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Abstract—In recent years, the design of selection mechanism
based on performance indicators has become a very popular
trend in the development of new Multi-Objective Evolutionary
Algorithms (MOEAs). The main motivation has been the well-
known limitations of Pareto-based MOEAs when dealing with
problems having four or more objectives (the so-called many-
objective problems). The most commonly adopted indicator has
been the hypervolume, mainly because of its nice mathematical
properties (it is the only unary indicator which is known to
be Pareto compliant). However, the hypervolume has a well-
known disadvantage: its exact computation is very costly in
high dimensionality, making it prohibitive for many-objective
problems (this cost normally becomes unaffordable for problems
with more than 5 objectives). Recently, a variation of the well-
known inverse generational distance (IGD) was introduced. This
indicator, which is called IGD+ was shown to be weakly Pareto
compliant, and presents some evident advantages with respect to
the original IGD. Here, we propose an indicator-based MOEA,
which adopts IGD+. The proposed approach adopts a novel
technique for building the reference set, which is used to assess
the quality of the solutions obtained during the search. Our
preliminary results indicate that our proposed approach is able
to solve many-objective problems in an effective and efficient
manner, being able to obtain solutions of a similar quality to
those obtained by SMS-EMOA and MOEA/D, but at a much
lower computational cost than required by the computation of
exact hypervolume contributions (as adopted in SMS-EMOA).

I. INTRODUCTION

A wide variety of real-world problems have several (often
conflicting) objectives which need to be optimized at the same
time. They are generically called multiobjective optimization
problems (MOPs) and their solution involves finding the best
possible trade-offs among all the objectives. This set of trade-
offs, when defined in decision variable space, is known as the
Pareto optimal set. The image of the Pareto optimal set is
called the Pareto front (PF).

Multi-Objective Evolutionary Algorithms (MOEAs) have
been developed during the last 30 years, from which the
last 15 have had a very intense activity [1], [2]. For several
years, MOEAs adopted selection mechanisms based on Pareto
optimality. However, recent studies have shown that Pareto-
based multi-objective evolutionary algorithms do not perform
properly when dealing with problems having more than three
objectives (the so-called many-objective optimization prob-
lems) [3]. For this reason, some researchers have investigated

the development of new selection schemes. One of the current
research trends in this area is to optimize a quality assess-
ment indicator that provides a good ordering among sets that
represent Pareto approximations. A number of performance
indicators have been proposed, from which the hypervolume
is, with no doubt, the most popular so far, mainly because of
its nice mathematical properties (it’s the only unary indicator
which is known to be Pareto compliant [4], [5], [6]). However,
the main drawback of hypervolume-based MOEAs is the high
computational cost associated with the computation of the
exact hypervolume contributions, which becomes unaffordable
in many-objective optimization problems.

A possible way to deal with this limitation is to adopt a
different indicator to select solutions in a MOEA. Here, we
propose a selection scheme based on the inverted generational
distance (IGD) indicator, which was been recently modified
by Ishibuchi [7], [8] to make it weakly Pareto compliant.
This new version, called IGD+ has a very low computational
cost, even in high dimensional problems. However, its main
drawback is that it requires a reference set to compute the
indicator value. Here, we propose a technique to construct
such a reference set and we show that the resulting MOEA
has a competitive performance with respect to two state-of-the-
art MOEAs (SMS-EMOA and MOEA/D), even when dealing
with problems having a high number of objectives, while
keeping a very affordable computational cost.

The remainder of this paper is organized as follows. Sec-
tion II provides some basic concepts related to multi-objective
optimization. Section III shows the most relevant previous
related work. Our proposed approach is described in Sec-
tion IV. The experimental results are presented in Section V-D,
including the methodology and a short discussion of our main
findings. Finally, conclusions and some possible paths for
future research are provided in Section VI.

II. BASIC CONCEPTS

We are interested in solving problems of the type:

minimize ~f(~x) := [f1(~x), f2(~x), . . . , fm(~x)]T (1)

subject to:
gi(~x) ≤ 0, i = 1, 2, . . . , p (2)



hj(~x) = 0, j = 1, 2, . . . , q (3)

where ~x = [x1, x2, . . . , xn] is the vector of decision
variables, fi : Rn → R, i = 1, . . . ,m are the objective
functions and gi, hj : Rn → R, i = 0, . . . , p, j = 1, . . . , q are
the constraint functions of the problem. Next, we introduce
some definitions that will be used in the paper.

Definition 1: Let ~x, ~y ∈ Rm, we say that ~x “dominates”
~y (denoted by ~x ≺ ~y ), if and only if: i) xi ≤ yi for
all i ∈ {1, . . . ,m} and ii) xj < yj for at least one
j ∈ {1, . . . ,m}.

Definition 2: We say that a vector of decision variables
~x ∈ X ⊂ Rn is “nondominated” with respect to X , if there
does not exist another ~x′ ∈ X such that ~f(~x′) ≺ ~f(~x).

Definition 3: We say that a vector of decision variables
~x ∈ F ⊂ Rn (where F is the feasible region) is “Pareto-
optimal” if it is nondominated with respect to F .

Definition 4: The Pareto Optimal Set P∗ is defined by:
P∗ = {~x ∈ F|~x is Pareto-optimal}

Definition 5: The “Pareto Front” PF∗ is defined as follows:
PF∗ = {~f(~x) ∈ Rm|~x ∈ P∗}

III. RELATED WORK

Previously, we said that the performance indicator, which
has been most commonly used for the selection mechanism
of a MOEA, is the hypervolume [4], [9]. This indicator
encapsulates in a single unary value a measure of the spread
of the solutions along the Pareto front, as well as the distance
of the approximation set to the true Pareto optimal front. One
of the best approaches which uses a hypervolume-based selec-
tion mechanism is the S Metric Selection-Evolutionary Multi-
Objective Optimization Algorithm (SMS-EMOA) [10]. How-
ever, the high cost of the hypervolume limits the practical use
of SMS-EMOA, making it unaffordable for problems having
more than 5 objectives. The high computational cost associated
with the computation of exact hypervolume contributions has
motivated the development of alternative approaches. One
of them is to estimate the ranking of a set of individuals
that would be induced by the hypervolume indicator. This
approach avoids computing the exact hypervolume value and
it is called Hypervolume Estimation algorithm for multi-
objective optimization (HypE)[11]. Although this is a very
promising approach, comparative studies have shown that the
performance of HypE is not competitive with respect to the
use of other indicator-based MOEAs (see for example [12]).

Recently, a new performance indicator, called ∆p, was
proposed in [13]. ∆p is considered as an “averaged Hausdorff
distance” between the approximate set and the true Pareto
Front. This indicator is based on two well-known performance
indicators: Generational Distance (GD)[13] and Inverted Gen-
erational Distance (IGD) [14]. In spite of the fact that ∆p

is a pseudo-metric which simultaneously evaluates proximity

to the Pareto front and spread of solutions along it, it is not
Pareto compliant. Currently, there are already MOEAs whose
selection mechanism is based on ∆p. For example, ∆p-EMOA
[15], which is inspired on SMS-EMOA and incorporates a
novel mechanism for building the reference set that is based
on linearizing the nondominated (piecewise linear) front of
the current population. This approach is, however, designed
to solve only bi-objective problems. An extension of this
approach was introduced in [16] for solving three-objective
problems, but its generalization to any number of objectives
is not trivial. Another approach based on this indicator is
the Reference Indicator-Based Evolutionary Multi-Objective
Algorithm (RIB-EMOA) [17], which builds a reference set by
using a family of curves and incorporates a selection mecha-
nism based on the exclusive contribution of a solution. This
algorithm can solve many-objective optimization problems.
However, its algorithm for approximating the reference set
is not able to build a generalized curve. Finally, there is
another approach based on this indicator, called DDE, which
uses differential evolution as its search engine [18]. Although
promising for many-objective optimization, this approach has
some limitations related to the use of ∆p (e.g., it doesn’t work
when dealing with multi-frontal problems).

More recently, the use of the R2 indicator [6] has also
given rise to several MOEAs (see for example [12], [19],
[20]). Although effective and suitable for many-objective
optimization, these approaches require the generation of a set
of weights, analogously to decomposition-based MOEAs, such
as MOEA/D.

IV. OUR PROPOSED APPROACH

In order to describe our approach, we have to provide
first more details about the indicator adopted for its selection
mechanism. According to [7], the IGD+ indicator can be
viewed as follows:

IGD+(A,Z) =
1

|Z|

 |Z|∑
j=1

d+
j (~z,~a)

p

1/p

(4)

where ~a ∈ A ⊂ Rm, ~z ∈ Z ⊂ Rm, A is the Pareto set
approximation and Z is the reference set. d+(~a, ~z) is defined
as:

d+(~z,~a) =
√

(max{a1 − zi, 0})2, . . . , (max{am − zm, 0})2.
(5)

Therefore, a low IGD+ value means that the set A rep-
resents a better approximation to the real PF if we consider
PF as our reference set.

A. General Framework

Our approach starts with a population Pt which contains
N randomly generated individuals. A new offspring is created
by choosing two different parents from P . The parents are
recombined using Simulated Binary Crossover (SBX) and the
resulting offspring are mutated (in this case, using Polynomial-
Based Mutation [21]). This process is repeated until having λ
offspring. The second step is to combine the parents and the



offspring population to form the so-called Q set. The new
population at generation t + 1 is generated using an IGD+-
based selection mechanism. Next, we will provide more details
of our proposed approach.

B. Selection Mechanism

Since we intend to use IGD+ in the selection mechanism of
a MOEA, we propose to transform this selection mechanism
into a linear assignment problem (LAP), which is solved
using Munkres’ assignment algorithm [22]. This algorithm can
obtain the best assignment in O(n3), where n is the number of
elements of the problem. Formally, the LAP can be expressed
as:
Given two sets, A = {a1, . . . , an} and T = t1, . . . , tn with
the same cardinality, and a cost function C : A× T → R and
having Φ : A→ T as the set of all bijections between A and
T . So, the LAP can be formulated as follows:

min
φ∈Φ

∑
a∈A

C(a,Φ(a)) (6)

Normally, the cost is also presented as a squared matrix
C, where each element Ci, j = C(ai, tj) represents the
relationship between ai and tj .

A linear assignment problem can be created in terms of
a MOP, by using the m-dimensional objective vectors which
represent individuals from the population and reference set.
So, a cost matrix is created using the modified distance d+

between each element in the reference set and all objective
vectors in the population. This transformation aims to find
the best relationship between them. As evidenced in [23], the
solution of this LAP allows convergence to the true Pareto
front and, at the same time, produces a good distribution of
solutions along the Pareto front.

We need to normalize the objective vectors of the current
population, in order to handle objectives having different units.
This normalization can be expressed as:

f ′i =
fi
ui

(7)

where ~u ∈ Rm and its ith-element is defined as ui =
max

j=1,...,µ+λ
fi(~xj), i = 1, . . . ,m. The second step is to compute

the C cost matrix and we can then express each element of
the C cost matrix as follows:

Ci,j = d+(ai, zj), i = 1, . . . , n, j = 1, . . . , n. (8)

The solution to our assignment problem is found by identi-
fying the combination of values in C resulting in the smallest
sum. This solution corresponds to the best relationship of the
current points of the population with respect to a reference
set.

C. Approximating the Reference Set

In most multi-objective optimization problems, the geomet-
rical shape of the true PF is unknown. However, we can
approximate certain types of PFs (i.e., at least those having
a smooth convex or concave surface) using superspheres. A
γ-supersphere is a type of curve and it is defined as follows:

{(y1, . . . , ym) ∈ Rm+ | yγ1 + · · ·+ yγm = 1} (9)

where γ ∈ R+ is an arbitrary and fixed value. We only
consider the “positive” parts of the γ-superspheres. According
to [24], we can view the positive parts of the γ-superspheres
as concave if γ > 1 or as convex if 0 < γ < 1.

Clearly, we can see that a set of weight vectors satisfies
equation (9) when γ = 1, since a weight vector is defined as:

Definition 6: Let ~w = [w1, . . . , wm] ∈ Rm. We say that ~w
is a weight vector if

∑m
j=1 wj = 1 and wj ≥ 0.

In order to build the reference set, we assume that we
have a set of weight vectors which is used to construct the
reference set. We need to find the γ-value which will be used
to transform the weights set into the reference set.

Clearly, in order to find the γ-value, equation (9) would be
a root-finding problem and we can say that the γ-value needs
to satisfy:

yγ1 + · · ·+ yγm − 1 = 0 (10)

For solving equation (10), we propose to use Newton’s
method for approximating the γ-value. Now, we can see that
the next approximation to the root is defined as:

γk+1 = γk −
(
∑m
j=1 y

γk
j )− 1∑m

j=1 y
γk
j log(yj)

(11)

Then, the computation of the reference set is described
according to the following description.

Let Q be the current set which was created combining the
parent and offspring population. Thus, the reference set is
created by Algorithm 1.

In the first part of the algorithm, we find the non-dominated
points which will be used as a reference for building the
curve (these points establish the non-dominated region). After
that, we search the best relationship between each weighted
vector ~w and the non-dominated points. For this reason, we
calculate the perpendicular distance between both sets. In order
to construct the reference surface, we project the nearest non-
dominated point to a specific weight vector ~w. Once this
is done, we can search the γ-value using Newton’s method,
which is described by equation (11). Finally, the reference
point is computed using the γ-value. We can see that this
process is repeated for all weight vectors of set Z .

It is worth noting that this approach uses a predefined
set of weights in order to ensure diversity. We adopted Das
and Dennis’ approach which places points on a (m − 1)-
dimensional hyperplane [25]. The total number of vectors is



Input: A current set Q ⊂ Rm and a set of weighted vec-
tors W ⊂ Rm, where m is the number of objectives

Output: The reference set Z which is the best
approximation of the set Q

1: Find the nondominated points from Q and
save to Q′

2: for each ~p ∈ Q′ do
3: for each ~w ∈ W do
4: Compute d⊥(~p, ~w) =‖ ~p− ~wT~s~w/ ‖ ~w ‖2‖
5: end for
6: Assign r(w) = argmin

~p∈Q′
d⊥(~p, ~w)

7: end for
8: j ← 0
9: for each ~w ∈ W do

10: stepsize← ~pr(~w)· ~w/ ‖ ~w ‖
11: ~y ← stepsize ∗ ~w
12: Approximate the γ value using equation (10)
13: Compute supersphere point as zj,k ← wγj,k for all

j = 1, . . . ,m
14: j ← j + 1
15: end for

Algorithm 1: Computation of the reference set which is
based on supersphere curves
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Problem Reference points
DTLZ1 (1, 1, 1, . . . , 1)

DTLZ2-6 (2, 2, 2, . . . , 2)

TABLE I
REFERENCE POINTS USED FOR THE HYPERVOLUME INDICATOR.

represented by the combinatorial number CH+m−1
m−1 , where H

is the number of divisions of the objective space.

V. EXPERIMENTAL RESULTS

We compare the performance of our proposed algorithm
with respect to that of two state-of-the-art MOEAs. The
first is the S Metric Selection-Evolutionary Multiobjective
Optimization Algorithm (SMS-EMOA) [10]. SMS-EMOA is
a steady state evolutionary algorithm in which each newly
created solution is ranked and a solution is removed from
the worst ranked front in order to keep the same population
size. The solution that contributes the least to the hypervol-
ume of the worst ranked front is then discarded (see [10]
for details). We use here a version that incorporates the
algorithm proposed in [11] for estimating the hypervolume
using Monte Carlo sampling, instead of the exact hypervolume
calculations adopted in the original implementation of SMS-
EMOA. The second approach adopted for our comparative
study is the multi-objective evolutionary algorithm based on
decomposition (MOEA/D) [26], which transforms a multi-
objective problem into several single-objective optimization
problems which are simultaneously optimized.

A. Test problems

For our comparative study, we adopted two benchmarks: the
Deb-Thiele-Laumanns-Zitzler (DTLZ) test suite [27] and the
Walking-Fish-Group (WFG) test suite [28]. These problems
include aspects such as separability and multifrontality which
make them more difficult to solve.

B. Methodology

For our comparative study, we decided to adopt the hy-
pervolume indicator, which assesses both convergence and
maximum spread along the Pareto front. Mathematically if
Λ denotes the Lebesgue measure, the hypervolumen can be
described as follows:

IH(A, ~yref ) = Λ

 ⋃
~y∈A

{~x| ~y ≺ ~x ≺ ~yref}

 (12)

where A is the approximation of the Pareto front optimal
set and ~yref ∈ Rk denotes de reference point. To compute IH ,
we used the reference points shown in Table I.

Additionally, we also compared the running time of each
MOEA, which was measured in seconds.



Objectives H Population size
2 119 120
3 14 120
4 7 120
5 5 126
6 4 126
7 3 84
8 3 120

TABLE II
PARAMETERIZATION VALUES

C. Parameterization

In the DTLZ test suite, the total number of decision vari-
ables is given by n = m + k − 1, where m is the number
of objectives and k was set to 5 for DTLZ1 and to 10 for
DTLZ2-6. The number of decision variables in WFG was set
to 24, and the position-related parameter was set to m− 1.

The parameters of each MOEA used in our study were cho-
sen in such a way that we could do a fair comparison among
them. The distribution indexes for the SBX and polynomial-
based mutation operators [21], used by our approach and SMS-
EMOA, were set as: ηc = 20 and ηm = 20, respectively. The
crossover probability was set to pc = 0.9 and the mutation
probability was set to pm = 1/L, where L is the number of
decision variables. The number of samples was set to 100,000.
The total number of function evaluations was set in such a way
that it did not exceed 60,000.

In MOEA/D and our proposed approach, the number of
weight vectors was set to the same value as the population
size. The population size N is dependent on H which specifies
the number of divisions in objective space. H was set in such
a way that N took a value not greater than 130 (see Table II).
MOEA/D used the Tchebycheff approach with a neighborhood
size of 20. The main characteristics of the hardware used for
the experiments are the following: An Intel Core i7-3930k
CPU running at 2.30 GHz, with 8GB of RAM.

D. Discussion of Results

Table III provides the average hypervolume over the 30
independent executions of each compared MOEA for each
instance of the DTLZ test suite. The best results are presented
in boldface. We used Wilcoxon’s rank sum for the statistical
assessment of our results. It is clear that the winner in this
experimental study is our proposed approach, since it was
able to outperform SMS-EMOA in all problems in terms of
hypervolume indicator. We can observe that the null hypothesis
can be rejected in all cases (the medians of two results
are distinct), which means that the differences obtained are
statistically significant (we proved that our approach is better
than SMS-EMOA).

Table IV shows the comparison of results with respect
to MOEA/D. As can be observed, our approach was able
to outperform MOEA/D in twenty-four cases and in a few
more, both approaches obtained similar results. The null
hypothesis cannot be rejected in only three cases (DTLZ2 and
DTLZ6 with 7, 2 and 6 dimensions, respectively). In the other
cases, the differences obtained are statistically significant. For

DTLZ5, MOEA/D performs better than our proposed approach
in all the instances of this problem. The reason is probably that
the true Pareto front of this problem is linear, which makes
the approximations produced by our approach to converge to
a single region.

Table V indicates that MOEA/D has the lowest running
times. However our proposed approach was able to solve the
problems in a reasonably low running time (if we consider
the running time of SMS-EMOA, which would be signif-
icantly higher if exact hypervolume contributions had been
computed). Overall, our proposed approach produced results
that are very competitive, while requiring a reasonably low
computational cost.

Figures 3,4,5,6 present a graphical representation of the
approximations of the Pareto front obtained by our proposed
approach in some of the WFG test problems adopted with
24 variables and 3 objectives. These plots correspond to the
median hypervolume value from 30 independent executions.
It is interesting to note that our proposed approach is able to
properly converge to the true Pareto front of WFG2 which is
disconnected. We can claim that IGD+-EMOA is computation-
ally much cheaper than SMS-EMOA and can produce better
approximations than MOEA/D and SMS-EMOA on some test
instances. This confirms that the use of selection mechanisms
based on indicators such as IGD+ is a viable choice to solve
many-objective problems.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed a new indicator-based approach for solv-
ing many-objective problems. The core idea of our proposed
algorithm is to adopt the IGD+ performance indicator in the
selection mechanism of a MOEA. Our proposal includes a
new method for constructing the reference set which is based
on Newton’s Method using superspheres. Our preliminary
results indicate that our proposed approach is very competitive
with respect to two state-of-the-art MOEAs (SMS-EMOA and
MOEA/D), while requiring a relatively low computational cost
(lower than that required by SMS-EMOA).

As part of our future work, we are interested in studying
the sensitivity of our proposed approach to the reference set.
We are also interested in exploring alternative techniques for
improving the construction of the reference sets, such that our
approach can properly deal with linear Pareto fronts. Finally,
we are interested in incorporating a local search mechanism
into our proposed MOEA.
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Objectives IGDplus-EMOA (IH ) SMS-EMOA (IH ) P (H)
m DTLZ1
2 0.873783426 0.603475637 0.0000(1)
3 0.97402027 0.630213232 0.0000(1)
4 0.994388397 0.661586784 0.0000(1)
5 0.9919105 0.768368948 0.0000(1)
6 0.892359232 0.776399218 0.0000(1)
7 0.854507595 0.738417486 0.0000(1)
8 0.861695367 0.814606014 0.0000(1)

DTLZ2
2 3.210821317 1.863197179 0.0000(1)
3 7.421812488 3.375262182 0.0000(1)
4 15.56741135 6.747488035 0.0000(1)
5 31.66763799 14.90159836 0.0000(1)
6 58.07564274 33.83189984 0.0000(1)
7 116.7077942 65.20591399 0.0000(1)
8 201.1809779 150.6662452 0.0000(1)

DTLZ3
2 3.204155341 1.88237071 0.0000(1)
3 7.355071834 6.411731511 0.0000(1)
4 15.53694896 14.12060072 0.0000(1)
5 31.63537503 30.64233556 0.0000(1)
6 56.53710167 59.64630155 0.0000(1)
7 96.20407137 60.7350761 0.0000(1)
8 198.890958 129.4343786 0.0000(1)

DTLZ4
2 3.210795477 2.083725111 0.0000(1)
3 7.082647895 3.866538974 0.0000(1)
4 15.20291716 7.715636261 0.0000(1)
5 29.27224775 17.69125542 0.0000(1)
6 59.24047887 39.52867707 0.0000(1)
7 113.5313178 74.07283972 0.0000(1)
8 245.9811967 168.8209989 0.0000(1)

DTLZ5
2 3.210822115 1.859887057 0.0000(1)
3 4.042831297 3.575537122 0.0000(1)
4 8.003414255 6.12118542 0.0000(1)
5 16.00248339 11.30170488 0.0000(1)
6 31.99996981 21.59984771 0.0000(1)
7 63.99998659 39.53980236 0.0000(1)
8 127.999845 80.08300234 0.0000(1)

DTLZ6
2 3.106126387 1.714714707 0.0000(1)
3 5.66835877 3.019997564 0.0000(1)
4 7.437133923 5.724252402 0.0000(1)
5 14.82343849 10.70214298 0.0000(1)
6 29.76776111 20.11681978 0.0000(1)
7 58.53573762 36.44267101 0.0000(1)
8 117.596708 75.84189126 0.0000(1)

TABLE III
RESULTS OBTAINED IN THE DTLZ TEST PROBLEMS BY

SMS-EMOA(HYPE) AND OUR PROPOSED IGDPLUS-EMOA, USING THE
HYPERVOLUME INDICATOR (IH ). THE THIRD COLUMN SHOWS THE

RESULTS OF THE STATISTICAL ANALYSIS APPLIED TO OUR EXPERIMENTS
USING WILCOXON’S RANK SUM, WHERE P IS THE PROBABILITY OF

OBSERVING THE GIVEN RESULT (THE NULL HYPOTESHIS IS TRUE). IF THE
P-VALUE IS SMALL, THE DATA INDICATES THAT THE NULL HYPOTHESIS

CAN BE REJECTED AT THE 5% LEVEL AND WE CAN CONCLUDE THAT THE
TWO RESULTS ARE DISTINCT (H = 1) AND THEIR DIFFERENCE IS

STATISTICALLY SIGNIFICANT.

Objectives IGDplus-EMOA (IH ) MOEA/D (IH ) P (H)
m DTLZ1
2 0.873783426 0.873862461 0.0000(1)
3 0.97402027 0.968914097 0.0000(1)
4 0.994388397 0.970400938 0.0000(1)
5 0.9919105 0.724927498 0.0000(1)
6 0.892359232 0.762830249 0.0001(1)
7 0.854507595 0.656643222 0.0000(1)
8 0.861695367 0.402984134 0.0000(1)

DTLZ2
2 3.210821317 3.210869248 0.0000(1)
3 7.421812488 7.382922569 0.0000(1)
4 15.56741135 13.31884553 0.0000(1)
5 31.66763799 27.15582568 0.0000(1)
6 58.07564274 53.83549288 0.0000(1)
7 116.7077942 115.8005853 0.2890(0)
8 201.1809779 216.0379868 0.0000(1)

DTLZ3
2 3.204155341 3.206666982 0.0009(1)
3 7.355071834 7.374166479 0.0215(1)
4 15.53694896 12.91659236 0.0000(1)
5 31.63537503 24.2992914 0.0000(1)
6 56.53710167 48.35142688 0.0000(1)
7 96.20407137 100.9289111 0.0000(1)
8 198.890958 224.3638975 0.0000(1)

DTLZ4
2 3.210795477 2.395550932 0.0001(1)
3 7.082647895 6.233954506 0.0003(1)
4 15.20291716 11.7039561 0.0000(1)
5 29.27224775 22.23443593 0.0000(1)
6 59.24047887 47.35243703 0.0000(1)
7 113.5313178 93.66821328 0.0000(1)
8 245.9811967 184.5468339 0.0000(1)

DTLZ5
2 3.210822115 3.210869361 0.0000(1)
3 4.042831297 6.091452678 0.0000(1)
4 8.003414255 10.80302487 0.0000(1)
5 16.00248339 16.15695638 0.0037(1)
6 31.99996981 37.8234936 0.0000(1)
7 63.99998659 78.10923993 0.0000(1)
8 127.999845 150.5444428 0.0000(1)

DTLZ6
2 3.106126387 3.056665166 0.0000(1)
3 5.66835877 5.801128621 0.5792(0)
4 7.437133923 8.877262691 0.0000(1)
5 14.82343849 11.95437872 0.0000(1)
6 29.76776111 28.53823221 0.5793(0)
7 58.53573762 71.77293638 0.0000(1)
8 117.596708 131.4029039 0.0000(1)

TABLE IV
RESULTS OBTAINED IN THE DTLZ TEST PROBLEMS BY MOEA/D AND

OUR PROPOSED IGDPLUS-EMOA, USING THE HYPERVOLUME INDICATOR
(IH ). THE THIRD COLUMN SHOWS THE RESULTS OF THE STATISTICAL
ANALYSIS APPLIED TO OUR EXPERIMENTS USING WILCOXON’S RANK

SUM, WHERE P IS THE PROBABILITY OF OBSERVING THE GIVEN RESULT
(THE NULL HYPOTHESIS IS TRUE). IF THE P-VALUE IS LARGE, THE DATA
DO NOT GIVE ANY REASON TO REJECT THE NULL HYPOTHESIS AND WE

CAN CONCLUDE THAT THE TWO RESULTS ARE THE SAME (H = 0).
OTHERWISE, IF P-VALUE IS SMALL, THE NULL HYPOTHESIS CAN BE
REJECTED AT THE 5% LEVEL AND THE TWO RESULTS ARE DISTINCT
(H = 1) AND THEIR DIFFERENCE IS STATISTICALLY SIGNIFICANT.



Objectives IGDplus-EMOA MOEA/D SMS-EMOA
m DTLZ1
2 5.638792s 0.451672s 929.482702s
3 10.521783s 0.529422s 3.958571s
4 13.902771s 0.245426s 2111.873245s
5 28.46273s 0.435324s 2014.102227s
6 32.162026s 0.566348s 2082.745213s
7 19.710173s 0.27731s 3510.322044s
8 46.412152s 0.067746s 5038.534303s

DTLZ2
2 29.264559s 0.618055s 1259.578953s
3 42.169365s 0.694392s 2200.86988s
4 54.027164s 0.32018s 3689.959608s
5 90.588769s 0.575118s 4539.503577s
6 107.13428s 0.86347s 5563.185747s
7 12.719386s 0.337427s 5290.054592s
8 27.656435s 0.085446s 6934.750096s

DTLZ3
2 8.252379s 0.573409s 800.213934s
3 49.478735s 0.662682s 999.843201s
4 23.923694s 0.295604s 1185.619497s
5 48.132021s 0.533946s 1052.808177s
6 74.052142s 0.733004s 1505.031887s
7 15.886005s 0.337056s 3180.209343s
8 27.307364s 0.076317s 4069.487323s

DTLZ4
2 7.620927s 0.49825s 1353.118432s
3 10.11606s 0.698973s 2337.602668s
4 13.871761s 0.265944s 3948.222166s
5 22.35422s 0.55728s 4213.046424s
6 25.576331s 0.78043s 5512.432487s
7 15.039888s 0.315422s 5241.15327s
8 31.035888s 0.070369s 6897.864537s

DTLZ5
2 7.983771s 0.600385s 1238.279526s
3 26.447281s 0.714718s 1977.824246s
4 19.755846s 0.242651s 4047.525445s
5 22.538165s 0.315002s 3862.21531s
6 21.331467s 0.334229s 6723.838925s
7 72.28353s 0.347957s 6149.572591s
8 23.338065s 0.397939s 8314.476698s

DTLZ6
2 7.171413s 0.578733s 2007.65159s
3 33.712275s 0.623824s 2526.082216s
4 44.556186s 0.200934s 3039.004372s
5 52.202535s 0.472714s 3307.124979s
6 56.476568s 0.349478s 3985.982441s
7 43.149346s 0.296292s 4645.460144s
8 99.324617s 0.384934s 7241.438203s

TABLE V
HERE, WE SHOW THE COMPUTATIONAL TIME (MEASURED IN SECONDS)

REQUIRED BY EACH EXECUTION OF THE MOEAS COMPARED. ALL
ALGORITHMS WERE COMPILED USING THE GNU C COMPILER AND THEY

WERE EXECUTED ON THE SAME COMPUTER.
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Fig. 3. Solutions obtained by IGDplus-EMOA for WFG2.
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Fig. 4. Solutions obtained by IGDplus-EMOA for WFG3.
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Fig. 5. Solutions obtained by IGDplus-EMOA for WFG4.
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Fig. 6. Solutions obtained by IGDplus-EMOA for WFG5.
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[12] R. Hernández Gómez and C. A. Coello Coello, “MOMBI: A New
Metaheuristic for Many-Objective Optimization Based on the R2 Indica-
tor,” in 2013 IEEE Congress on Evolutionary Computation (CEC’2013).
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Guimarães, Portugal: Springer. Lecture Notes in Computer Science Vol.
9019, March 29 - April 1 2015, pp. 3–17.

[24] M. T. M. Emmerich and A. H. Deutz, “Test problems based on
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