An Extension of Particle Swarm Optimization that
Can Handle Multiple Objectives

Carlos A. Coello Coello!, Gregorio Toscano Pulido! and Maximino Salazar Lechuga?

1. CINVESTAV-IPN, Seccion de Computacidn, Dept. of Elect. Eng., México, D.F. 07300 - MEXICO
ccoello@cs. cinvestav.mz, gtoscano@computacion.cs.cinvestav.mz

2. Maestria en Inteligencia Artificial, Universidad Veracruzana, Xalapa, Veracruz 91000 - MEXICO
reactivo@prodigy.net.mz

Abstract: In this paper, we present an extension of the heuristic called “particle swarm optimization”
(PSO) that is able to deal with multiobjective optimization problems. Our approach uses the concept
of Pareto dominance to determine the flight direction of a particle and it maintains previously found
nondominated vectors in a global repository that is later used by other particles to guide their own flight.
We also incorporate a mutation operator that increases the exploratory capabilities of the algorithm. The
approach is validated using several test functions taken from the evolutionary multiobjective optimiza-
tion literature. Our results indicate that the approach is competitive with state-of-the-art multiobjective
evolutionary algorithms.

Keywords: Multiple Objectives - Particle Swarm Optimization - Multiobjective Optimization

1 Introduction

The use of evolutionary algorithms for multiobjective optimization (an area called “evolutionary
multiobjective optimization”, or EMO for short) has significantly grown in the last few years,
giving rise to a wide variety of algorithms [3]. As any other research area, EMO currently
presents certain trends. One of them is to improve the efficiency both of the algorithms and
of the data structures used to store nondominated vectors'. EMO researchers have produced
some clever techniques to maintain diversity (e.g., the adaptive grid used by PAES [8]), new
algorithms that use very small populations (e.g., the micro-GA [2]), and data structures that
allow to handle unconstrained external archives (e.g., the dominated tree [5]).

Particle swarm optimization (PSO) is a relatively recent heuristic inspired by the choreography
of a bird flock. PSO has been found to be successful in a wide variety of optimization tasks [6],
but until recently it had not been extended to deal with multiple objectives.

PSO seems particularly suitable for multiobjective optimization mainly because of the high
speed of convergence that the algorithm presents for single-objective optimization [6]. In this
abstract, we present a proposal, called “multi-objective particle swarm optimization” (MOPSO),
which allows the PSO algorithm to be able to deal with multiobjective optimization problems.
Our current proposal is an improved version of the algorithm reported in [1]. The proposed
approach is relatively simple to implement, it is population-based, it uses an external memory
(called “repository”) and a geographically-based approach to maintain diversity. This revised
version also incorporates a mutation operator and a scheme based on dominance tournaments
to handle constraints. MOPSO is validated using some standard test functions reported in the
specialized literature and compared against two highly competitive EMO algorithms: the Non-
dominated Sorting Genetic Algorithm IT [4] (NSGA II), and the micro-genetic algorithm for
multiobjective optimization (microGA) [2].

'Tt’s important to clarify that most EMO researchers consider important to generate as many Pareto optimal
solutions as possible, and most of them are not concert with the further multicriteria decision making process
required to reach a single response to the problem at hand. In this work, we are adopting this same assumption.

2 Description of the Approach
The algorithm of MOPSO is the following:
1. Initialize the population POP:

(a) FORi=0TO MAX /* MAX = number of particles */
(b) Initialize POPYi]

2. Initialize the speed of each particle:

(a) FOR i =0TO MAX
(b) VEL[i] =0

3. Evaluate each of the particles in POP.

4. Store the positions of the particles that represent nondominated vectors in the repository
REP.

5. Generate hypercubes of the search space explored so far, and locate the particles using
these hypercubes as a coordinate system where each particle’s coordinates are defined
according to the values of its objective functions.

6. Initialize the memory of each particle (this memory serves as a guide to travel through the
search space. This memory is also stored in the repository):

(a) FOR i =0 TO MAX
(b) PBESTS[i] = POP[i]

7. WHILE maximum number of cycles has not been reached DO

(a) Compute the speed of each particle? using the following expression:

VEL[i| =W x VEL[i] + Ry x
(PBESTS[i) — POPIi]) +
Ry x (REP[h] — POPYi))

where W (inertia weight) takes a value of 0.4; R; and Ry are random numbers in the
range [0..1]; PBESTS[i] is the best position that the particle ¢ has had®; REPIh] is
a value that is taken from the repository; the index A is selected in the following way:
those hypercubes containing more than one particle are assigned a fitness equal to
the result of dividing any number z > 1 (we used z = 10 in our experiments) by the
number of particles that they contain. Then, we apply roulette-wheel selection using
these fitness values to select the hypercube from which we will take the corresponding
particle. Once the hypercube has been selected, we select randomly a particle within
such hypercube. POP]i] is the current value of the particle 4.

(b) Compute the new positions of the particles adding the speed produced from the
previous step:
POPIi| = POP[i| + VEL[i] (1)

*Each particle has a dimensionality that can vary depending on the problem solved. When we say that we
compute the speed of a particle, we refer to computing the speed for each of its dimensions.
3We will explain later on how do we define “better” in this context.

(c) Maintain the particles within the search space in case they go beyond its boundaries
(avoid generating solutions that do not lie on valid search space).

(d) Evaluate each of the particles in POP.

(e) Update the contents of REP together with the geographical representation of the
particles within the hypercubes. Since the size of the repository is limited, whenever
it gets full, we apply a secondary criterion for retention: those particles located in
less populated areas of objective space are given priority over those lying in highly
populated regions.

(f) When the current position of the particle is better than the position contained in its
memory, the particle’s position is updated using:

PBESTS][i] = POP]i] 2)

The criterion to decide what position from memory should be retained is simply to
apply Pareto dominance (i.e., if the current position is dominated by the position in
memory, then the position in memory is kept; otherwise, the current position replaces
the one in memory; if neither of them is dominated by the other, then we select one
of them randomly).

(g) Increment the loop counter

8. END WHILE

Additionally, we added a mutation operator that decreases its range of operation over
time, such that at the beginning it covers the full range of each variable, and it deacreases
according to a a nonlinear function. The number of individuals that are subject to mutation
decreases over time, too. This operator was introduced to increase the exploratory power
of PSO which we found to be limited in some functions in which there were important
attractors in certain portions of the Pareto front. We also added a relatively simple scheme
to handle constraints: Whenever two individuals are compared, we check their constraints.
If both are feasible, nondominance is directly applied to decide who is the winner. If one
is feasible and the other is infeasible, the feasible dominates. If both are infeasible, then
the one with the lowest amount of constraint violation dominates the other.

3 Comparison of Results

Several test functions were taken from the specialized literature to compare our approach. How-
ever, only one is included in this abstract due to obvious space limitations. To compare our
results in a quantitative way we used four criteria: average running time of the algorithm (using
the same number of fitness function evaluations), the generational distance (as defined in [10]),
the error ratio (as defined in [10]) and spacing (as defined in [9]). These metrics allow us to
evaluate the behavior of a multiobjective optimization technique with respect to closeness to the
true Pareto front (generational distance), number of nondominated individuals produced that
belong to the true Pareto front of the problem (error ratio) and how uniform is the distribution
of solutions along the Pareto front (spacing).

MOPSO was compared against two recent algorithms that are representative of the state of the
art in evolutionary multiobjective optimization: the NSGA-II (using binary representation) [4],
and the micro-genetic algorithm for multiobjective optimization [2]. In the following examples,
the NSGA-II was run using a population size of 100, a crossover rate of 0.8, tournament selection,
and a mutation rate of 1/L, where L = chromosome length, and the maximum number of
generations was set to 119. The micro-GA used a crossover rate of 0.9, an external memory
of 100 individuals, a number of iterations to achieve nominal convergence of two, a population
memory of 50 individuals, a percentage of non-replaceable memory of 0.05, a population size (for

MMMMMM
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 1: Pareto fronts produced by the NSGA II (left), the micro-GA (middle), and MOPSO
for the test function

the micro-GA itself) of four individuals, and 25 subdivisions of the adaptive grid. The mutation
rate was set to 1/L (L = length of the chromosomic string). MOPSO used a population of
100 particles, a repository size of 100 particles and 30 divisions for the adaptive grid. Our
implementation uses a real-numbers representation and it is therefore intended for continuous
search spaces. Note, however, that PSO can also be used with binary representation (see [6] for
details).

3.1 Test Function
We used the following problem proposed by Kita [7]: Maximize F = (f1(z,y), f2(z,y)), where

1
fl($ay) = _$2+y, f2($ay) = §I+y+1

subject to:

0> 1:1:—{—y—§ 0> 1a:—l—y—E 0>5z+y—30
-6 2’ -2 2’ -

and: z,y > 0.
Figure 1 shows the graphical results produced by the NSGA-II, the micro-GA and our MOPSO
in the test function previously indicated. The true Pareto front of the problem is also shown.
The values for the metrics for MOPSO were the following: Generational Distance: average
= 0.019479, best =0.002562, worst = 0.081061, standard deviation = 0.018906; Error ratio:
average = (.568231, best = 0.43, worst = 0.67, standard deviation = 0.063414; Spacing: average
= 0.142568, best = 0.051923, worst = 0.753783, standard deviation = 0.160711. The values for
the metrics for the NSGA-II were the following: Generational Distance: average = (0.084239, best
=0.003885, worst = 0.678449, standard deviation = 0.165244; Error ratio: average = 0.8965,
best = 0.75, worst = 0.99, standard deviation = 0.067143; Spacing: average = 0.098486, best
= 0.001032, worst = 1.48868, standard deviation = 0.32738. The values for the metrics for the
micro-GA were the following: Generational Distance: average = 0.150763, best =0.00513, worst
= 0.912065, standard deviation = 0.216558; Error ratio: average = 0.927706, best = 0.734694,
worst = 1.01639, standard deviation = 0.068739; Spacing: average = 0.31502, best = 0.06561,
worst = 1.64386, standard deviation = 0.421742.
These results are representative of the performance of MOPSO which defeated the two other
algorithms with which it was compared with respect to all the metrics adopted. It also provided
the lowest standard deviations overall.

4 Conclusions and Future Work

This abstract presents a multiobjective optimization technique based on the particle swarm
optimization algorithm. The proposed algorithm seems very promising since it is capable of
outperforming other techniques that represent the state of the art in evolutionary multiobjective
optimization.

A sensitivity analysis of the technique is currently under way, so that we can determine the role
of each of the parameters used in the performance of the algorithm (particularly those controlling
the flight direction of the particles). We are also interested in using spatial data structures to
store nondominated individuals and in incorporating a crowding operator that can improve the
distribution of solutions produced by the algorithm. Both tasks are part of our current research
work.

Acknowledgements

The first author gratefully acknowledges support from CONACyT through project 34201-A.
The second author acknowledges support from CONACyT through a scholarship to pursue

graduate studies at the Computer Science Section of the Electrical Engineering Department at
CINVESTAV-IPN.

References

[1] Carlos A. Coello Coello and Maximino Salazar Lechuga. MOPSO: A Proposal for Multiple Objective
Particle Swarm Optimization. In Congress on Evolutionary Computation (CEC’2002), volume 1,
pages 1051-1056, Piscataway, New Jersey, May 2002. IEEE Service Center.

[2] Carlos A. Coello Coello and Gregorio Toscano Pulido. Multiobjective Optimization using a
Micro-Genetic Algorithm. In Lee Spector, Erik D. Goodman, Annie Wu, W.B. Langdon, Hans-
Michael Voigt, Mitsuo Gen, Sandip Sen, Marco Dorigo, Shahram Pezeshk, Max H. Garzon, and
Edmund Burke, editors, Proceedings of the Genetic and FEvolutionary Computation Conference
(GECCO’2001), pages 274-282, San Francisco, California, 2001. Morgan Kaufmann Publishers.

[3] Carlos A. Coello Coello, David A. Van Veldhuizen, and Gary B. Lamont. Evolutionary Algorithms for
Solving Multi- Objective Problems. Kluwer Academic Publishers, Boston, 2002. ISBN 0-3064-6762-3.

[4] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. A Fast and Elitist Multiobjec-
tive Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182-197,
April 2002.

[5] Richard M. Everson, Jonathan E. Fieldsend, and Sameer Singh. Full Elite Sets for Multi-Objective
Optimisation. In I.C. Parmee, editor, Proceedings of the Fifth International Conference on Adaptive
Computing Design and Manufacture (ACDM 2002), volume 5, pages 343—-354, University of Exeter,
Devon, UK, April 2002. Springer-Verlag.

[6] James Kennedy and Russell C. Eberhart. Swarm Intelligence. Morgan Kaufmann Publishers, San
Francisco, California, 2001.

[7] Hajime Kita, Yasuyuki Yabumoto, Naoki Mori, and Yoshikazu Nishikawa. Multi-Objective Opti-
mization by Means of the Thermodynamical Genetic Algorithm. In Hans-Michael Voigt, Werner
Ebeling, Ingo Rechenberg, and Hans-Paul Schwefel, editors, Parallel Problem Solving from Nature—
PPSN IV, Lecture Notes in Computer Science, pages 504-512. Springer-Verlag, Berlin, Germany,
September 1996.

[8] Joshua D. Knowles and David W. Corne. Approximating the Nondominated Front Using the Pareto
Archived Evolution Strategy. Evolutionary Computation, 8(2):149-172, 2000.

[9] J.R. Schott. Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization.
Master’s thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology,
Cambridge, Massachusetts, May 1995.

[10] David A. Van Veldhuizen. Multiobjective Evolutionary Algorithms: Classifications, Analyses, and
New Innovations. PhD thesis, Department of Electrical and Computer Engineering. Graduate School
of Engineering. Air Force Institute of Technology, Wright-Patterson AFB, Ohio, May 1999.

