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Abstract—Throughout the years, several bio-inspired meta-
heuristics have been proposed to solve multi-objective problems.
Nevertheless, most of the current metaheuristics are not suitable
for applications having limited resources (e.g., limited available
memory or computationally expensive objective function evalu-
ations). In recent years, a wide variety of metaheuristics have
been proposed that employ a statistical representation of the
population through a probabilities vector. These are the so-
called compact metaheuristics. Several metaheuristics of the state
of the art have used a statistical representation to reduce the
amount of memory required to be implemented in devices with
limited computing resources. This paper presents a compact
metaheuristic based on a particle swarm optimizer (PSO) for
solving continuous and unconstrained multi-objective optimiza-
tion problems. Our proposed approach is compared with respect
to two multi-objective particle swarm optimizers (MOPSOs) and
one compact multi-objective evolutionary algorithm (MOEA).
The results indicate that our proposed approach is competitive
with respect to the other MOPSOs and is able to outperform the
compact MOEA used in our comparative study in most of the
test problems adopted.

Keywords—Multi-objective optimization, particle swarm opti-
mization, compact metaheuristics

I. INTRODUCTION

Multi-objective problems occur naturally in a variety of
areas. The use of bio-inspired metaheuristics to solve this type
of problems is mainly due to their simplicity, generality and
ease of use.

The success of particle swarm optimization (PSO) for
solving single-objective optimization problems has motivated
researchers to extend this metaheuristic for solving multi-
objective optimization problems [1]. During the last few
years, a wide variety of multi-objective particle swarm op-
timizers (MOPSOs) have been developed. For example, in
2011, Zapotecas and Coello [2] proposed dMOPSO which
uses a decomposition approach similar to that employed by
MOEA/D [3] which consists of transforming a multi-objective
optimization problem into a set of single-objective problems.
Each sub-problem is optimized using only information from
neighboring sub-problems. This algorithm uses an archive of
leaders that serve as guides during the search process and
defines the concept of age, in which a particle is replaced after
a certain number of iterations if it is not capable of improving

its personal best. dMOPSO is a decomposition-based MOPSO
representative of the state-of-the-art in the area. Nebro et al. [4]
analyzed five MOPSOs and found out that they were unable
to solve some multi-frontal problems satisfactorily because the
velocity of the particles in those problems resulted in erratic
movements towards the upper and lower limits of the decision
space. This caused the particles to oscillate outside the region
of interest. Taking as a starting point the MOPSO that obtained
the best results in this study (OMOPSO [5]), they developed
a new algorithm called SMPSO [6] (Speed-constrained Multi-
objective PSO). In order to limit the step size of the velocity,
SMOPSO adopts a constriction coefficient and introduces
a mechanism to bound the accumulated velocity of each
variable. Even today, SMPSO remains as a very competitive
Pareto-based MOPSO.

After Harik et al. [7] introduced the compact genetic algo-
rithm (CGA), a few other researchers have proposed variations
of this algorithm, mainly oriented towards producing efficient
hardware implementations. Gallagher et al. [8] proposed a
variant of a compact genetic algorithm to optimize online
a reconfigurable analog neural network to control physical
processes. Since their control chips interact with physical pro-
cesses which are orders of magnitude slower than digital signal
processing speeds, decreasing the hardware size was crucial.
Mininno et al. [9] extended the compact genetic algorithm to
work directly with floating-point variables motivated by the
fact that most micro-controller platforms are programmable
with object-oriented software based on real-value floating-
point variables. A compact Particle Swarm Optimizer (cPSO)
was proposed by Neri et al. [10] to optimize in real-time
an advanced control system of a model of an actual power
plant. This cPSO follows the same prinicples of the original
compact genetic algorithm: a tournament is held between two
individuals to make a slight modification in the probabilities
vector. However, unlike the CGA, the cPSO generates only one
individual through the probability vector and the remaining
one is generated by means of the formulas to update the
position of a particle (see equation (1)).

Osorio et al. [11] proposed a compact version of a
multi-objective differential evolution algorithm called Multi-
Objective Compact Differential Evolution (mocDE). This ap-



proach is based on the Compact Differential Evolution pro-
posed by Mininno et al. [12]. To solve multi-objective prob-
lems the authors adopted an aproach similar to that employed
by MOEA/D, which, as indicated before, transforms a multi-
objective optimization problem into a set of single-objective
sub-problems. The solutions are stored into a positional exter-
nal archive that assigns one position for each sub-problem.

In this paper, we introduce a decomposition-based multi-
objective compact particle swarm optimizer (MOCPSO) for
continuous and unconstrained MOPs. Our proposal adopts a
statistical representation of the swarm by means of a real-
valued probability vector and it constitutes (to the best of the
authors’ knowledge) the first proposal of a compact multi-
objective particle swarm optimizer.

The remainder of this paper is organized as follows. Sec-
tion II provides the basic background required to make of
this a self-contained paper. Section III describes our proposed
Multi-Objective Compact Particle Swarm Optimizer. Our ex-
perimental study and a discussion of results are provided in
Section IV. Finally, our conclusions and some possible paths
for future research are briefly discussed in Section V.

II. BASIC CONCEPTS

A. Particle Swarm Optimization

Particle swarm optimization (PSO), was proposed in 1995
by James Kennedy and Rusell Eberhart [13]. It is a metaheuris-
tic inspired by the social behavior present in different species
of animals. The general idea of PSO consists of adopting a
population of particles (the swarm) that move over the entire
search space obeying simple rules that alter both their position
and their speed. PSO makes use of the so-called learning
factors, which represent the tendency of a particle to follow the
success of the best particle in the swarm (gbest) or to follow
its own success during the search process (lbest), represented
by c1 and c2 respectively. Generally, the values of these factors
are established at the beginning and the sum of both must not
be greater than four [14].

During the execution of the PSO algorithm, each particle
affects its flight path by taking into account its own flight
experience, and the flight experience of its neighbors. Let xi(t)
denote the position of the ith particle at the point in time t and
let vi(t) denote its velocity. The position of the ith particle at
the time instant t+ 1, is defined by:

vi(t+ 1) := vi(t) + c1 ∗ rand1 × (gbest− xi(t))
+ c2 ∗ rand2 × (lbesti(t)− xi(t))

xi(t+ 1) := xi(t) + vi(t+ 1)

(1)

where rand1 and rand2 are uniformly distributed random
numbers in the interval [0, 1].

B. Compact metaheuristics

In order to derive an equation for the optimal population
size, Harik et al. [7] proposed a model in one dimension
that relates a genetic algorithm with a random walk. Since
there are no interactions between the building blocks for one

dimension, the authors considered the possibility of solving
each building block independently, giving rise to the compact
genetic algorithm [15] (CGA). The CGA represents the pop-
ulation through a probability vector p of size n, starting with
p(i) := 0.5, ∀i, 1 ≤ i ≤ n; Each dimension determines the
probability that the ith allele has one as its value. At each iter-
ation, two individuals are generated and compete to determine
a winner. Subsequently, the values of the probabilistic vector
will be slightly modified so that they assimilate the values of
the winner.

The CGA excels at solving continuos unimodal problems.
However, it is not capable of producing acceptable solutions
when faced with difficult problems (for example, deceptive
or multimodal problems) since it does not have a memory to
retain the required knowledge about the non-linearity of prob-
lems [16]. In order to solve difficult optimization problems
without compromising the memory or the computational cost
required, Ahn and Ramakrishna [17] proposed the compact
genetic algorithm with persistent elitism (pe-cGa). Elitism may
increase selection pressure by preventing the loss of genes
with low prominence due to poor selection pressure [17]. The
way in which elitism is incorporated into the compact genetic
algorithm is by keeping the winner as the elite solution and
replacing the loser with a new individual at each iteration.

The compact genetic algorithm as well as the other compact
metaheuristics that have been proposed so far are mainly aimed
to be used in hardware implementations due to their low
memory and code requirements.

III. OUR PROPOSED MULTI-OBJECTIVE COMPACT
PARTICLE SWARM OPTIMIZER

In this section we introduce our proposed Multi-Objective
Compact Particle Swarm Optimizer. We start by describing
our single-objective approach and subsequently its extension to
solve multi-objective optimization problems. To solve MOPs
we adopt a decomposition approach similar to the one pro-
posed by Osorio et al. [11], which transforms a multi-objective
optimization problem into a set of p weighted metric sub-
problems and solves them simultaneously.

Let λ1, ..., λp be a set of even spread weight vectors and
z∗ be the reference point. The MOP can be decomposed into
p scalar optimization sub-problems by using the Tchebycheff
approach:

gte(x|λ∗, z∗) = max
i=1,...,m

λi|fi(x)− z∗i | (2)

The non-dominated solutions obtained during the search
process are stored in an external archive, where each position
of the archive is associated with one of the sub-problems. At
the end of each iteration, the archive will be composed with
the best solution found so far, for each sub-problem.

A. Compact Particle Swam Optimizer

Now that we have transformed a multi-objective optimiza-
tion problem into p scalar problems, it is necessary to derive
the compact metaheuristic that will be used to solve each



one of them. In order to develop our proposal, we take as
inspiration both the persitent elitist compact genetic algorithm
[17] and the compact particle swarm optimizer [10].

In this case, instead of generating and storing the swarm
of particles, we adopt a statistical representation consisting of
two vectors µ and σ, both of length n, where the values µi

and σi describe together the distribution of the particles over
the search space in the ith dimension, by means of a truncated
normal probability distribution function. The observed advan-
tage of using a truncated distribution is that there is greater
control when generating solutions, since these will always be
valid regardless of the standard deviation used. Burkardt [18]
describes the formulas required to generate a truncated random
number. Figure 1 shows an example of the distribution of the
particles over a two-dimensional search space.
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Fig. 1. This figure illustrates a hypothetical cluster that is represented by
the probability vector µ = [1, 2], σ = [0.5, 1], where φ(µi, σi) is a normal
probability distribution function with mean µi and standard deviation σi

Clearly, the formulas used to update the position and ve-
locity of a particle only make sense when there are at least
two particles (i.e., when there is a swarm). Having a single
particle makes the definitions of lbest and gbest share the
same meaning. Thus, it is enough to change the definition of
either of these two concepts to solve this problem.

In the present proposal, gbest will take the role of an elitist
particle, that is, it will retain the best position found during
the entire search process and lbest will be used to move the
particle towards new directions. At each iteration, a new lbest
is obtained by means of the probability vector, so that in each
iteration, the particle will try to move both in the direction
of the best solution found and in the direction indicated by
the cluster. Note the similarity between our compact PSO and
the compact genetic algorithm with persistent elitism. In both,
through certain operators, a new solution is obtained that will
try to replace the elitist solution.

At the end of each iteration, we move the probability
vector towards the direction of the gbest, using a step size
proportional to the effect that the movement of a particle would
have on a swarm of size s. We define the standard deviation

as the distance between the mean of the probability vector
and gbest. This mechanism gives the particle the opportunity
to correct its position in case of making a wrong decision.
When the mean of the probability vector is relatively close
to the gbest, the new individuals generated by means of the
probability vector will also be close to the gbest and when
the distance between the average and the gbest is high, the
truncated normal distribution will tend to behave as if it was
a uniform distribution.

Algorithm 1 Compact PSO
Require: F : Rn → R,
n: number of decision variables of the problem,
T : number of iterations,
mp: perturbation probability,
s: hypothetical swarm size,
loi: lower bound for the decision variable i ∈ n,
upi: upper bound for the decision variable i ∈ n,
rand: is a uniformly distributed random number generator
randn: is a normally distributed random number generator

Ensure: gbest: the best result found during the search pro-
cess.
c1 := 2, c2 := 2
for i := 1 to n do
xi := rand(loi, upi)
µi := rand(loi, upi)
σi := 10 · (upi − loi)
gbesti := rand(loi, upi)

end for
if f(x) < f(gbest) then

swap(x, gbest)
end if
while t < T do

for i := 1 to n do
lbesti := randn(µi, σi, loi, upi)
r1 := rand(0, 1), r2 := rand(0, 1)
vi := c1 ∗ r1 ∗ (gbesti − xi) + c2 ∗ r2 ∗ (lbesti − xi)
{Correct vi to ensure is between loi, upi}
xi := xi + vi
{Correct xi to ensure is between loi, upi}

end for
if f(x) < f(gbest) then
gbest := x

end if
for i := 1 to n do
µi := µi +

1
s (gbesti − µi)

σi := |gbesti − µi|
if rand(0, 1) ≤ mp then
σi := 10 · (upi − loi)

end if
end for
t := t+ 1

end while

1) The Main Structure of Our Proposed Algorithm: At the
beginning (Algorithm 1), the single particle of the swarm and



gbest are randomly generated. The probability vector is also
initialized so that it represents a uniform distribution. At each
iteration, a new individual lbest will be obtained by means of
the probability vector. This new individual, along with gbest,
are used to calculate the new velocity of the particle and,
subsequently, affect its position. The new solution is compared
with respect to gbest and will replace it in case its evaluation
represents an improvement. Next, we move the probability
vector towards the gbest position in a step proportional to the
size of the swarm. Finally, we apply a turbulence mechanism,
which works in a similar way to the uniform mutation in a
genetic algorithm. If a random uniform number between zero
and one is less than or equal to the perturbation probability,
the standard deviation of the ith particle is restored. In each
iteration, only one evaluation of the objective function is
performed. Therefore, the total number of evaluations of the
objective function of our proposal is T + 2, since two initial
evaluations are required to determine the gbest at the beginning
of the algorithm.

B. Multi-Objective Compact Particle Swam Optimizer

Since the compact PSO uses a statistical representation of
the swarm, it is not possible to directly assign a sub-problem to
each particle and it is not possible to store the non-dominated
solutions obtained during the search process.

1) Archive of non-dominated solutions: In order to store the
non-dominated solutions, we use an external archive similar
to the one proposed by Osorio et al. [11] that assigns to each
position of the archive a weighting vector which represents a
Tchebycheff weighted sub-problem.

At the end of the iterative process, the solutions stored in the
external archive will end up conforming our Aproximation of
the Pareto Optimal Set. Algorithm 2 shows how the solutions
found during the search process are stored in the archive. The
weighting vectors are generated using the algorithm described
in [3].

When the external archive is empty, the candidate solution
becomes the best solution for all the Tchebycheff weighted
sub-problems. Otherwise, the candidate solution will be stored
at position i in the external archive if it solves the Tchebycheff
weighted sub-problem i better than the stored solution, and is
not dominated by it. If the candidate solution was stored in the
archive, the algorithm will return the index of the sub-problem
stored in the archive with the minimum value (Algorithm 3) to
be used as the next swarm leader. In other words, it will return
the position of the solution that is closest to the ideal objective
vector. If not, then a random index is returned, implying that
any solution stored could be the next leader of the swarm.

C. Main Framework

Like its single-objective counterpart, the compactMOPSO
(see Algorithm 4) starts by generating two initial solutions
through a uniform random distribution. The solutions will
compete to determine the initial leader of the swarm by means
of Pareto dominace. Because the external archive is initially
empty, the swarm leader will be stored in all the positions,

since it represents the best solution found so far for each sub-
problem.

At each iteration, a new solution is obtained by means of
the probability vector (lbest) and together with gbest they will
determine the new velocity of the particle. Subsequently, the
particle will be moved using the new calculated speed. This
particle will be a potential solution to be stored in the external
archive if it dominates gbest or if both are incomparable to
each other.

For the multi-objective approach, we set the size of the
hypothetical swarm to one. This is due to the fact that we
observed a significant reduction in the number of function
evaluations and a remarkable improvement in the speed of con-
vergence as the size of the hypothetical swarm was reduced.
Equation (3) shows the updated formula for calculating the
mean of the probability vector. While we were carrying out the
performance tests of our proposal with the test problems, we
observed that the values from 1.21 to 1.29 for both c1 and c2
presented the best convergence rates, especially in multifrontal
problems (ZDT4). For our tests we opted for 1.29, but any
value in that interval presents similar results. And finally, we
set the standard deviation of the probability vector as the
distance between the position of the particle and the leader
of the swarm.

µi := µi +
1

s
(gbesti − µi)

:= µi +
1

1
(gbesti − µi)

:= gbesti

(3)

IV. EXPERIMENTAL RESULTS

In order to assess the performance of our proposal, we
compared its results with respect to those obtained by two
state-of-the-art MOPSOs: SMPSO [6] and dMOPSO [2], and
with respect to the only compact multi-objective evolutionary
algorithm that we are aware of: mocDE [11].

A. Test problems

We adopted several benchmarks. The first is the so-called
Ziztler-Deb-Thiele (ZDT) [19] test suite. The remaining ones
are some of the standard test problems described in [20]. We
adopted n = 30 for solving the ZDT problems and n = 2
for the rest of the problems, were n indicates the number of
decision variables. Specifically, the following test problems
were used:

• ZDT1, ZDT2, ZDT3, ZDT4, ZDT6
• Bihn
• Deb1, Deb2, Deb3
• Fonseca1, Fonseca2
• Laumanns
• Lis
• Murata



Algorithm 2 External Archive
Require: F : Rn → Rm;
x ∈ Rn: candidate solution to be stored,
z: ideal objective vector,
p: number of sub-problems,
m: number of objectives,
n: number of decision variables,
λ ∈ Rp×m: weighting vectors set,
A ∈ Rp×m: external archive,

Ensure: positive integer that indicates the position of the next
leader to be used in A
for i := 1 to m do

if fi(x) < zi then
{Update the ideal objective vector}
zi := fi(x)

end if
end for
{Add the candidate solution to the archive}
if A = ∅ then

for i := 1 to p do
Ai := x

end for
return 1

else
for i := 1 to p do
f1 := max1≤j≤m λi,j |fj(x)− zj |
f2 := max1≤j≤m λi,j |fj(Ai)− zj |
if f1 < f2 ∧ f(Ai) � f(x) then
Ai := x

end if
end for

end if
if the candidate solution was added at least in one position
of A then

return index of the next leader, Algorithm 3
else

return a random index from A
end if

Parameters MOCPSO SMPSO dMOPSO mocDE
Npop 1 100 100 1
Ngen 20, 000 200 200 20, 000
Size A 100 100 100 100
W - 0.1 U(0.1, 0.5) -
c1 1.29 U(1.5, 2.5) U(1.2, 2.0) -
c2 1.29 U(1.5, 2.5) U(1.2, 2.0) -
TA - - 2 -
F - - - 1
Pc - - - 0.1
mp 0.01 1/n - -

TABLE I. PARAMETERS USED IN THE EXPERIMENTS FOR EACH
ALGORITHM

Algorithm 3 Get the index of the next swarm leader
Require: F : Rn → Rm;
z: ideal objective vector,
m: number of objectives
p: number of sub-problems,
λ ∈ Rp×m: weighting vectors set,
A ∈ Rp×m: external archive,

Ensure: index of the next swarm leader
leader := 0
for i := 1 to p do
f1 := max1≤j≤m λi,j |fj(x)− zj |
f2 := max1≤j≤m λi,j |fj(Aleader)− zj |
if f1 < f2 then
leader := i

end if
end for
return leader

Test problem Reference point
Binh 50.1 50.1
Deb1 1.1 1.1
Deb2 0.9 1.1
Deb3 1.1 1.1

Fonseca1 1.1 1.1
Fonseca2 1.1 1.1
Laumanns 4.1 4.1

Lis 0.92 0.84
Murata 4.1 4.1
ZDT1 1.1 1.1
ZDT2 1.1 1.1
ZDT3 0.9 1.1
ZDT4 1.1 1.1
ZDT6 1.1 1.1

TABLE II. REFERENCE POINTS USED TO CALCULATE THE HYPERVOLUME

B. Experimental settings

The results reported here were obtained by performing
30 independent executions of each of the algorithms, for
each test problem. The number of function evaluations was
limited to 20,000. The parameters used in each algorithm are
summarized in Table I, where Npop represents the population
size. Ngen represents the number of generations. Size A
is the size of the external archive used, W represents the
inertia weigth used in SMPSO and dMOPSO, c1, c2 are the
learning factors from PSO, Ta represents the age threshold
from dMOPSO, F is the differential variation and pc is the
crossover probability from mocDE. Finally, mp is the mutation
probability used by MOCPSO and SMPSO.

In order to compare our results, three performance indicators
were adopted: the hypervolume indicator (HV) [21], the spac-
ing indicator (S) [22], and the inverted generational distance
plus (IGD+) [23]. The results are presented in Tables III
and IV. The first table presents the results when comparing
our proposal with respect to state-of-the-art MOPSOs, and
the second table presents the results when compared with
respect to the Multi-Objective Compact Differential Evolution
algorithm. These tables show the mean and standard deviation
(in parentheses) of the metaheuristics in each of the test



Algorithm 4 Compact MOPSO
Require: F : Rn → Rm, λ ∈ Rp×m, A ∈ Rp×m,n, m, z, T ,
mp, loi, upi

Ensure: A: Pareto aproximated optimal set
zi :=∞, ∀i ∈ [1,m] {Initialize the ideal objective vector}
c1 := 1.29, c2 := 1.29
for i := 1 to n do
xi := rand(loi, upi),
µi := rand(loi, upi),
σi := 10 · (upi − loi),
gbesti := rand(loi, upi)

end for
if f(x) ≺ f(gbest) then

swap(x, gbest)
end if
store gbest into A
while t < T do

for i := 1 to n do
lbesti := randn(µi, σi, loi, upi)
r1 := rand(0, 1), r2 := rand(0, 1)
vi := c1 ∗ r1 ∗ (gbesti − xi) + c2 ∗ r2 ∗ (lbesti − xi)
{Correct vi to ensure is between loi, upi}
xi := xi + vi
{Correct xi to ensure is between loi, upi}

end for
if f(x) ≺ f(gbest) then

Store x into A
if rand() < 0.5 then
gbest := new leader from A {Algorithm 3}

end if
else if f(gbest) ⊀ f(x) and f(x) ⊀ f(gbest) then

Store x into A
gbest := new leader from A {Algorithm 3}

else if f(gbest) ≺ f(x) then
gbest := new leader from A {Algorithm 3}

end if
for i := 1 to n do
µi := gbesti, σi := |gbesti − xi|
if rand(0, 1) ≤ mp then
σi := 10 · (upi − loi)

end if
end for
t := t+ 1

end while

problems adopted for each performance indicator. Each row of
the table represents a test problem and each column represents
a metaheuristic. A grayscale was used to indicate the best
results in such a way that the best result is highlighted with
the darkest tone. The absence of color indicates that the
comparison of results was not statistically significant using the
Wilconxon rank sum test and therefore it was not possible to
establish a conclusion in that case. The reference points used
to calculate the hypervolume indicator are shown in Table II.

C. Discussion of Results
1) Hypervolume indicator results: The hypervolume indi-

cator provides the volume of the portion of the objective space
that is dominated by an approximation of the Pareto front, so
it can be assumed that the larger the value obtained, the better
the performance of a metaheuristic. With respect to HV, the
best performer was SMPSO, which obtained the best result in
eight of the test problems adopted, followed by our proposal
that obtained the best results in five problems, four of which
come from the ZDT set (ZDT1-ZDT4), so it can be said
that our proposal had a very good performance in this set of
problems. With respect to mocDE, our proposal obtained the
best results on nine occasions as shown in Table IVa, while
mocDE obtained the best results in four occasions. The fact
that our proposal obtained the best result in the ZDT4 problem
indicates that it is suitable for multi-frontal problems. This is
something worth noting, considering that our proposal is a
MOPSO that has no actual population and highlighting the
fact that mocDE did not achieve convergence in this problem
after performing 20,000 evaluations.

2) Spacing indicator results: Table IIIb shows the results
obtained with respect to the spacing indicator. The spacing
indicator allows knowing the degree of uniformity in the
distribution of the solutions, so that the lower the value, the
better the solutions are distributed. This indicator makes clear
the advantage offered by the use of the crowding distance for
the selection of leaders adopted by SMPSO, which obtains
the first place in thirteen of the fourteen test problems, being
surpassed only in the problem ZDT6 by our proposal. In the
second position, it is our proposal, which, in spite of using
the same decomposition approach, outperformed the results
obtained by dMOPSO and mocDE in most of the problems.
It is worth noting that both mocDE and dMOPSO as well
as MOCPSO had poor results for the Binh test problem with
respect to the spacing indicator.

3) IGD+ indicator results: The IGD+ indicator lets us
know how close an approximate Pareto set is to a reference
set. By using this indicator, a closer competition was observed.
Although SMPSO obtained the best results in eight problems,
it obtained the worst results for almost all the ZDT problems
(taking into account only the results of the MOPSOs). It is
with respect to this indicator that our proposal obtained its
best results, since it obtained on five occasions the best results
and on six the second best results.

4) Summary: From this study, we conclude that our pro-
posal presents a competitive performance for solving opti-
mization problems with two objectives, obtaining the second
place in the category of MOPSOs being outperformed only
by SMPSO and generating better results than mocDE for the
test problems adopted. It was observed that our proposal has
a good performance in Pareto fronts with both concave and
convex geometry, since it satisfactorily solved the ZDT and
Deb test suites. However, it was observed that in problems
presenting a disconnected front (Laumanns, ZDT3 and Deb2),
our proposal had a poor distribution of solutions, since these
are concentrated on a specific region. This could also be
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Fig. 2. Aproximated Pareto Front for the Binh test problem
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Fig. 3. Aproximated Pareto Front for ZDT3
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Fig. 4. Aproximated Pareto Front for ZDT4
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Fig. 5. Approximated Pareto Front for ZDT6 problem

observed in dMOPSO and mocDE, so it can be inferred that
the decomposition approach does not have a good performance
in this sort of problems. Our proposal obtained very good
results in the ZDT4 and ZDT6 problems, which suggests that
it may be suitable for multifrontal problems.

Although the decomposition approach is able to solve multi-
objective optimization problems with more than two objectives
[3], our proposal was not able to satisfactorily solve the DTLZ
problem set [24] using more than three decision variables.
With the exception of problem DTLZ6 (where our proposal
was able to converge using eleven decision variables in twenty
thousand evaluations), we observed that both diversity and
convergence of the solutions decreased as the number of
decision variables increased, being impossible for our proposal
to fully cover the surfaces that represent the Pareto front for
such problems. This is the reason why it was decided to
use problems having only two objectives in our experimental
study.

V. CONCLUSIONS AND FUTURE WORK

In this work, a compact PSO was proposed for multi-
objective optimization problems, which we called MOCPSO.
A decomposition approach was adopted whereby a multi-
objective problem is transformed into a set of weighted metric
sub-problems. To solve these sub-problems, a new compact
PSO was proposed whose design is inspired by the compact
genetic algorithm with persistent elitism.

By using a statistical representation of the population, we
eliminate the need to store the swarm of particles, so unlike
other MOEAs, our proposal only requires an external archive
to store the non-dominated solutions found during the search
process. The experimental results showed that MOCPSO is
able to solve complex problems with moderate dimensionality
considering that it satisfactorily solved the set of ZDT test
problems using thirty decision variables. Our proposal ob-
tained the best results in the set of ZDT problems. Although
SMPSO obtained the best results from the experimental study,
it was observed that compactMOPSO is very competitive with



respect to it, and it was observed that in several occasions
it was superior to mocDE and dMOPSO for the set of test
problems used.

There are several aspects of our proposal that can be
improved:

• Study of mechanisms to improve the exploration
of the search space: It was observed that the use of
persistent elitism compromised the search process, since
it always tries to generate solutions close to the leader
and, therefore, prevents the exploration of other regions
of the search space.

• Change the selection of the leader by more sophisti-
cated mechanisms: As observed in the results, the de-
composition approach did not obtain a good distribution
in disconnected fronts. This point is of great relevance,
given that the leader is the main responsible for guiding
the only particle of the swarm towards the best solutions.

A final point to note, and that was not mentioned throughout
the article, is that although we used 20,000 function evalua-
tions for each problem adopted in the expertimetal results, we
noted that our proposal had a very high convergence speed,
obtaining very good results from 2,000 function evaluations
on most of the test problems adopted (with the exception of
ZDT4 that requires at least 15,000 evaluations). A study on the
effects of the parameters of our proposal and a comparison of
the results obtained with respect to different multi-objective
metaheuristics by reducing the number of required function
evaluations will be part of our future work.
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