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Abstract. This paper presents a new multi-objective evolutionary algo-
rithm which consists of a hybrid between a particle swarm optimization
(PSO) approach and scatter search. The main idea of the approach is
to combine the high convergence rate of the particle swarm optimization
algorithm with a local search approach based on scatter search. We pro-
pose a new leader selection scheme for PSO, which aims to accelerate
convergence. Upon applying PSO, scatter search acts as a local search
scheme, improving the spread of the nondominated solutions found so
far. Thus, the hybrid constitutes an efficient multi-objective evolution-
ary algorithm, which can produce reasonably good approximations of the
Pareto fronts of multi-objective problems of high dimensionality, while
only performing 4,000 fitness function evaluations. Qur proposed ap-
proach is validated using ten standard test functions commonly adopted
in the specialized literature. Our results are compared with respect to
a multi-objective evolutionary algorithm that is representative of the
state-of-the-art in the area: the NSGA-II.

1 Introduction

Most real world problems involve the simultaneous optimization of two or more
(often conflicting) objectives. The solution of such problems (called “multi-
objective”) is different from that of a single-objective optimization problem. The
main difference is that multi-objective optimization problems normally have not
one but a set of solutions which are all equally good. The main aim of this work
is to design a MOEA that can produce a reasonably good approximation of the
true Pareto front of a problem with a relatively low number of fitness function
evaluations. In the past, a wide variety of evolutionary algorithms (EA’s) have
been used to solve multi-objective optimization problems [2]. In this paper, we
propose a new hybrid multi-objective evolutionary algorithm based on parti-
cle swarm optimization (PSO) and scatter search (SS). PSO is a bio-inspired
optimization algorithm that was proposed by James Kennedy and Russell Eber-
hart in the mid-1990s [10], and which is inspired on the choreography of a bird
flock. PSO has been found to be a very successful optimization approach both



in single-objective and in multi-objective problems [1,10]. In PSO, each solution
is represented by a particle. Particles group in “swarms” (there can be either
one swarm or several in one population) and the evolution of the swarm to the
optimal solutions is achieved by a velocity equation. This equation is composed
of three elements: a velocity inertia, a cognitive component “pbest” and a so-
cial component “gbest”. Depending on the topology adopted (i.e., one swarm or
multiple swarms), each particle can be affected by either the best local and/or
the best global particle in its swarm. PSO normally has difficulties to achieve
a good distribution of solutions with a low number of evaluations. That is why
we adopted scatter search (which can be useful at finding solutions within the
neighborhood of a reference set) in this paper in order to have a local optimizer
whose computational cost is low. SS is an evolutionary method that was origi-
nally proposed in the 1970s by Fred Glover [7] for combining decision rules and
problem constraints. This method uses strategies for combining solution vectors
that have been found effective during the search (the so called “reference set”)
[12]. SS has been successfully applied to hard optimization problems, and it
constitutes a very flexible heuristic, since it can be implemented in a variety of
ways, offering numerous alternatives for exploiting its fundamental ideas. The
remainder of this paper is organized as follows. Section 2 provides a brief in-
troduction to particle swarm optimization. In Section 3 we analyze the scatter
search components. Section 4 describes our proposed approach. Our comparison
of results is provided in Section 5. Our conclusions and some possible paths for
future research are provided in Section 6.

2 Particle Swarm Optimization (PSO)

In the PSO algorithm, the particles (including the pbest are randomly initialized
at the beginning of the search process. Next, the fittest particle from the swarm
is identified and assigned to the gbest solution (i.e., the global best, or best par-
ticle found so far). After that, the swarm flies through the search space (in k
dimensions, in the general case). The flight function adopted by PSO is deter-
mined by the equation (1), which updates the position and fitness of the particle
(see equation (2)). The new fitness is compared with respect to the particle’s
pbest position. If it is better, then it replaces the pbest (i.e., the personal best,
or the best value that has been found for this particle so far). This procedure is
repeated for every particle in the swarm until the termination criteria is reached.

Vik =W Vi +C1- U(O, 1)(pbesti,k - :ci,k) +co U(O, 1)(gbestk - m'i,k) (1)

Tik = Tik + Vik (2)

where ¢; and ¢, are constants that indicate the attraction from the pbest or gbest
position, respectively; w refers to the inertia of the previous movement; z; =
(241, Tia, ..., Tik) represents the i —th particle. U(0,1) denotes a uniformly random
number generated within the range (0,1); V; = (v31, 42, ..., v;p) represents the



rate change (velocity) of particle i. The equation (1) describes the velocity that
is constantly updated by each particle and equation (2) updates the position of
the particle in each decision variable. There are plenty of proposals to extend
PSO for dealing with multiple objectives (see for example [1]).

3 Scatter Search

As indicated before, Scatter Search was first introduced in 1977 by Fred Glover
[7] as a method that uses a succession of coordinated initializations to generate
solutions. In 1994 [8], the range of applications of SS was expanded to nonlinear
optimization problems, binary and permutation problems. Finally, in 1998 a new
publication [9] on scatter search triggered the interest of researchers and practi-
tioners, who translated these ideas into different computer implementations to
solve a variety of problems.
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Fig. 1. Scatter Search Scheme

In Figure 1, the Diversification Generation Method (generates a scatter solu-
tions set) and Improvement Method (makes a local search, and aims to improve
the solutions) are initially applied to all the solutions in the P set. A RefSet set
is generated based on the P set, in RefSet is contained some of the best solutions
and diversity solutions founded at the moment. The Subset Generation Method
takes reference solutions as its input to produce solution subsets to be combined,
the solution subsets contain two or more solutions from RefSet. Then, the Com-
bination Method is applied to the solution subsets to get new solutions. We try
to improve the generated solutions with the Improvement Method and the re-
sult of the improvement is handed by the Reference Set Update Method. This
method applies rules regarding the admission to the reference set of solutions
called RefSet.



4 Our Proposed Approach

Our proposed approach, called MOPSOSS (Multi-objective Optimization using
Particle Swarm Optimization with Scatter Search), is divided in two phases, and
each of them consumes a fixed number of fitness function evaluations. During
Phase I, our PSO-based MOEA is applied for 2000 fitness function evaluations.
During Phase II, a local search procedure based on scatter search is applied for
another 2000 fitness function evaluations, in order to improve the solutions (i.e.,
spread them along the Pareto front) produced at the previous phase. Each of
these two phases is described next in more detail.

4.1 Phase I: Particle Swarm Optimization

Our proposed PSO-based approach adopts a very small population size (P =5
particles). The leader is determined using a very simple criterion: the first N
particles (N is the number of objectives of the problem) are guided by the best
particle in each objective, considered separately. The remainder P — N particles
are adopted to build an approximation of the ideal vector. The ideal vector
(ff, f3,---, fr) where f} is the best solution found at the ¢ function at the
moment. Then, we identify the individual which is closest to this ideal vector
(using an euclidian distance) and such individual becomes the leader for the
remainder P— N particles. The purpose of these selection criteria is twofold: first,
we aim to approximate the optimum for each separate objective, by exploiting
the high convergence rate of PSO in single-objective optimization. The second
purpose of our selection rules is to encourage convergence towards the “knee” of
the Pareto front (considering the bi-objective case).

Algorithm 1 shows the pseudocode of Phase I from our proposed approach.
First, we randomly generate the first population, but in the population we need
at least the same number of individuals as the number of objectives plus one these
last individual is needed to become the ideal vector, for this purpose we choose
5 individuals to perform the tests. In the getLeaders() function, we identify the
best particles in each objective and the closest particle to the ideal vector. Those
particles (the leaders) are stored in the set L. Then the getLeader(x) function
returns the position of the leader from the set L for a particle . Then, we per-
form the flight in order to obtain a new particle. If this solution is beyond the
allowable bounds for a decision variable, then we adopt the BLX — a recombi-
nation operator [6], and a new vector solution Z = (21, 22, ..., 24) is generated,
where z; € [emin — Ia, Cmaz + 1Q]; Cmaz = maz(a;, b;), ¢min = min(a;,b;),
I = ¢maz — Cmin, @ = 0.5, a = L, (the leader of the particle) and b = pbest
(i-e., the personal best of the particle). Note that the use of a recombination
operator is not a common practice in PSO, and some people may consider our
approach as a PSO-variant because of that. PSO does not use a specific muta-
tion operator (the variation of the factors of the flight equation may compen-
sate for that). However, it has become common practice in MOPSOs to adopt
some sort of mutation (or turbulence) operator that improves the exploration
capabilities of PSO [1,14]. The use of a mutation operator is normally simpler



(and easier) than varying the factors of the flight equation and therefore its
extended use. We adopted Parameter-Based Mutation [4] in our approach with
Pm = 1/n. Our proposed approach also uses an external archive (also called sec-
ondary population). In order to include a solution into this external archive, it
is compared with respect to each member already contained in the archive using
the e-dominance grid [13]. Every solution in the archive is assigned an identifi-
cation array (B = (By, Bs,...,Bq)T, where d is the total number of objectives)
as follows:

(- fm™in)/e;|), for minimizing f;;
B;(f) = { ([(fj - f;mm)/ej]), for maximizing ;j.

where: fj?m'” is the minimum possible value of the j-th objective and ¢; is the
allowable tolerance in the j-th objective [13]. The identification array divides the
whole objective space into hyper-boxes, each having €; size in the j-th objective.
Using this procedure, we can guarantee the generation of a well-distributed set
of nondominated solutions. Also, the value of € adopted (defined by the user)
regulates the size of the external archive.

Algorithm 1: Phase I - PSO Algorithm

1 begin
2 Initialize Population (P) with randomly generated solutions
3 getLeaders()
4 repeat
5 fori=1to P do
6 g = GetLeader(z)
7 for d =1 to nVariables do
8 /*Lg. q is the leader of particle i*/
9 vi,d = w-vi,d+c1-U(0,1)(pia —wi,a) +c2-U(0,1)(Lg,a — wi,a)
10 Tid = Tid+ Vid
11 end
12 if z; ¢ search space then
13 z; = BLX — a(Lg, ps)
14 end
15 if U(0,1) < pp then
16 x; = Mutate(z;)
17 end
18 if z; is nondominated then
19 for d=1 to nVariables do
20 Pid = Tid
21 end
22 end
23 end
24 getLeaders()
25 until Mazlter

26 end




Any member that is removed from the secondary population is included in
the third population. The third population stores the dominated points needed
for the Phase II.

4.2 Phase II: Scatter Search

Upon termination of Phase I (2000 fitness function evaluations), we start Phase
II, which departs from the nondominated set generated in Phase I. This set is
contained within the secondary population. We also have the dominated set,
which is contained within the third population. From the nondominated set
we choose MaxScatterSolutions points. These particles have to be scattered
in the nondominated set, so we choose them based on a distance L,, which is
determined by equation 3:

Lute) =, { AT 1) )

=i=1,...,p fima,:c (CL’) — fzmm'(l')

Generalizing, to obtain the scatter solutions set among the nondominated
set, we use equation 4:

L iz {5 {i20e7, { L0 = 2al0] A1 ()

where Lg.; is the Leaders set, U is the nondominated set and V contains the
scatter solutions set, f™?® and f™" are the upper and lower bound of the i-th
objective function in the secondary population.

Algorithm 2 describes the scatter search elements. The getScatterSolu-
tion() function returns the scatter solutions set in the nondominated set V,
getScatterSolution(n) function returns the n — th scatter solution and stores
it in pl. CreateRefSet(pl) creates the reference set of the pl scatter solution.
This function returns a set of solutions C), Regarding the Solution Combination
Method required by SS, we used the BLX — a recombination operator [6] with
a = 0.5. This operator combines the ¢ — th particle and j — th particle from
the C,, set. Finally, we used a Parameter-Based mutation as the Improvement
Method with p,, = L

nVariables ”

3)

5 Results

In order to validate our proposed approach, we compare results with respect to
the NSGA-II [4], which is a MOEA representative of the state-of-the-art in the
area. The first phase of our approach uses four parameters: population size (P),
leaders number (NN), mutation probability (P,,), recombination parameter «,
plus the traditional PSO parameters (w, ¢1,c2). On the other hand, the second
phase uses two more parameters: reference set size (RefSetSize) and number of
scatter solutions (MaxScatterSolutions). Finally, the € — vector used to gener-
ate the e-dominance grid was set to 0.05 in Kursawe’s function, and to 0.02 in



Algorithm 2: Phase II - Scatter Search Algorithm

1 begin
2 repeat
3 getScatterSolutions()
4 for n =0 to MaxScatterSolutions do
5 pl = getScatter Solution(n)
6 //Reference Set Update and Create Method
7 CreateRefSet(pl)
8 for 1 = 0 to SizeRefSet do
9 for j =i+ 1 to RefSetSize do
10 //Solution Combination Method
11 x = BLX — a(popRefSet(i), popRe fSet(7))
12 //Improvement Method
13 x = Mutate(x)
14 if z is nondominated then
15 Add Particule © into secondary population
16 end
17 end
18 end
19 end
20 until Mazlter
21 end

the ZDT and the DTLZ test functions. Our approach was validated using 10 test
problems: Kursawe’s function [11], 5 problems from the ZDT set [16] and 4 from
the DTLZ set [5]. The detailed description of these test functions was omitted
due to space restrictions, but can be found in their original sources. However,
all of these test functions are unconstrained and have between 3 and 30 deci-
sion variables. In all cases, the parameters of our approach were set as follows:
P =5 N =k+1 (k= number of objective functions), P, = 1/n, w = 0.3,
¢1 = 0.1, ¢ = 1.4, RefSetSize = 4, MaxScatterSolutions = 7 and a = 0.5.
The NSGA-II used the following parameters: crossover rate = 0.9, mutation rate
= 1/n (n = number of decision variables), n. = 15, 1, = 20, population size
= 100 and maximum number of generations = 40. The population size of the
NSGA-II is the same as the size of the grid of our approach. In order to allow a
fair comparison of results, both approaches adopted real-numbers encoding and
performed 4,000 fitness function evaluations per run because with our approach
we only need 4,000 fitness evaluations to converge to the real Pareto front in
most of the test problems. Three performance measures were adopted in order
to allow a quantitative assessment of our results: (1) Two Set Coverage (SC),
proposed by Zitzler et al. [16], which performs a relative coverage comparison
of two sets; (2) Inverted Generational Distance (IGD), which is a variation of
a metric proposed by Van Veldhuizen [15] in which the true Pareto is used as a
reference; and (3) Spread (S), proposed by Deb et al. [3], which measures both
progress towards the Pareto-optimal front and the extent of spread. For each test



problem, 30 independent runs were performed and the results reported in Table
1 correspond to the mean and standard deviation of the performance metrics
(SC, IGD and S). We show in boldface the best mean values per test function.
It can be observed that in the ZDT test problems, our approach produced the
best results with respect to SC, IGD and S in all cases. Our approach also out-
performed the NSGA-IT with respect to the set coverage metric in the DTLZ1,
DTLZ2 and DTLZ3 test problems. The NSGA-IT outperformed our approach in
three cases with respect to the IGD, and S metrics. Figures 2 and 3 shows the
graphical results produced by the MOPSOSS and the NSGA-II for all the test
problems adopted. The solutions displayed correspond to the median result with
respect to the IGD metric. The true Pareto front (obtained by enumeration) is
shown with a continuous line and the approximation produced by each algorithm
is shown with circles. In Figures 2 and 3, we can clearly see that in problems
Kursawe, ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6, the NSGA-II is very far from
the true Pareto front, whereas our MOPSOSS is very close to the true Pareto
front after only 4,000 fitness function evaluations (except for ZDT4). Graphi-
cally, the results are not entirely clear for the DTLZ test problems. However, if
we pay attention to the scale, it will be evident that, in most cases, our approach
has several points closer to the true Pareto front than the NSGA-II. Our results
indicate that the NSGA-II, despite being a highly competitive MOEA is not
able to converge to the true Pareto front in most of the test problems adopted
when performing only 4000 fitness function evaluations. If we perform a higher
number of evaluations, the NSGA-IIT would certainly produce a very good (and
well-distributed) approximation of the Pareto front. However, our aim was pre-
cisely to provide an alternative approach that could require a lower number of
evaluations than a state-of-the-art MOEA while still providing a highly compet-
itive performance. Such an approach could be useful in real-world applications
with objective functions requiring a very high evaluation cost (computationally
speaking).

SC IGD S

Function MOPSOSS NSGA-II MOPSOSS NSGA-II MOPSOSS NSGA-II

Mean o Mean o Mean o Mean o Mean o Mean

g

KURSAWE|0.1834 0.0568|0.2130 0.0669]|0.0056 0.0004|0.0036 0.0002(0.4030 0.0298|0.4325 0.0379

ZDT1 0.0000 0.0000( 0.8622 0.0343|0.0018 0.0009| 0.0097 0.0019/0.4288 0.0533|0.5515 0.0345

ZDT2 0.0000 0.0000(0.9515 0.0520|{0.0040 0.0050| 0.0223 0.0064|0.5121 0.0811|0.7135 0.1126

ZDT3 0.0397 0.0978|0.8811 0.0905|0.0072 0.0046|0.0155 0.0020|0.6955 0.0641|0.7446 0.0401

ZDT4 0.0139 0.0750[0.2331 0.1293]0.1097 0.0395|0.4247 0.1304|0.9417 0.0271|0.9813 0.0236

ZDT6 0.0000 0.0000| 0.5417 0.1539|0.0008 0.0003| 0.0420 0.0041|0.7502 0.0699| 0.8713 0.0802

DTLZ1 |0.0403 0.0598|0.6900 0.1942|0.4100 0.1131]0.7318 0.2062] 0.9986 0.0010/0.9976 0.0011

DTLZ2 |0.0484 0.0528|0.1856 0.0736|0.0005 0.0001|{0.0004 0.0000| 0.7488 0.1012(0.2246 0.0250

DTLZ3 |0.0207 0.0540(0.4473 0.1893|{0.9331 0.2631| 1.4228 0.2690|0.9991 0.0004(0.9991 0.0002

DTLZ4 0.3262 0.3417(0.0874 0.1123]|0.0216 0.0041|0.0096 0.0025|0.7605 0.1553|0.7136 0.1104

Table 1. Comparison of results between our approach (called MOPSOSS) and the NSGA-II for the
ten test problems adopted.




6 Conclusions and Future Work

We have introduced a new hybrid between a MOEA based on PSO and a local
search mechanism based on scatter search. This hybrid aims to combine the high
convergence rate of PSO with the good neighborhood exploration performed by
the scatter search algorithm. In PSO, the main problem is the leader selection,
the social parameter (ppest) is very important to get the high convergence rate
required by our approach. With SS we observe that the selection of closer so-
lutions to the Pareto front generates smooth moves that give us more solutions
closer to the true Pareto front of the problem being solved. Our proposed ap-
proach produced results that are competitive with respect to the NSGA-II in
problems whose dimensionality goes from 3 up to 30 decision variables, while
performing only 4,000 fitness function evaluations. Although our results are still
preliminary, they are very encouraging, since they seem to indicate that our pro-
posed approach could be a viable alternative for solving real-world problems in
which the cost of a single fitness function evaluation is very high (e.g., in aero-
nautics). As part of our future work, we intend to improve the performance of
the PSO approach adopted. Particularly, the selection of the appropriate leader
is an issue that deserves further study.
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