
Multiobjective-Based Concepts to Handle Constraints in Evolutionary
Algorithms

Efrén Mezura-Montes and Carlos A. Coello Coello

CINVESTAV-IPN
Evolutionary Computation Group (EVOCINV)

Departamento de Ingenierı́a Eléctrica
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Abstract

This paper presents the main multiobjective optimization
concepts that have been used in evolutionary algorithms to
handle constraints in global optimization problems. A re-
view of some approaches developed under these concepts
are discussed. Additionally, A comparison of four represen-
tative of these techniques using well-known benchmark test
functions is shown. Finally, the analysis of the results ob-
tained, based on three main points (quality, consistency and
diversity) and also some conclusions and future trends are
provided.

1 Introduction

Evolutionary Algorithms (EAs) are heuristics that have
been successfully applied in a wide set of areas [6, 18, 10],
both in single- and in multiobjective optimization. How-
ever, EAs lack a mechanism able to bias efficiently the
search towards the feasible region in constrained search
spaces. This has triggered a considerable amount of re-
search and a wide variety of approaches have been sug-
gested in the last few years to incorporate constraints into
the fitness function of an evolutionary algorithm [2, 19].

The most common approach adopted to deal with con-
strained search spaces is the use of penalty functions. When
using a penalty function, the amount of constraint violation
is used to punish or “penalize” an infeasible solution so that
feasible solutions are favored by the selection process. De-

spite the popularity of penalty functions, they have several
drawbacks from which the main one is that they require a
careful fine tuning of the penalty factors that accurately es-
timates the degree of penalization to be applied as to ap-
proach efficiently the feasible region [27, 2].

Among the several approaches that have been proposed
as an alternative to the use of penalty functions, there is a
group of techniques in which the constraints of a problem
are handled as objective functions (i.e., a single-objective
constrained problem is restated as an unconstrained multi-
objective problem). This paper precisely focuses on these
techniques.

With this study, we want to know how the different
mechanisms taken from multiobjective optimization per-
form solving different types of problems. The analysis of
results will be based on three aspects: quality, consistency
and diversity in the population.

This paper is organized as follows. Section 2 presents
the basic concepts both from global optimization and from
multiobjective optimization that are going to be used in
the remainder of this paper. In Section 3, the most popu-
lar multiobjective-based constraint-handling techniques are
discussed. Section 4 presents a comparative study in which
four of the techniques discussed in the previous section are
tested on several benchmark problems taken from the stan-
dard constraint-handling literature [19, 4]. Section 5 dis-
cusses the results obtained, and Section 6 provides some
conclusions and possible paths for future research.
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2 Basic Concepts

We are interested in the general non linear programming
problem in which we want to:Find

�� which optimizes
��� ����

subject to: �	� � �����
 ��
 ��� �	
�������
������ � ��������
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�������
#" where
�� is the vector of solutions
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��*+-,/. , � is the number of inequality constraints
and " is the number of equality constraints (in both cases,
constraints could be linear or nonlinear). If we denote with0

to the feasible region and with 1 to the whole search
space, then it should be clear that

032 1 . For an inequality
constraint that satisfies � � � ��'�4�5� , we will say that is active
at
�� . All equality constraints ��� (regardless of the value of�� used) are considered active at all points of

0
. Now, we

will define some basic concepts from multiobjective opti-
mization.

In a general multiobjective optimization problem we
want to find the vector
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G�H)!
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��*+-, . is
the vector of decision variables.

Having several objective functions, the notion of “op-
timum” changes, because in multiobjective optimization
problems, the aim is to find good compromises (or “trade-
offs”) rather than a single solution as in global optimization.
The notion of “optimum” most commonly adopted is that
originally proposed by Francis Ysidro Edgeworth in 1881
[8] and later generalized by Vilfredo Pareto (in 1896) [20].
This notion is normally referred to as “Pareto optimality”
and is defined as: A point

��I6KJ 0 is Pareto optimal if for
every

��LJ 0 and M �ON!�!
=<�
������-
=P*Q either, R'�AS	T �#� � � ����U�� � � �� 6 ��� or, there is at least one �VJ M such that
� � � ��'�XW� � � ���6Y� . In words, this definition says that

��I6 is Pareto op-
timal if there exists no feasible vector

�� which would de-
crease some criterion without causing a simultaneous in-
crease in at least one other criterion. The phrase “Pareto
optimal” is considered to mean with respect to the entire
decision variable space unless otherwise specified.

Other important definitions associated with Pareto op-
timality are: Pareto Dominance that is defined follows:
A vector

�Z[� � Z & 
�������
GZ C � is said to dominate
�\��� \ & 
�������
�\ C � (denoted by

�Z3] �\ ) if and only if u is par-
tially less than v, i.e., R �UJ^N!�!
������8
=P�Q!
_Z � 
`\ ��acb �VJN!�	
������-
=P*Q7d*Z �_e \ � , and Pareto Optimal Set: For a given
multiobjective optimization problem,

���� �*� , the Pareto op-
timal set ( f 6 ) is defined as: f 6gdh�iN��$J 0kjml b �*noJ0 ��p� �Hn/�q] ���� �*�-Q!�

3 Multiobjective-based Constraint Handling
techniques

The main idea of adopting multiobjective concepts to
handle constraints is to redefine the single-objective op-
timization of

��� ��'� as a multiobjective optimization prob-
lem in which we will have rts � objectives, where r is
the total number of constraints (the additional objective is
obviously the original objective function of the problem).
Then, we can apply any multiobjective optimization tech-
nique [6] to the new vector u\U� �#��� ����-
 � & � ����8
�������
 �Fvw� ��*�G� ,
where

� & � ����8
�������
 �Fvo� ���� are the original constraints of the
problem. An ideal solution

�� would thus have
� � � ���� =0 for�K
L�x
 r and

��� ��'�o
 ��� �y�� for all feasible
�y (assuming

minimization).
Three are the mechanisms taken from evolutionary mul-

tiobjective optimization that are the most frequently incor-
porated into constraint-handling techniques:

1. Use of Pareto dominance as a selection criterion.

2. Use of Pareto ranking [10] to assign fitness in such a
way that nondominated individuals (i.e., feasible indi-
viduals in this case) are assigned a higher fitness value.

3. Split the population in subpopulations that are eval-
uated either with respect to the objective function or
with respect to a single constraint of the problem. This
is the selection mechanism adopted in the Vector Eval-
uated Genetic Algorithm (VEGA) [26]. In the remain-
ing of the paper We will refer to this mechanism as a
“population-based”

To solve this type of problems it is necessary to maintain
a balance between feasible and infeasible solutions in or-
der to sample the feasible region of the search space widely
enough to reach the global optimum solution.

In multiobjective optimization the goal is to find a set of
trade-off solutions which are considered good in all the ob-
jectives to be optimized. In global optimization we want to
reach only the global optimum. Therefore, some changes
must be done to those approaches to adapt them to reach
only this global optimum. These new criteria are the fol-
lowing: Feasibility of solutions must be considered better
than infeasible solutions and the number of violated con-
straints and the amount of constraint violation will emerge
as selection criteria. Furthermore, a mechanism to maintain
diversity should be considered.

We will now introduce a description of some approaches
that have been designed to apply the concepts discussed be-
fore. Camponogara & Talukdar [1] proposed an approach
in which a global optimization problem was transformed
into a bi-objective problem where the first objective is to
optimize the original objective function and the second is to
minimize:
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Equation (1) tries to minimize the total amount of con-
straint violation of a solution. At each generation, based on
the generated Pareto sets, a search direction is defined and
a linear search is performed. At pre-defined intervals, the
worst half of the population is replaced with new random
solutions to avoid premature convergence. This indicates
some of the problems of the approach to maintain diversity.
Additionally, the use of line search within a GA adds some
extra computational cost. The authors of this approach vali-
dated it using a benchmark consisting of five test functions.
The results obtained were either optimal or very close to it.
The main drawback of this approach is its additional com-
putational cost.

An approach similar to a min-max formulation used in
multiobjective optimization combined with tournament se-
lection was proposed by Jiménez and Verdegay [14]. The
selection criteria is based on the following rules:

� Between two feasible individuals, the one with a
higher fitness wins.

� A feasible individual wins over an infeasible individ-
ual.

� Between two infeasible individuals, the one with the
lowest amount of constraint violation wins.

This approach was validated using four test functions,
and the results obtained in most cases were very close to the
optima. A subtle problem with this approach is that the evo-
lutionary process first concentrates only on the constraint
satisfaction problem and therefore it samples points in the
feasible region essentially at random [28]. This means that
in some cases (e.g., when the feasible region is disjoint) we
might land in an inappropriate part of the feasible region
from which we will not be able to escape. However, this
approach may be a good alternative to find a feasible point
in a heavily constrained search space. The relative simplic-
ity of this approach is another advantage of this technique.

Ray et al. [23] proposed the use of a Pareto ranking
approach that operates on three spaces: objective space,
constraint space and the combination of the two previous
spaces. This approach also uses mating restrictions based
on the feasibility of each individual in order to ensure better
constraint satisfaction in the offspring generated and a se-
lection process that eliminates weaknesses in any of these
spaces. Also, a niche mechanism based on Euclidian dis-
tances is used. This approach only requires between 2% and
10% of the number of fitness function evaluations required
by the homomorphous maps of Koziel and Michalewicz

[15] which is one of the best techniques to handle con-
straints known to date. The main drawback of Ray et al.’s
approach is that its implementation is considerably more
complex than any of the other techniques previously dis-
cussed.

Jiménez et al. [13] proposed an algorithm that uses
Pareto dominance inside a pre-selection scheme to solve
several types of optimization problems (multiobjective,
constraint satisfaction, global optimization, and goal pro-
gramming problems). The approach redefines the problem
as an unconstrained multiobjective optimization problem in
which objectives are given priorities. Feasible solutions
with a good objective function value are given the high-
est priority. The authors use a real-coded nongenerational
GA with two types of crossover operators (uniform and
arithmetic) and two mutation operators (uniform and non-
uniform). The authors argue that this pre-selection mech-
anism is an implicit niche formation technique because in-
dividuals are replaced only by similar ones (i.e., their off-
spring). As only the best individuals are inserted into the
new population, this scheme is also an elitist strategy. This
approach was validated with eleven test functions, produc-
ing very good results. Note however, that the authors do not
specify the computational cost of the approach and it is not
clear if the approach is competitive with other techniques in
that regard.

Ray [22] extended his previous work on constraint-
handling [23] in which the emphasis was to find a robust
optimized solution which is not sensitive to parametric vari-
ations due to incomplete information of the problem or to
changes on it. This approach is capable of handling con-
straints and finds feasible solutions that are robust to para-
metric variations produced over time. This is achieved us-
ing the individual’s self-feasibility and its neighborhood
feasibility. A mechanism based on raking values in both
spaces (objective space and constraint space) is used to se-
lect the best individuals and copy them into the next popu-
lation. The remaining portion of the new population is filled
by mating two parents and using different criteria based on
feasibility of the solutions. Ray used a real-coded GA with
Simulated Binary Crossover. The results reported in two
well-known design problems [22] showed that the proposed
approach did reach less sensitive, but not close to the opti-
mum solutions. In contrast, the other techniques analyzed
showed significant changes when the parameters were per-
turbed. The main drawback of this approach is its difficulty
to implement it.

Surry & Radcliffe [28] combined the Vector Evaluated
Genetic Algorithm (VEGA) [26] and Pareto Ranking to
handle constraints in an approach called COMOGA (Con-
strained Optimization by Multi-Objective Genetic Algo-
rithms). In this technique, individuals are ranked depending
of their sum of constraint violation (number of individuals
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dominated by a solution). However, the selection process
is based not only on ranks, but also on the fitness of each
solution. COMOGA uses a non-generational GA and ex-
tra parameters defined by the user (e.g., a parameter called� is used to define the change rate of

�������	�
). One of these

parameters is
�
�����	�

, that sets the rate of selection based on
fitness. The remaining ��� �
�����	�

individuals are selected
based on ranking values.

� �������
is defined by the user at the

beginning of the process and it is adapted during evolution
using as a basis the percentage of feasible individuals that
one wishes to have in the population. COMOGA was ap-
plied on a gas network design problem and it was compared
against a penalty function approach. Although COMOGA
showed a slight improvement in the results with respect to
a penalty function, its main advantage is that it does not re-
quire a fine tuning of penalty factors or any other additional
parameter. The main drawback of COMOGA is that it re-
quires several extra parameters, although its authors argue
that the technique is not particularly sensitive to their values
[28].

Parmee & Purchase [21] proposed to use VEGA [26] to
guide the search of an evolutionary algorithm to the feasi-
ble region of an optimal gas turbine design problem with
a heavily constrained search space. Nevertheless, they did
not use it to reach the global optimum solution. After hav-
ing a feasible point, they generated an optimal hypercube
around it in order to avoid leaving the feasible region after
applying the genetic operators. The use of special operators
that preserve feasibility make this approach highly specific
to one application domain rather than providing a general
methodology to handle constraints.

Coello [5] used a population-based approach similar to
VEGA [26] to handle constraints in single-objective opti-
mization problems. At each generation, the population was
split into r s � subpopulations of equal fixed size, where r
is the number of constraints of the problem. The remaining
subpopulation handles the objective function of the problem
and the individuals contained within it are selected based on
the unconstrained objective function value. The r remain-
ing subpopulations take one constraint of the problem each
as their fitness function. The aim is that each of the sub-
populations tries to reach the feasible region corresponding
to one individual constraint. By combining these different
subpopulations, the approach will reach the feasible region
of the problem considering all of its constraints. The fitness
assignment scheme of the approach is the following:

if � � ��� � e ��� � then fitness = � � � � �
else if \�
� � then fitness = � \
else fitness =

����� �

where � � ��� � refers to the � th constraint of the problem, \ is
the number of violated constraints ( \K
 r ) and

��� � � is the
value of the objective function of the individual.

As can be seen above, each subpopulation tries to satisfy
one single constraint. If the encoded solution does not vio-
late the constraint of its corresponding subpopulation, then
the fitness of an individual will be determined by the total
number of constraints violated. Finally, if the solution is
feasible, then the feasible criterion is to optimize the ob-
jective function. Therefore, any feasible individuals will be
merged with the subpopulation on charge of optimizing the
original (unconstrained) objective function.

The genetic operators are applied to the entire popula-
tion and it is allowed to every individual in a subpopulation
to mate with any other in any subpopulation (including its
own, of course). In this way, individuals who satisfy con-
straints are combined with individuals with a good fitness
value. At the end, it is expected to have a population of
feasible individuals with high fitness values.

This approach was tested with some engineering prob-
lems [5] in which it produced competitive results. It has also
been successfully used to solve combinational circuit design
problems. The main drawback of this approach is that the
number of subpopulations required increases linearly with
the number of constraints of the problem. This has some
obvious scalability problems when dealing with highly con-
strained search spaces. Furthermore, it is not clear how to
determine appropriate sizes for each of the subpopulations
used.

Coello [4] proposed the use of Pareto dominance se-
lection to handle constraints in a genetic algorithm. This
is an application of Fonseca and Fleming’s Pareto rank-
ing process [9] (called Multi-Objective Genetic Algorithm,
or MOGA) to constraint-handling. In this approach, fea-
sible individuals are always ranked higher than infeasible
ones. Based on this rank, a fitness value is assigned to each
individual. This technique also includes a self-adaptation
mechanism that avoids the usual empirical fine-tuning of
the main genetic operators.

Coello’s approach uses a real-coded GA with universal
stochastic sampling selection (to reduce the selection pres-
sure caused by the Pareto ranking process).

This approach has been used to solve some engineering
design problems [4] in which it produced very good re-
sults. Furthermore, the approach showed great robustness
and a relatively low number of fitness function evaluations
with respect to traditional penalty functions. Additionally, it
does not require any extra parameters. Its main drawback is
the computational cost ( � ��� ) � , where

�
is the population

size) derived from the Pareto ranking process.
Coello and Mezura [3] implemented a version of the

Niched-Pareto Genetic Algorithm (NPGA) [12] to handle
constraints in single-objective optimization problems. The
NPGA is a multiobjective optimization approach in which
individuals are selected through a tournament based on
Pareto dominance. However, unlike the [original] NPGA,
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Figure 1. Diagram that illustrates the role of� + in the selection process of Coello and
Mezura’s algorithm.

Problem n Type of function � LI NI LE NE

g8 2 non linear ��� �����	��
 0 2 0 0
g9 7 non linear ��� ����
�
	
 0 4 0 0
g11 2 quadratic ��� ��
	���	
 0 0 0 1

g12 3 quadratic ��� ����
���
 0 
 � 0 0
eng1 4 quadratic ��� ������
	
 6 1 0 0
eng2 4 quadratic ��
�� �	�����	
 3 1 0 0
eng3 3 quadratic ��� ��������
 1 3 0 0
eng4 10 non linear �	��� ��������
 0 22 0 0

Table 1. Values of � for the eight test problems
chosen.

Coello and Mezura’s approach does not require niches (or
fitness sharing [7]) to maintain diversity in the population.
The NPGA is a more efficient technique than traditional
multiobjective optimization algorithms, because it only uses
a sample of the population to estimate Pareto dominance.
This is the main advantage of this approach with respect to
Coello’s [previous] proposal [4].

Note however that Coello and Mezura’s approach re-
quires an additional parameter called

� + that controls the
diversity of the population.

� + indicates the proportion of
parents selected by four comparison criteria described be-
low. The remaining � � � + parents will be selected by a
pure probabilistic approach (a coin toss with both candi-
dates with a � ��� of probability of being chosen). Thus, this
mechanism is responsible for keeping infeasible individuals
in the population (i.e., the source of diversity that keeps the
algorithm from converging to a local optimum too early in
the evolutionary process). A graphical illustration of the
role of the parameter

� + is shown in Figure 1.
Tournaments in this approach are decided using as a ba-

sis four comparison criteria:
If

1. both individuals are feasible, the individual with the
higher fitness wins.

2. one is feasible and the other is infeasible, the feasible
individual wins.

3. both are infeasible: Nondominance checking is ap-
plied (tournament selection as in the NPGA [12]).

4. both are nondominated or dominated, the individual
with the lowest amount of constraint violation wins.

This approach has been tested with several benchmark
problems and was compared against several types of penalty
functions [16]. Results indicated that the approach was ro-
bust, efficient and effective. However, it was also found that
the approach had scalability problems (its performance de-
grades as the number of decision variables increases).

4 A Comparative Study

Four techniques were selected from those discussed be-
fore to perform a small comparative study that aims to il-
lustrate some practical issues of constraint-handling tech-
niques. The techniques selected are the following: CO-
MOGA [28], the use of VEGA proposed by Coello [5], the
NPGA to handle constraints [3] and the approach that uses
MOGA [4]. In order to simplify our notation, the last three
techniques previously indicated will be called HCVEGA,
HCNPGA and HCMOGA, respectively. The algorithmic
detail of these four approaches can be found in [17]

To evaluate the performance of the techniques selected,
we decided to use some test problems taken from the well-
known benchmark proposed in [19] plus four engineering
design problems used in [4]. The full description of the
eight test functions can be found in [17]:

To get an idea of the difficulty of solving each of
these problems, a � metric (as suggested by Koziel and
Michalewicz [15]) was computed using the following ex-
pression:

� � j � j ��j � j (2)

where
j � j

is the number of feasible solutions and
j � j

is the
total number of solutions randomly generated. In this work,� � �	
=�	�!��
G�!�	� random solutions.
The different values of � for each of the functions chosen
are shown in Table 1, where � is the number of decision
variables, LI is the number of linear inequalities, NI the
number of nonlinear inequalities, LE is the number of lin-
ear equalities and NE is the number of nonlinear equalities.
It can be clearly seen that problems g8, g9, g11 and eng3
should be the most difficult to solve since they present the
lowest value of � .

In our comparative study, we used a binary-gray-coded
GA with two-point crossover and uniform mutation. Equal-
ity constraints were transformed into inequalities using a
tolerance value of � � �!��� (see [2] for details of this trans-
formation). The number of fitness function evaluations is
the same for all the approaches under study ( � ��
G�!�	� ). The
parameters adopted for each of the methods were the fol-
lowing:
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COMOGA
P Optimal Best Median Mean St. Dev. Worst ���

g8*(99) ��� ��
�������� ��� ��
�������� ��� ��
��	�	��� ��� ��
��	���	� ��� ����� ����� ��� ����
�
���� ��� �����������
g9 ������� ������������� ������� ���	�����	� 
���
�� ���	����� � 
������ ����������� ������� �	��������
 ���	� ��� �����	����� ��� �	���������

g11 ��� ����� ��� ���	
������ ��� � �	
	���	� ��� ����
�����
 ��� �������	
�� ��� ����������� ��� �����������
g12 �	� ����������� ��� 
�
�
�
�
�
 ��� 
�
�
������ ��� 
�
�
�����
 ��� ������
���� ��� 
�
�������� ��� �����������
eng1 �	� ����������� ��� ���������	� ��� ����
�� �	� ��� ����������� ��� ��
������ � ��� �����	����� ��� �����������
eng2 ������
�� 
��	������� ������
�� ����������� ������
�� ���������	� ����
���� ����������� �����	� ������
���� 
	� ����� ����������� ��� ������
���

eng3 ��� ��� �����	� ��� ������
���
 ��� �	� �	����� ��� ��� �	����� ��� ����������� ��� �	���	����� ��� ������� ���
eng4 ��������� �����	����� ��������� � 
��	����� ���	����� �����	����
 ��������� �	��������
 ������� ����
������ ��
������ ����������� ��� �����������

Table 2. Experimental results using COMOGA with the 8 test problems. The symbol “*” and the
number in parentheses “( � )”means that in � runs feasible solutions were found (of the 100 runs
performed)

HCVEGA
P Optimal Best Median Mean St. Dev. Worst � �
g8 ��� ��
�������� ��� ��
�������� ��� ��
�������� ��� ��
�������� ��� ����������� ��� ��
�������� ��� ��
�����
��
g9 ������� ������������� ��
���� ����������
 ������� ��
������ � ����
�� ����������� ����� �����	��� � ������� �������	��
 ��� ���	�	�����

g11 ��� ����� ��� ���	
����	� ��� �	��������
 ��� ��
�����
�� ��� ���������	� ��� ���������	� ��� ����� �����
g12 �	� ����������� ��� ����������� ��� ����������� ��� ����������� ��� ����������� ��� ����������� ��� ���������	�
eng1 �	� ����������� ��� ����������� ��� ����������� ��� ����������
 ��� ������
���� ��� ����
������ ��� ���	�����	�
eng2 ������
�� 
��	������� ��������� ����������� ��������� �	��
	� �	� ������
�� 
����	����� ������� �����	����� ��������� 
����	����� ��� �	���������
eng3 ��� ��� �����	� ��� ����������� ��� �	��������
 ��� �	��������� ��� ����������
 ��� �	��������� ��� �������	���
eng4 ��������� �����	����� ��������� ���������	� ���	����� ���������	� ��������� �	������
�� ����� �����	����� ������
�� �����	����� ��� �	�����	���

Table 3. Experimental results using HCVEGA to handle constraints with the 8 test problems.

COMOGA: Population Size = 200, crossover rate = 1.0,
mutation rate = 0.05, desired proportion of feasible solu-
tions = 10 %, � � ��� ��� HCVEGA: Population Size = 200,
number of generations = 400, crossover rate = 0.6, mutation
rate = 0.05, tournament size= 5 HCNPGA: Population Size
= 200, number of generations = 400, crossover rate = 0.6,
mutation rate = 0.05, size of sample of the population = 10,
selection Ratio = 0.8 HCMOGA: Population Size = 200,
number of generations = 400, crossover rate = 0.6, muta-
tion rate = 0.05

A total of ���	� runs per technique per problem were per-
formed. Statistical results are presented in Tables 2, 3, 4
and 5, where � � � 
 �

� 
��	� � is the average rate of feasible
solutions found during a single run (with respect to the full
population).

5 Discussion of Results

After the experimental phase, several results were ob-
tained and they are discussed next: Quality of the results:
HCNPGA gave the best (or tied with the best) results in 6
(g8, g9, , g11, g12, eng2 and eng4) problems and in 5 of
them it reached the global optimum or best known solution
(g8, g11, g12, eng1 and eng2). HCMOGA is superior (or is
tied) in 4 of them (g8, g11, g12 and eng3) and it reached the
global optimum in 4 (g8, g11, g12 and eng3). HCVEGA
got better results only in 3 problems (g8, g12 and eng1) and
it found the global optimum in 4 (g8, g11, g12 and eng1).
COMOGA was clearly surpassed because it did not give the
best results in any given problem. However it reached the
global optimum in problem (g11). Consistency: The statis-
tics indicate that HCNPGA presented the lowest standard

deviation (all but g11 and eng1). Also, the best median
and average solutions in 7 problems were found by HC-
NPGA (all problems but g11). The second best approach
was HCMOGA which produced the best results in 3 prob-
lems (g8,g11 and g12). HCVEGA found better results than
HCMOGA in all four engineering problems. COMOGA
shown a similar behavior than HCNPGA in problem g11.
Diversity: An utopical behavior for an ideal constraint han-
dling technique is defined in our case as keeping at all times
half of the population with feasible solutions and the other
half with infeasible ones. However, in practice such balance
may be very difficult to achieve. Therefore, we provide
a relative comparison among the approaches under study.
The less balanced approach based on the number of feasi-
ble and infeasible solutions in the population during all the
evolutionary process was COMOGA. The remaining three
approaches shown a similar behavior, not necessarily closer
to the ideal performance but good enough to find good re-
sults.

Some issues can be stated based on the previous study:
It seems that all three multiobjective concepts (Pareto dom-
inance, Pareto ranking and population-based) are able to
maintain an acceptable balance between feasible and infea-
sible solutions. Also, the four approaches could deal with
different feasible region sizes and shapes. It is important
to note that all the compared approaches always found the
feasible region of the search space in all the proposed prob-
lems. Pareto dominance as a selection criterion has proved
to give better results (in terms of optimality) than Pareto
Ranking or a population-based approach. Finally, the over-
all results of the COMOGA’s steady-state GA suggests that
it is not a good option to solve nonlinear global optimization
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HCNPGA
P Optimal Best Median Mean St. Dev. Worst ���
g8 ��� ��
�������� ��� ��
�������� ��� ��
�������� ��� ��
�������� ��� ����������� ��� ��
�������� ��� �����	��
��
g9 ������� ������������� ������� 
��	������� ������� ����� ����� ������� ���������	� ��� �����	����� ������� ����������� ��� ���	�������

g11 ��� ����� ��� ���	
����	� ��� � �	
������ ��� ������
���
 ��� ��� ��� �	� ��� ������
��	� ��� �����������
g12 �	� ����������� ��� ����������� ��� ����������� ��� ����������� ��� ����������� ��� ����������� ��� ���	�������
eng1 �	� ����������� ��� ���	����� � ��� ����������� ��� ����������� ��� �����	����� ��� 
����	����� ��� ����� �����
eng2 ������
�� 
��	������� ������
�� 
���������� �	���	��� ��� ������� ��������� �������	��� ������� ��
	������� �����	��� ����������� ��� ��������
��
eng3 ��� ��� �����	� ��� ����������� ��� �	��������� ��� �	���	����� ��� ����������� ��� �	���	����� ��� ��������
��
eng4 ��������� �����	����� �	����
�� � �	�	����� ��������� ������� ��� ������
�� ��� ����� � �	��� ������
���� ��������� ��
�������� ��� �����������

Table 4. Experimental results using HCNPGA to handle constraints with the 8 test problems.

problems. This is mainly due to its high selection pressure
which tends to produce premature convergence. Although
not conclusive, this study seems to indicate that Pareto dom-
inance, Pareto ranking and population-based mechanisms
are promising approaches to handle constraints. HCNPGA
looks like the most robust approach from the four compared
in this study. This approach aims to obtain a better perfor-
mance out of Pareto dominance used as a selection crite-
ria. Also, the use of Pareto Ranking in HCMOGA gave
good results. Furthermore, HCVEGA found better statisti-
cal results than HCMOGA in some problems. Finally, these
results also seem to suggest that a traditional (i.e., genera-
tional) GA performs better in optimization problems than
nongenerational GAs. An open question is if the advan-
tages of each of these techniques can be combined into a
single approach.

6 Conclusions and Future Work

A set of constraint-handling techniques based on mul-
tiobjective concepts were presented in this paper. In each
case, advantages and disadvantages were discussed. We
also presented a comparative study in which four of the
techniques discussed were implemented and evaluated us-
ing eight test functions. Our results provided some insights
regarding the behavior of each type of technique. Note how-
ever, that comparisons with respect to traditional penalty
functions [24, 27] and with the most competitive constraint-
handling techniques used with EAs (e.g., stochastic ranking
[25], the homomorphous maps [15], and the adaptive segre-
gational constrained handling evolutionary algorithm (AS-
CHEA) [11]) are still lacking.

The results obtained seem to indicate that techniques
based on multiobjective optimization can properly deal with
constrained search spaces. However, such results also seem
to indicate that additional mechanisms should be used to im-
prove the effectiveness of these approaches, since they have
obvious difficulties to reach the global optimum in some of
the test functions used in the current study.
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