, since there is no obvious way
to fuse genotypes for tree-based individuals other than standard GP-subtree
crossover, and this might not yield the desired effect in a CCA scheme. Moreover,
while in [10] and [11], cooperative co-evolution happens at feature level, the
prediction stage is relegated to a different, simple ML algorithm, instead of using
another GP process. In contrast, we propose to perform fusion at a feature level
through a co-evolving GP species, thus effectively implementing a multi-layer
GP system. This multi-layer GP is another relevant contribution of this paper.

On the other hand, GP-based ensembles have been proposed at least as early
as in [9]. Many GP-based ensembles found in the literature follow a standard
weighted averaging fusion technique [9, 28, 29]. In contrast, herein we propose to
generate ensembles through an explicit co-evolutionary framework. Co-evolution
generated GP ensembles have been thoroughly researched by Heywood et al. [14,
18, 15, 6]. However, their problem decomposition technique happens mainly at
sample subset level, whereas we propose a feature subset approach.

Regarding GP approaches to tackle high dimensional problems, two are the
most widely used: (a) using special primitives to process groups of features alto-
gether [1, 22], and (b) using separate GP processes after applying clustering to
input variables [27, 23]. The methods proposed here fall in the second category.
Both approaches have disadvantages. In the first, it is required to define special
nodes, and this might imply requiring some previous knowledge of the problem’s
domain, while in the second, division and execution of multiple GP processes
may involve an increase in the computational cost. A main contribution in this
paper is that, for the first time both GP approaches are directly compared.



4 Rodriguez-Coayahuitl et al.

3 Problem Statement

In supervised learning, ML algorithms search for a function f , mapping inputs
(x ∈ Rn) to outputs (y ∈ R) starting from a dataset of input-output pairs (D =
{(xi, yi)}i∈1,...,d). For a regression problem with inputs in an n−dimensional
space we have f : Rn → R. That is, f receives as input n feature variables in
order to make a scalar prediction. GP as a non-parametric ML method builds f
from scratch by using primitives and feature variables as building blocks.

In high-dimensional learning problems, n is large enough so that f can be-
come difficult to infer because GP needs to search among large tree structures
that accommodate enough n feature variables in order to perform satisfactorily.
Hence, this simple problem can be associated to an intractable search space.

We claim that it is less complex to search for multiple, simpler, functions
f̃i, such that by combining their outputs, they may outperform f . In our con-
text, by simpler we mean that they are represented by smaller GP trees, and
are restricted to a limited subset of features, and therefore can be more easily
discovered by GP. In formal terms, our hypothesis is that it is computationally
more efficient to search for p, lower dimensional, sub-functions f̃i : Rm → R,
such that m << n, that when combined can yield a f̃ function equivalent or
even with superior performance than f . Two questions arise: (1) how can the
original feature space be split?, and (2) how can we combine p sub-functions fi?

In this work, we hold that in order to get a highly automated and agnostic ML
design process, the feature space should be split in a random way. However, we
recognize that some previous knowledge of the problem’s domain can be used in
order to perform an advantageous partition of the initial input representation.
On the other hand, a correct method to merge partial solutions can be more
difficult to assert which is the main topic in this research. In the next section we
propose and discuss some possible approaches to address such task.

4 Cooperative Co-evolutionary GP

In general terms, CCAs split the search task into multiple, smaller, optimization
processes. The main idea is to introduce modularity in EAs [21]. In combina-
torial and numerical optimization problems, CCAs achieve this by distributing
solutions’ segments among a number of sub-populations; individuals’ evaluation
in each sub-population is performed by importing those segments from other
sub-populations and assembling complete solutions for evaluation. Thus, indi-
viduals take turns to form part of such complete solutions and credit can be
assigned to each one of them.

In order to import such problem decomposition strategy into the context of
syntax tree-based GP (i.e., not LinearGP), we propose to introduce the con-
cept of main species, that represents a partial solution that acts as a holder to
which the rest of partial solutions attach to, in order to form a complete so-
lution. Next, we detail three proposed approaches developed within the CCGP
framework herein introduced. Each method is a CCA with standard tree-based



Cooperative Co-Evolutionary Genetic Programming 5

GP representation at genotype, feature or output level of the ML pipeline. The
proposed methods adhere to the following procedure:

1. The input feature set is sampled, with replacement, to form p subsets with
m randomly picked features variables each;

2. p species are created; each subset limits valid terminals for each species; all
species are confined to one subpopulation (i.e., no inter-species breeding);

3. Additionally, there is a main species, that represents the type of individuals
to which all other species attach to form a complete candidate solution;

4. At each generation, a complete candidate solution is assembled by randomly
selecting one individual from each species and attaching them to one main
species individual (also selected at random);

5. This complete candidate solution is sent to all subpopulations; each individ-
ual is evaluated by attaching it to the complete candidate solution (in order
to form a complete chain of execution), for fitness assignment; this also ap-
plies to the main species individuals. Details of this procedure are given in
Sec. 4.4;

6. The evolutionary process (evaluation, recombination, selection) occurs si-
multaneously in all subpopulations;

The differences among the proposed CCGP variants rely on the complete
solutions assembly process and on the form that the main species take. These
variants are described in detail next.

Main
species

Species 1 Species 2 Species 3 Species 4

Crosso
ve

r

Complete 
solution

4

1

Main
species

3

Species 1 Species 2 Species 3 Species 4

Complete 
solution

Cross
ove

r

Cross
ove

r

Cross
ove

r

Species 1 Species 2 Species 3 Species 4
+

+ +

Complete solution

a)

b)

c)

Fig. 1. Proposed CCGP models. From top to bottom: genotype-, feature- and
ensemble-level models.



6 Rodriguez-Coayahuitl et al.

4.1 Genotype level

CCGP at genotype level occurs by fusing multiple sub-components while directly
mixing syntax trees that represent each co-evolving species. Since the straight-
forward method to perform such recombination is the standard subtree crossover
defined for GP, this is the method we propose to build complete solutions. Thus,
subtree crossover is performed sequentially between a main species candidate
and each additional co-evolving species. The idea here is that complete candi-
date solutions have useful subtrees that rely on a wide variety of input variables
(because each species is limited to a certain subset of input variables). This is the
most straightforward form that CCGP may take, and it is aligned to the origi-
nal CCA framework proposed by Potter & De Jong. Fig. 1a shows the complete
solution assembly process under this approach.

4.2 Feature level

We call fusion at feature level when species (other than the main one) represent
encapsulated sub-components, that is, complete GP trees that merge to form
a complete solution by connecting to leaf nodes of a main species individual.
This scheme removes inconsistencies of genotype-level/fusion by crossover, and
preserves integrity of both species and the main species individuals. Our aim is
that co-evolved sub-components may represent pseudo-subroutines that act as
a sort of feature extractor stages, while the main species act as the predictor
stage that operates over those pre-processor stages’ outputs, rather than having
to work with a raw and large scale input space (hence the name feature-level).

In formal terms, this approach fuses p sub-functions fi, by searching for a
function (also by means of co-evolution) g : Rp → R, that operates over auxiliary
sub-functions outputs such that f̃ = g(f1, f2, ..., fp). Fig. 1b shows this model.

4.3 Ensemble Level

At an ensemble or output CCGP level, each species represents a complete pre-
dictor to the problem at hand, and species fusion occurs by only aggregating
the output generated by each predictor. Aggregation may take several forms.
In this work, we propose to combine each species output by means of a simple
sum. This approach bears some resemblance to ML ensemble methods [4] that
combine multiple predictors outputs by a weighted sum (hence the name, ensem-
ble-level). We proposed this model after observing an undesirable phenomenon
in the feature-level CCGP where main individuals’ function converged ignoring
all but one of the sub-component species, and the search process then happened
only in a single population, losing model’s co-evolutionary nature and becoming
a standard EA (this issue is detailed and discussed in Section 5.3). Therefore,
through this approach, it becomes more difficult for species to avoid contribut-
ing to the global solution. Notice how this approach can be seen as a case where
the main function is fixed to a GP tree composed by sum nodes only, and the
evolutionary search for a main function is discarded. Fig. 1c depicts this concept.
Thus, formally, this method proposes that f̃ = f1 + f2 + ...+ fp.



Cooperative Co-Evolutionary Genetic Programming 7

4.4 Fitness Assignment

Fitness assignment in CCGP (step 5 in the general procedure) is carried out
in two different ways. At the Genotype level, attaching each individual to a
complete candidate solution that is sent to each species population, occurs by
performing crossover between that assessed individual and the complete solution.
In CCGP models at Feature and Ensemble level, attachment of individuals for
evaluation happens by replacing the corresponding individual of that species in
the complete candidate solution being used.

5 Experimental results

This section describes the empirical methodology followed for evaluation of pro-
posed CCGP approaches. It also presents and discusses the obtained results.

5.1 Datasets

For validation, the proposed CCGP framework tackles image denoising as a high
dimensional problem, where a clean image x is extracted from a noisy observation
y such that, for an additive noise model, y = x+v, where v is a contamination
process. In this study, Additive White Gaussian Noise (AWN) is targeted, where
v follows a Gaussian distribution with some given σ.

We used the Berkeley Segmentation Dataset (BSDS) [24] for training and
testing purposes. We converted 200 images from BSDS to grayscale and ran-
domly extracted 14, 000 patches of 21 × 21 pixels in size. We contaminated
images (prior to patch extraction) with AWN noise level σ = 50. We set all
GP variants to attack image denoising as a regression problem: the objective
function is the minimization of the average mean square error (MSE), from at-
tempting to predict the noise level in the central pixel from all patches in the
training set. In a real life scenario, a generated model with this approach can be
slid through a full image, in a convolutional fashion, in order to clean it. How-
ever, for this set of experiments, we limited ourselves to test generated models
in a testing set comprised also by image patches. We used 12, 000 patches for
training and 2000 for testing. BSDS had been used as testbed for different image
denoising methods [25, 30, 5], including deep learning approaches [32], to which
we compare later in Sec. 5.4. Fig. 2 shows sample images from BSDS.

Fig. 2. Sample images from the Berkeley Segmentation Dataset.



8 Rodriguez-Coayahuitl et al.

5.2 Parameters Settings

Table 1 summarizes parameters configuration for all experimental samples. Max,
min and mean primitives are 2-arity functions that operate over two single
scalars, and division is protected such that any attempt at dividing by zero re-
turns 0. Both crossover and mutation are protected so that the maximum allow-
able tree depth is never exceeded. Training datasets are split in non-overlapping
minibatches of 300 instances and at each generation, populations are evaluated
using one minibatch. Minibatch-based evolution (on-line learning) in GP has
been found to be successful for this type of ML problem [8, 23].

Table 1. Parameters configuration for empirical testing.

Parameter Value

Pop Size 400 (per species, inc. main)

Generations Variable (24 hrs.)

No. of species 8 + main

Max Tree Depth 6 (for all species, inc. main)

Crossover / Mutation rate 0.5 / 0.5

Pop Dynamics Steady State

Primitives
+, −, ×, ÷, x2, sin, cos,
√

, max, min, mean, ReLU

Terminals
Individual pixels and

constants within range [−1, 1]

Features per species 30 (from a total of 441)

In order to allow a fair comparison, all setups are run for the same limited
amount of time. Subsets of feature variables that are allowed for each species
are randomly assembled. However, since the target task predicts central pixel’s
noise level within image patches, it is set, as a requirement, that a central pixel
appears in at least two random subsets.

For the feature-level approach, another restriction is defined: the main species’
individuals must use, at least, 6 out of 8 total sub-component species. Main
species’ trees are parsed and the number of different species used by an individ-
ual are counted. If this constraint is not met, the fitness of such individual is
set to ∞. This restriction is set in order to prevent the main species’ individu-
als from becoming a “wired” function that connects to a single sub-component
species, where the whole optimization process is confined to, while the rest of
the species do not contribute to the co-evolutionary search.

5.3 Analysis of Results

Table 2 shows results obtained for all approaches tested after performing 10
independent runs. Results are shown in decibels Peak Signal to Noise Ratio (dB
PSNR), such that higher is better. Fig. 3a depicts the fitness evolution in a
feature-level run, in error terms; in this case, lower is better. This behavior is
representative of feature-level runs in general. This result shows that the feature-
level approach does converge, suggesting that this CCGP variant is capable of
evolving multi-layer GP structures with sequential dependencies. However, a
closer examination to the best solutions rendered by this approach revealed that



Cooperative Co-Evolutionary Genetic Programming 9

this is not the case (discussed below). Moreover, the feature-level approach is
no match for ensemble models, which converge faster, and to better solutions,
both in average and overall. Meanwhile, genotype-level is left further behind.
This result indicates that ensemble CCGP is the best overall method.

Low performance of genotype-level CCGP can be explained by the fusion
mechanism used in this approach: subtree crossover is a stochastic operation
that even when given the same two parents trees, may render different offspring
if performed multiple times. This means that even if a combination of different
species individuals that rendered a good complete solution in a previous gener-
ation, are chosen again to form a complete solution, this time their merge may
result in a bad complete solution; instability in this mechanism is very high for
this approach to converge to any acceptable solutions.

Table 2. Results in dB for tested setups with different time frames.

Output Feature Genotype

Avg Best Avg Best Avg Best

4 Hrs. 18.90 ± 0.52 19.46 16.43 ± 1.64 18.73 14.80 ± 0.44 15.41
12 Hrs. 20.62 ± 0.36 21.16 17.67 ± 2.30 20.84 15.09 ± 0.25 15.41
24 Hrs. 20.96 ± 0.50 21.61 18.55 ± 2.27 21.35 15.09 ± 0.44 15.62

b) c)

a)

0.030

0.025

0.020

0.015

0.010

0.005

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

0 50 100 150 200 250

0 50 100 150 200 250 0 50 100 150 200 250

Fig. 3. Fitness and diversity from a feature-level CCGP run as generations elapse.
(a) Fitness error (lower is better). In blue (orange) we show the training (testing)
error. (b) and (c), phenotypic diversity in two sub-component populations, one (zero)
means all solutions yield a different (the same) prediction.



10 Rodriguez-Coayahuitl et al.

÷

x x

+ + - Re

÷ 7 1 x

4 2m 57

m 8

7 5

2 2 x2

1

Fig. 4. Main species’ individual example that complies with referencing at least 6 sub-
components and not using them. Notice that root’s right subtree always returns 0;
thus, the whole tree also returns a constant.

Considerable higher performance at ensemble-level with respect to feature-
level can be more arguable. Flexibility at feature-level, which also searches for an
optimal main function, could play on its favor against a more restricted ensem-
ble model with its predefined main function - given enough computational time.
However, this appears not to be the case. On the contrary, this disadvantage is
clearer in the first few generations of feature-level runs, when the evolutionary
search appears to stagnate (according to Fig. 3a) apparently searching for a min-
imally acceptable main function. Even once feature-level CCGP variant escapes
initial stagnation, it does not converge to solutions that reach performance of
ensemble-level models.

Some dominant solutions are closely examined during this early evolution-
ary process, and phenotypic diversity is measured in each sub-population. It is
observed that feature-level CCGP is surprisingly good at ignoring restriction
imposed to the main species’ individuals of using co-evolving sub-components:
this CCGP variant managed to generate main species’ individuals with subtrees
that referenced too many sub-components, while at the same time completely
ignored such subtrees. Fig. 4 depicts an example of such type of individuals.

Analyzing phenotypic diversity in species’ sub-populations confirmed this
behavior. Fig. 3b shows diversity in a sub-population as generations elapse. It can
be observed that at early generations, diversity oscillates between some actual
value and zero. When phenotypic diversity abruptly decays to zero, this implies
that all individuals in the population generate the same prediction/fitness. This
happens because main function individuals are ignoring this sub-component, i.e.
regardless of the individual from this population which connects to the main
functions, they all render the same result. This oscillating behavior in the first
few generations depicted in Fig. 3b means that the main function individuals
do not make a consistent use of this particular sub-component. It is only after
a certain number of generations that diversity recovers and the approach begins
to behave consistently, because now the main function individuals are working
cooperatively with individuals from these species.



Cooperative Co-Evolutionary Genetic Programming 11

Further investigation on diversity of all species in different runs, revealed
that by relying on mechanisms such as the one depicted in Fig. 4, the feature-
level main individual still converges to “wired” functions that simply connect to
one or two sub-component populations where optimization is happening, while
the rest of the species do not contribute to the co-evolutionary process. As an
example of this behavior, Fig. 3c shows diversity of a species’ population and
the moment it begins to be ignored by the main function individuals, which
roughly coincides with the time at which overall CCGP run begins to converge.
Meanwhile, ensemble-level models exhibited the exact opposite behavior, where
in general, only one or two of eight sub-populations decay to zero diversity, sug-
gesting that they may be acting as constant biasing factors in the sum structure,
while the rest of the species do alter global solution performance, contributing to
the co-evolutionary search. These results show that multi-layer GP architectures
remain as very challenging to evolve.

5.4 Other GP approaches comparison

In this section, ensemble CCGP performance (the best performing model) is
compared against two other GP models: a canonical GP representation, and a
modern GP variant that makes use of special nodes aimed at high dimensional
problems. The aim is twofold: (1) to collect evidence that supports our hypothesis
that cooperative co-evolution can boost GP performance in high dimensional
learning problems, as well as (2) to quantify how CCGP compares with respect
to GP models tailored for tackling high-dimensional problems.

Two GP models called Low-level GP (LowGP) and Mid-Level GP (MidGP)
are implemented. LowGP is a canonical GP that operates at individual pixel
level; while MidGP uses special nodes and terminals that allow to process fea-
tures groups. Table 3 summarizes the configurations used for these approaches.
LowGP can only make use of primitives and terminals (the same used by CCGP),
while MidGP can use special primitives, special terminals, and regular primitives
and terminals. Special primitives are functions that receive as inputs variable-
length vectors and whose output is a single scalar that can be processed by
regular primitives. For an in-depth analysis of these GP models refer to [22].

Notice in Table 3 that non co-evolutionary GPs are setup with the same
population size to that of a single CCGP species, but the max tree depth is
extended in this case, to account for main functions on top of sub-component
species, as well as with an increased number of subtrees (equivalent to sub-
component species). Thus, a fair comparison against the proposed CCGP model
is guaranteed: both LowGP and MidGP individuals can accommodate the same
maximum number of nodes to that of a CCGP complete solution.

Table 4 shows the results obtained for both standard GP variants. It is ob-
served that CCGP average performance is superior to both LowGP and MidGP.
The proposed approach also presents a lower variance, thus providing evidence
that ensemble CCGP is a viable method to step up GP’s performance in high-
dimensional learning problems, with the added benefit of not requiring a spe-
cialized primitives set. It should be noted, however, that MidGP’s best solution



12 Rodriguez-Coayahuitl et al.

Table 3. Specific tested parameters for non CCGP models

Parameter Value
Pop Size 400
Max Tree Depth 9
Primitives Same as in Table 1
Special Primitives mMean, mMax, mMin, mMed
Terminals Same as in Table 1

Special Terminals

Trimmers

outclasses CCGP’s best result by a considerable margin, indicating that MidGP
remains as the reference method to outperform within GP. For a more general
comparison, consider that a deep network with 17 hidden layers [32], can score
27.20 dB PSNR given similar training and testing sets.

Table 4. Comparison to non-coevolutionary GPs. Expressed in dB; higher is better.

LowGP CCGP MidGP
Hrs Avg Best Avg Best Avg Best
4 17.81 ± 2.31 20.94 18.90 ± 0.52 19.46 20.21 ± 3.74 23.30
12 18.13 ± 2.55 21.68 20.62 ± 0.36 21.16 20.27 ± 3.74 23.35
24 18.23 ± 2.64 21.81 20.96 ± 0.50 21.61 20.41 ± 3.82 23.30

6 Conclusions

This paper proposed and contrasted three different approaches to perform co-
operative co-evolution within the GP framework at different abstraction levels:
genotype, feature and ensemble. A thorough behavior and performance analy-
sis of CCGP at a feature-level showed that synthesizing multi-layer GP archi-
tectures is surprisingly difficult, because GP tends to confine all optimization
processes within a single sub-population, effectively losing properties of a true
co-evolutionary search. This is an important result that shreds light on some
future research guidelines.

For full empirical assessment, conventional GP variants were also compared.
We can conclude that CCGP’s performance sits in between a completely agnostic
canonical GP, that only processes feature variables at an individual level, and
higher-level GP variants that require problem domain knowledge to a lesser or
greater extent. This is a very promising result, because with further research,
CCGP could boost agnostic GP models to reach the best performances obtained
by higher-level GP variants, or maybe to help reducing the amount of designer
input knowledge necessary in higher-level GP models.

Acknowledgements. This work was partially supported by CONACyT under
project grant A1-S-26314, Integración de Visión y Lenguaje mediante Representaciones
Multimodales Aprendidas para Clasificación y Recuperación de Imágenes y Videos.



Cooperative Co-Evolutionary Genetic Programming 13

References

1. Al-Sahaf, H., Song, A., Neshatian, K., Zhang, M.: Two-tier genetic programming:
Towards raw pixel-based image classification. Expert Systems with Applications
39(16), 12291–12301 (2012)

2. Alpaydin, E.: Introduction to machine learning. MIT press (2009)

3. Brameier, M., Banzhaf, W.: A comparison of linear genetic programming and neu-
ral networks in medical data mining. IEEE Transactions on Evolutionary Compu-
tation 5(1), 17–26 (2001)

4. Brown, G.: Ensemble learning. Encyclopedia of Machine Learning 312 (2010)

5. Chen, Y., Pock, T.: Trainable nonlinear reaction diffusion: A flexible framework
for fast and effective image restoration. IEEE Transactions on Pattern Analysis
and Machine Intelligence 39(6), 1256–1272 (2016)

6. Doucette, J.A., Mcintyre, A.R., Lichodzijewski, P., Heywood, M.I.: Symbiotic co-
evolutionary genetic programming: a benchmarking study under large attribute
spaces. Genetic Programming and Evolvable Machines 13(1), 71–101 (2012)

7. Esfahanipour, A., Mousavi, S.: A genetic programming model to generate risk-
adjusted technical trading rules in stock markets. Expert Systems with Applica-
tions 38(7), 8438–8445 (2011)

8. Gathercole, C., Ross, P.: Dynamic training subset selection for supervised learning
in genetic programming. In: International Conference on Parallel Problem Solving
from Nature. pp. 312–321. Springer (1994)

9. Iba, H.: Bagging, Boosting, and Bloating in Genetic Programming. In: Banzhaf,
W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E.
(eds.) Genetic and Evolutionary Computing Conference (GECCO’99). vol. 2, pp.
1053–1060. Morgan Kaufmann Publishers, San Francisco, California (July 1999)

10. Krawiec, K., Bhanu, B.: Coevolution and linear genetic programming for visual
learning. In: Genetic and Evolutionary Computation Conference. pp. 332–343.
Springer (2003)

11. Krawiec, K., Bhanu, B.: Visual learning by coevolutionary feature synthesis. IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 35(3), 409–
425 (2005)

12. Krawiec, K., Bhanu, B.: Visual learning by evolutionary and coevolutionary feature
synthesis. IEEE Transactions on Evolutionary Computation 11(5), 635–650 (2007)

13. LeCun, Y., Bengio, Y., et al.: Convolutional networks for images, speech, and
time series. The Handbook of Brain Theory and Neural Networks 3361(10), 1995
(1995)

14. Lemczyk, M., Heywood, M.I.: Training binary gp classifiers efficiently: A pareto-
coevolutionary approach. In: European Conference on Genetic Programming. pp.
229–240. Springer (2007)

15. Lichodzijewski, P., Heywood, M.I.: Coevolutionary bid-based genetic programming
for problem decomposition in classification. Genetic Programming and Evolvable
Machines 9(4), 331–365 (2008)

16. Liu, L., Shao, L., Li, X., Lu, K.: Learning spatio-temporal representations for action
recognition: A genetic programming approach. IEEE Transactions on Cybernetics
46(1), 158–170 (2015)

17. Liu, Y., Yao, X., Zhao, Q., Higuchi, T.: Scaling up fast evolutionary programming
with cooperative coevolution. In: Proceedings of the 2001 Congress on Evolutionary
Computation (CEC’2001). vol. 2, pp. 1101–1108. IEEE (2001)



14 Rodriguez-Coayahuitl et al.

18. McIntyre, A.R., Heywood, M.I.: Cooperative problem decomposition in pareto
competitive classifier models of coevolution. In: European Conference on Genetic
Programming. pp. 289–300. Springer (2008)

19. Miguel Antonio, L., Coello Coello, C.A.: Use of Cooperative Coevolution for Solv-
ing Large Scale Multiobjective Optimization Problems. In: 2013 IEEE Congress
on Evolutionary Computation (CEC’2013). pp. 2758–2765. IEEE Press, Cancún,
México (20-23 June 2013), iSBN 978-1-4799-0454-9

20. Park, J., Mei, Y., Nguyen, S., Chen, G., Johnston, M., Zhang, M.: Genetic pro-
gramming based hyper-heuristics for dynamic job shop scheduling: cooperative co-
evolutionary approaches. In: European Conference on Genetic Programming. pp.
115–132. Springer (2016)

21. Potter, M.A., De Jong, K.A.: A cooperative coevolutionary approach to function
optimization. In: International Conference on Parallel Problem Solving from Na-
ture. pp. 249–257. Springer (1994)

22. Rodriguez-Coayahuit, L., Morales-Reyes, A., H.J., E.: A comparison among dif-
ferent levels of abstraction in genetic programming. In: 2019 IEEE International
Autumn Meeting on Power, Electronics and Computing (ROPEC). IEEE (Nov
2019)

23. Rodriguez-Coayahuitl, L., Morales-Reyes, A., Escalante, H.J.: Structurally layered
representation learning: towards deep learning through genetic programming. In:
European Conference on Genetic Programming. pp. 271–288. Springer (2018)

24. Roth, S., Black, M.J.: Fields of experts: A framework for learning image priors. In:
null. pp. 860–867. IEEE (2005)

25. Schmidt, U., Roth, S.: Shrinkage fields for effective image restoration. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition. pp.
2774–2781 (2014)

26. Shao, L., Liu, L., Li, X.: Feature learning for image classification via multiobjec-
tive genetic programming. IEEE Transactions on Neural Networks and Learning
Systems 25(7), 1359–1371 (2013)

27. Tran, B., Xue, B., Zhang, M.: Using feature clustering for GP-based feature con-
struction on high-dimensional data. In: European Conference on Genetic Program-
ming. pp. 210–226. Springer (2017)

28. Veeramachaneni, K., Arnaldo, I., Derby, O., OReilly, U.M.: FlexGP. Journal of
Grid Computing 13(3), 391–407 (2015)

29. Veeramachaneni, K., Derby, O., Sherry, D., O’Reilly, U.M.: Learning regression
ensembles with genetic programming at scale. In: Proceedings of the 15th annual
conference on Genetic and evolutionary computation. pp. 1117–1124 (2013)

30. Yan, R., Shao, L., Liu, L., Liu, Y.: Natural image denoising using evolved local
adaptive filters. Signal Processing 103, 36–44 (2014)

31. Yang, Z., Tang, K., Yao, X.: Large scale evolutionary optimization using coopera-
tive coevolution. Information Sciences 178(15), 2985–2999 (2008)

32. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser:
Residual learning of deep cnn for image denoising. IEEE Transactions on Image
Processing 26(7), 3142–3155 (2017)

33. Zou, X., Bhanu, B.: Human activity classification based on gait energy image and
coevolutionary genetic programming. In: 18th International Conference on Pattern
Recognition (ICPR’06). vol. 3, pp. 556–559. IEEE (2006)


