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Abstract—In this work, we present a new multi-objective procedure. The preliminary experiments carried out by the a
particle swarm optimization algorithm (PSO) characterized by  thors, showed that SMPSO could solve the problems where the
the use of a strategy to limit the velocity of the particles. qiher MOPSOs had difficulties. SMPSO was also compared

The proposed approach, called Speed-constrained Multi-gbctive . e
PSO (SMPSO) allows to produce new effective particle posans with respect to NSGA-II [3] and OMOPSO [14], achieving

in those cases in which the velocity becomes too high. Other COmpetitive results.
features of SMPSO include the use of polynomial mutation as  In this paper our motivation is twofold. First, we want to

a turbulence factor and an external archive to store the non- compare SMPSO with five state-of-the-art multi-objectipe o
dominated solutions found during the search. Our proposed timization algorithms in a typical study consisting in assiag

approach is compared with respect to five multi-objective m&a- . . .
heuristics representative of the state-of-the-art in the eea. For € Performance of the techniques by applying three quality

the comparison, two different criteria are adopted: the qudity ~ indicators (additive espilon, spread, and hypervolumégraf
of the resulting approximation sets and the convergence spd 25,000 function evaluations. The selected algorithms tave:

to the Pareto front. The experiments carried out indicate that genetic algorithms, NSGA-II [3] and SPEA2 [17]; a scatter

SMPSO obtains remarkable results in terms of both, accuracy ¢agrch approach, AbYSS [13]; a cellular genetic algorithm

and speed. MOCell [12], and OMOPSO [14]. Our second goal is to
. INTRODUCTION study the convergence speed of SMPSO to determine how

Particle Swarm Opmitization (PSO) is a bio-inspired metdast it is compared with the five aforementioned algorithms.

heuristic mimicking the social behavior of bird flocking or'Vé follow the approach taken in [11], in which a stopping

fish schooling [8] which has become very popular to sohgPndition based on achieving the 98% of the hypervolume
multi-objective optimization problems. Since the firsteatipt of the true Pareto front is adopted. The remainder of this

proposed by Moore and Chapman in 1999 to extend it paper is structured as follows. Section Il describes the S®P
multi-objective optimization [10], more than thirty diffent algorithm. The next section includes a brief descriptioer@ath

proposals of Multi-Objective Optimization PSOs (MOPSO Igorithm considered _in this stuc_zly. In Section IV, we gnalyz
have been reported in the specialized literature [15]. the obtained resuls. Finally, Section V presents our caichs

In [5], we analyzed the performance of six MOPSOs repr@nd some possible paths for future work.
sentative of the state-of-the-art and concluded that athem Il. DESCRIPTION OF OURSMPSO
are unable to solve some multi-frontal problems satisfagto ] ) ) -
(e.g., ZDT4). We studied this issue in more depth, and found!" this section, we describe our approach detailing the
that the velocity of the particles in these algorithms ca¥glOoCity constriction mechanism, the pseudocode of SMPSO,

become too high, resulting in erratic movements towards tA8d the differences with respect to OMOPSO (the algorithm
upper and lower limits of the positions of the particles.gisi  Which SMPSO is based on).

an example of the so-called “swarm explosion” [1], and it caR Velocity Constriction Approach

be prevented by using a velocity constriction mechanism [1] ) ) ) )
Thus, taking OMOPSO (the most salient algorithm from the !N @ PSO algorithm, each potential solution to the problem is
MOPSOs studied in [5]) as our starting point, we devebpé‘dilledparncleand the population of solutions is calledarm

a new algorithm called SMPSO (Speed-constrained Mulf} Pasic PS_O updates the particig at the generation with
objective PSO), which incorporates a velocity constrictio® formula:
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andr, are two uniformly distributed random numbers in th€Lines 9 and 10). The algorithm returns the leaders archéve a

range [0,1], and C; and C, are specific parameters whichthe approximation set found (Line 13).

control the effect of the personal and global best particles
In order to control the particle’s velocity, instead of ugin Algorithm 1 Pseudocode of our proposed SMPSO

upper and lower parameter values which limit the step size af initializeSwarm()

the velocity, we have adopted @nstriction coefficien{Eq. 2 MitaizeLeadersarchive()

. o . 3: generation = 0
3) obtained from the constriction factgroriginally developed 4: while generation< maxGenerationslo

R 5:  computeSpeed() // Egs. 2 - 6
by Clerc and Kennedy (Eq. 2) in [1]. 6 updatePosition() // Eq. 1
2 3) 7:  mutation() // Turbulence
X = 8:  evaluation()
2—p—p?—dp 9:  updateLeadersArchive()
10: updateParticlesMemory()
where 11: generation ++
_JCi+Cy i CI+Cr >4 @) 12: end while ‘
=91 if CL4+Co <4 13: returnLeadersArchive()

In addition, we introduce a mechanism in such a way Gjyen that the leaders archive can become full, we use
that the accumulated velocity of each variable(in each ihe crowding distance of NSGA-II to decide which particles
particle) is further bounded by means of the followirgocity  myst remain in it. As turbulence operator, we have chosen the
constrictionequation: polynomial mutation operator [2]. To choose thigestparticle
to apply Eqg. 2, we take two solutions from the leaders archive
randomly and the one having the largest crowding distance to
its nearest neighbors in the archive is selected.

delta;  if v;;(t) > delta;
Vi, (t) = —deltaj if Vi,j (t) < —deltaj (5)
v;,;(t)  otherwise
C. Differences with respect to OMOPSO
Given that OMOPSO is the departure point for our SMPSO,
delta; — (upper_limit; — lower_limit;) (6) tis worth mentioning the actual differences between the tw
2 algorithms. In the study presented in [5], both algorithms
Summarizing the procedure, the velocity of the particles adiffered only in the velocity constriction mechanism andtie
calculated according to Eq. 2; the resulting velocity isntheranges of the values that; and C; may take. In OMOPSO,
multiplied by the constriction factor (Eq. 3) and the reigt they are random numbers in the randes, 2.0]. However, in
value is constrained by using Eg. 5. order to apply Eq. 4, in SMPSO the range was changed to
To illustrate the effect of the adopted velocity constdati [1.5,2.5] because in the former case the value of Eq. 4 is
scheme, we include in Fig. 1 (left) the trace of the velocity always 1.
the second variable in one uniformly random chosen particleAfter applying Eq. 1, OMOPSO checks whether the re-
in OMOPSO when facing the solution of ZDT4 in 250sulting positions are out of the bounds of the variables of
iterations [5]. We can observe that the velocity valuesaéite the problem. In that case, the positions are assigned the
from very high to very low values in some points of theorresponding upper or lower bound value; additionallg th
execution. Let us note that the limits of the second variable direction of the velocity is reversed by multiplying it by
ZDT4 are[-5, +5], and the velocity takes values higher thar-1.0. We have conducted some preliminary experiments with
+20. As a consequence, the position of the particle varial#PSO in this sense but, instead of reversing, reducing the
takes limit values, which does not contribute to the searcbkelocity by multiplying it by values between 0.1 and 0.001.
Fig. 1 (right) depicts the same trace in SMPSO, where w#e have achieved slightly better results using a value 1.0

where

can observe that the velocity is constrained withifd, +5], The last difference is related to the use of mutation oper-
and thus, the particle is effectively moving through therska ators. OMOPSO applies a combination of uniform and non-
space. uniform mutation to the particle swarm (uniform mutation to

. the first 30% of the swarm, non-uniform to the next 30%,

B. Pseudocode of the Proposed Algorithm and no mutation to the rest of the particles). In SMPSO, a
Algorithm 1 shows the pseudocode of SMPSO. It starts yolynomial mutation [2] is applied to the 15% of the particle

initializing the swarm (Line 1), which includes the positjo
velocity, andp (individual best) of the particles. The leaders
archive is initialized with the non-dominated solutionstire In this section, we briefly describe the five algorithms that
swarm (Line 2). Then, the main loop of the algorithm isve have considered to evaluate the behavior of our SMPSO.
executed for a maximum number of iterations. The velocitiéde have used the implementation of these algorithms pravide
and positions of the particles are calculated first (Linesw& aby the jMetal framework [6].
6) and a mutation operator is applied with a given probabilit The NSGA-II algorithm was proposed by Dedh al. [3].
(Line 7). The resulting particles are evaluated (Line 8) aritlis a genetic algorithm based on obtaining a new population
both the particle’s memory and the leaders archive are ggpdatrom the original one by applying the typical genetic operat

I1l. DESCRIPTION OF THEEVALUATED ALGORITHMS
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Fig. 1. Velocity value of the second variable of OMOPSO Jleitd SMPSO (right) when solving ZDT4.

(selection, crossover, and mutation); then, the indivisiua
the two populations are sorted according to their rank, &ed t

TABLE |

PARAMETERIZATION (L = INDIVIDUAL LENGTH)

best solutions are chosen to create a new population. In case

Parameterization used in NSGA-II [3]

of having to select some individuals with the same rank, aFopulation Size
Selection of Parents

density estimation based on measuring the crowding distanc recombination
to the surrounding individuals belonging to the same rank is Mutation

100 individuals

binary tournament + binary tournament
simulated binaryp. = 0.9
polynomial, p,, = 1.0/L

Parameterization used in SPEA2 [17]

used to get the most promising solutions. —
. . . Population Size
SPEA2 was proposed by Zitleet al. in [17]. In this Selection of Parents
algorithm, each individual has a fitness value that is the slim  Recombination
its strength raw fitness plus a density estimation. The #hyor ~_Mutation

100 individuals

binary tournament + binary tournament
simulated binaryp. = 0.9
polynomial, p,, = 1.0/L

Parameterization used in OMOPSO [14]

applies the selection, crossover, and mutation operatofifl t
an archive of individuals; then, the non-dominated indinats

Swarm size
Mutation
Leaders Size

100 particles
uniform + non-uniform
100

of both the original population and the archive are copidd in
a new population. If the number of non-dominated indivigual

Parameterization used in AbYSS [13]

Population Size
Reference Set Size
Recombination
Mutation (local search)
Archive Size

is greater than the population size, a truncation operaised
on calculating the distances to theth nearest neighbor is
used. This way, the individuals having the minimum distance

20 individuals

10 + 10

simulated binaryp. = 1.0
polynomial, p,, = 1.0/L
100 individuals

Parameterization used in MOCell [12]

to any other individual are chosen.
Population Size

100 individuals {0 x 10)

OMOPSO (Optimized MOPSO, Coellet al. [14]) is a ;
multi-objective particle swarm optimization algorithm age gg;g?t?;:hgfgarems
main features include the use of an external archive basedkecombination
on the crowding distance from NSGA-II to filter out leader Mutation
solutions and the use of mutation operators to accelerate th2rve Size
convergence of the swarm. OMOPSO has also an archive tGSwarm size
store the best solutions found during the search. Thisaechi Mutation
makes use of the concept elominance to limit the number _Archive Size
of solutions stored. We consider here a variant of OMOPSO
consisting in considering the population containing thedkr
solutions instead of this archive.

MOCell (Nebroet al.[12]) is a cellular genetic algorithm
(cGA). Like OMOPSO, it includes an external archive to store
the non-dominated solutions found so far. This archive raake The benchmarking problems chosen to evaluate the six
use of the crowding distance of NSGA-II to keep diversityalgorithms have been the ZDT (Zitzler-Deb-Thiele) [16] and
We have used here an asynchronous version of MOCell, calB®LzZ (Deb-Thiele-Laumanns-Zitzler) [4] test suites. The
aMOcCell4 in [12]. DTLZ problems have been used with their bi-objective for-

AbYSS is an adaptation of thecatter searchmetaheuristic mulation. For assessing the performance of the algorithms,
to the multi-objective domain proposed by Neletal.in [13]. we have considered three quality indicators: additive wynar
This algorithm uses an external archive similar to the one empsilon indicator {1, ) [9], spread Q) [3], and hypervolume
ployed by OMOPSO and MOCell. The algorithm incorporatgdiV) [18]. The two first indicators measure, respectively,
operators of the evolutionary algorithms domain, inclgdinthe convergence and the diversity of the resulting Pareto
polynomial mutation and simulated binary crossover in theonts, while the last one measures both convergence and

1-hop neighbours (8 surrounding solutions)
binary tournament + binary tournament
simulated binaryp. = 0.9
polynomial, p,, = 1.0/L
100 individuals
Parameterization used in SMPSO

100 particles

polynomial, p,, = 1.0/L

100 individuals

improvement and solution combination methods, respdgtive

IV. EXPERIMENTATION



diversity. To measure the convergence speed, the algaithlmwest (best) values in nine out of twelve problems, and & ha
are executed until reaching a maximum of one million funttioobtained the second begt+ values in the other three prob-
evaluations, and they stop when they find an approximatitems. The values yielded by MOCell make this algorithm the
set whose hypervolume is equal or greater than the 98% s&cond best performer concerning this indicator. An addéi

the hypervolume of the true Pareto front of the problem beirigteresting fact that can be drawn from Table Il emerges from
solved [11]. It is considered that an algorithm succeedeenwhthe particular comparison between SMPSO and OMOPSO, our

it stops before performing one million evaluations. new proposal and its predecessor. This comparison, poirts o
We describe next the parameter settings of the algorithrtiet the velocity constriction mechanism has endowed SMPSO
and the experimentation methodology adopted. with improved search capabilities that has allowed for advet
o convergence towards the true Pareto front (it has always
A. Parameterization obtained better indicator values than OMOPSO). This occurs

We have chosen a set of parameter settings to guarargpecially in the ZDT4, DTLZ1, and DTLZ3 problems, where
a fair comparison among the algorithms. All GAs (NSGAthe resulting fronts of SMPSO have reachEd- values that
I, SPEA2, and MOCell) use an internal population of sizare several orders of magnitude lower that those of OMOPSO.
equal to 100; the size of the archive is also 100 in SPEAZhe problems in which no statistical confidence can be adsure
OMOPSO, AbYSS, MOCell, and SMPSO. OMOPSO anith the I + indicator by the tests carried out are shown in Table
SMPSO have been configured with 100 particles. For AbYSHI. We can observe that most differences between each pair
the population and the reference set have a size of 20 soduticof algorithms have been significant according to this intica

In the GAs, we have used SBX and polynomial mutation [}s to the comparison between OMOPSO and SMPSO, the
as the operators for the crossover and mutation operatdests cannot assure differences in problems ZDT6 and DTLZ6.
respectively. The distribution indexes for both operatars The results of the\ indicator are presented in Table IV. The
n. = 20 andn,, = 20, respectively. The crossover probabilityvalues show that SMPSO has been the algorithm that better
is p. = 0.9 and the mutation probability i®,, = 1/L, distributed the solutions along the Pareto front, reachtiey
where L is the number of decision variables. AbYSS usedsest (lowest) indicator values in seven out of the twelveisil
polynomial mutation in the improvement method and SBX iproblems. MOCell has been again the second best algorithm
the solution combination method. OMOPSO applies a comlii- terms of the solution spread out (three lowest valuesg Th
nation of uniform and non-uniform mutation, while SMPSQomparison between SMPSO and OMOPSO is of particular
uses polynomial mutation, as commented in Section II-C. iAterest here as well, since the improvements are notieeabl
summary of the parameter settings is included in Table I. Indeed, the indicator values of SMPSO have always been

lower than those of OMOPSO being one order of magnitude

B. Methodology lower in problems ZDT1, ZDT4, and DTLZ1. It is therefore

To assess the search capabilities of the algorithms, we halear that the velocity constriction mechanism has alsmat
performed 100 independent runs of each experiment, and &®PSO to obtain better distributed approximation sets.
have obtained the mediaf¥, and interquartile rangelQR, Table V summarizes the results of the statistical tests for
as measures of location (or central tendency) and statistithe A indicator. As with thel!+ indicator, it includes the
dispersion, respectively. Since we are dealing with stetiba problems in which no statistical differences can be found. |
algorithms and we want to provide the results with statticthis case, results have also had statistical confidence Bt mo
confidence, we have also included a testing phase whichsllosases, except between AbYSS and MOCell: considering this
us to perform a multiple comparison of samples [7]. We havedicator, statistical differences between these two ritlgms
used thenul t conpar e function provided by Matla® for do not exist in seven out of the twelve problems evaluated.
that purpose. We always consider a confidence level of 95%The last indicator used to assess the quality of the regultin
(i.e., significance level of 5% op-value below0.05) in the Pareto fronts is the Hypervolume (see Table VI). The “
statistical tests. For the sake of a better understandiegyést symbols in the table mean that all the non-dominated saistio
result for each problem has a gray colored background and thfethe obtained fronts have been so far away from the true
second best one has a clearer grey background. Pareto front. These types of solutions have to be no longer co
sidered to compute the HV values because the results would be
otherwise unreliable. As a measure of both convergence and

In this section, we analyze first the quality of the obtainediversity, the reached HV values have confirmed the obtained
Pareto fronts after 25,000 function evaluations, to furth@alues by the two previous indicators: the algorithms with
discuss the convergence speed results. better values i} + and A are also the ones with better values

1) Quality of the Approximated FrontsTable Il includes in HV. Thus, SMPSO has been the best algorithm also with
the I + values of the resulting approximated fronts compute@spect to this indicator, and has obtained the best (higher
by all the algorithms. The grey colored background in thealues in eight out of the twelve problems evaluated. MOCell
SMPSO column clearly shows that this new proposal can has been the second best algorithm: it has obtained the best
considered as the algorithm that has produced the fronggsto value in two out of the twelve problems evaluated and the
to the true Pareto front. Indeed, SMPSO has reached #erond best value in four problems. As to the comparison

C. Evaluation



TABLE Il

MEDIAN AND INTERQUARTILE RANGE OF THEEPSILON INDICATOR(I€1+)

NSGA-II SPEA2 OMOPSO AbYSS MOCell SMPSO
Problem CEIQR iIQR CEIQR iIQR CEIQR iIQR
ZDT1 1.37e¢ — 023.0e—03 8.69¢ — 031.1¢—03 6.36e — 035.1¢—04 7.72¢ — 031.8¢—03 6.23e — 034.1¢—04 5.39e — 032.6c—04
ZDT2 1.28¢ — 022.3¢—03 8.73¢ — 031 .4¢—03 6.19¢ — 035 4¢—04 7.10e — 031 6e—03 5.57e — 033.0e—04 5.33e — 031.7¢—04
ZDT3 8.13e — 031.9¢—03 9.72e — 031.9¢—03 1.32e — 027.7¢—03 6.10e — 033.1¢—01 5.66e — 037.5¢—04 5.10e — 037.3¢—04
ZDT4 1.49e — 023.0e—03 3.42e — 027.9¢—02 5.79e + 004.3¢+00 1.14e — 024.2¢—03 8.17e — 032.3¢—03 6.02e — 034.3¢—04
ZDT6 1.47¢ — 022 .8¢—03 2.42e — 025.2¢—03 4.65¢ — 034.2¢—04 5.06e — 033.9¢—04 6.53e — 035.6¢—04 4.43e — 033.0e—04
DTLZ1 7.13e — 031.6e—03 5.89e — 032.8¢—03 1.92e + 011.1e401 5.85e — 035.5¢—03 4.02e — 031.5¢—03 2.97e — 032.0e—04
DTLZ2 1.11e — 022.7¢—03 7.34e — 031.1¢—03 6.72e¢ — 039.1¢—04 5.39e — 034.6c—04 5.09¢ — 032.8¢—04 5.17e — 032 6e—04
DTLZ3 1.04e + 001.2¢+4-00 2.28e 4 001.9¢+00 8.86e + 01g.5¢+01 1.66e 4 001.6e+400 7.91e — 011.0e+00 5.39e — 038.5¢—04
DTLZ4 1.13e — 029.9¢—01 7.66e — 039.9¢—01 3.18e — 021.0e—02 5.39e — 033.0e—04 5.74e — 039.9¢—01 5.39e — 033.6e—04
DTLZ5 1.05e — 022.5¢—03 7.47e — 031.2¢—03 6.62e — 038.9¢—04 5.36e — 035.2¢—04 5.08e — 033.2¢—04 5.24e — 033.0e—04
DTLZ6 4.39e — 023.4¢—02 3.03e — 015.3¢—02 5.36e — 034.8¢—04 9.50e — 024.7¢—02 4.16e — 023.8¢—02 5.08e — 032.5¢—04
DTLZ7 1.04e — 022 8¢—03 9.09e — 031 .4¢—03 7.13¢ — 036.8¢—04 5.51le — 039.6c—04 5.19¢ — 031 .0e—03 4.95¢ — 032.8¢—04
TABLE Il
NON-SUCCESSFULSTATISTICAL TEST FOR THEEPSILONINDICATOR (I€1+)
NSGA-II ZDT3, ZDT4 - ZDT3 - -
DTLZ1, DTLZ4, DTLZ7 DTLZ4 DTLZ3 DTLZ6 -
SPEA2 ZDT3 ZDT1 - -
DTLZ2 DTLZ1, DTLZ3 - -
OMOPSO - ZDT1 ZDT6
DTLZ7 - DTLZ6
AbYSS - -
DTLZ2, DTLZ7 | DTLZ2, DTLZ4, DTLZ5
MOCell -
DTLZ2, DTLZ5
SPEA2 OMOPSO AbYSS MOCell SMPSO
TABLE IV
MEDIAN AND INTERQUARTILE RANGE OF THE SPREAD INDICATOR
NSGA-II SPEA2 OMOPSO AbYSS MOCell SMPSO
Problem i]QR jIQR i]QR jIQR i]QR jIQR
ZDT1 3.70e — 014_25702 1.52e — 012_25702 1.00e — 011_45702 1.05e — 012_05702 7.64e — 021‘36702 7.34e — 021A7g—02
ZDT2 3.81le — 014.7¢—02 1.55e — 012.7¢—02 9.45e — 021.8¢—02 1.07e — 011.8¢—02 7.67e — 021.4¢—02 7.14e — 021.5¢—02
ZDT3 7.47e — 011.8¢—02 7.10e — 017.5¢—03 7.35e¢ — 015.2¢—02 7.09e — 01g9.7¢—03 7.04e — 0l6.2¢—03 7.05e — 016.3¢—03
ZDT4 4.02e — 015.8¢—02 2.72e — 011.6e—01 8.78e¢ — 015.2¢—02 1.27e — 013.5¢—02 1.10e — 012.8¢—02 9.14e — 021.7¢—02
ZDT6 3.56e — 013 6e—02 2.28e — 012 5¢—02 8.78¢ — 021.2¢+00 8.99e — 021 4¢—02 9.33e — 021 3¢—02 7.02e — 024.4¢—02
DTLZ1 4.03¢ — 01g.1¢—02 1.81e — 0lg.8¢—02 7.77e — 011 1e—01 1.40e — 011 7¢—01 1.05e — 013 6e—02 6.88e — 021 3¢—02
DTLZ2 3.84e — 013.85—02 1.48¢ — 011_65702 1.81e — 012_35702 1.09e — 01L9@702 1.08e — 011,7&—02 1.28e — 011_85702
DTLZ3 9.53e — 011 ge—01 1.07e + 001.6e—01 7.90e — 0171 1e—01 7.55e — 014.5¢—01 7.45e¢ — 015 5¢—01 1.35e — 013.1e—02
DTLZ4 3.95e — 0l6.4¢—01 1.48e — 018.6e—01 6.77e — 017.9e—02 1.08e — 011.8e—02 1.23e — 019.0e—01 1.14e — 011.9¢—02
DTLZ5 3.79e¢ — 014.0e—02 1.50e — 011.9¢—02 1.77e — 012.6e—02 1.10e — 012.0e—02 1.09¢ — 011.7e—02 1.27e — 012.0e—02
DTLZ6 8.64e — 013_05701 8.25e — 019_35702 1.18e — 011‘76702 2.3le — 015_35702 1.50e — 014_35702 1.10e — Olg(og_oz
DTLZ7 6.23e — 012_55702 5.44e — 011_35702 5.21e — 016.85—03 5.19e — 011A36_03 5.19e — 012_95702 5.19e — 015A15704
TABLE V
NON-SUCCESSFULSTATISTICAL TEST FOR THESPREAD INDICATOR.
NSGA - ZDT3 - - -
DTLZ4, DTLZ6 | DTLZ4 - - -
SPEAZ - ZDT73 - -
- DTLZ1 - -
OMOPSO ZDT1 ZD16 -
DTLZ3, DTLZ7 DTLZ3, DTLZ7 DTLZ6, DTLZ7
AbYSS ZDT3, ZDT4, ZDT6 ZDT3, ZDT6
DTLZ2, DTLZ3, DTLZ5, DTLZ7 DTLZ4
MOCell ZDT1, ZDT2, ZDT3, ZDT6
SPEA2 OMOPSO AbYSS MOCell SMPSO

between SMPSO and OMOPSO, the last one has been be®#®PSO and the others algorithms, we observe that the tests
than the former in all the evaluated problems except ftrave shown statistical confidence in most cases.

DTLZ6, in which OMOPSO has yielded the best value. The

results of the statistical tests for the HV are presented inSummarizing this section, we can state that the velocity

Table VII. Proceeding as in the two previous indicators, weonstriction mechanism allows SMPSO to be the best algo-

have included the problems in which the statistical testehafithm in the context of the problems, quality indicatorsdan

not been successful. Focusing on the differences betwdameterizations considered in our study. It is also eatie
that neither NSGA-II nor SPEA2 have produced approximated



TABLE VI
MEDIAN AND INTERQUARTILE RANGE OF THEHYPERVOLUME INDICATOR

NSGA-II SPEA2 OMOPSO AbYSS MOCell SMPSO
Problem CEIQR iIQR CEIQR iIQR CEIQR iIQR
ZDT1 6.59¢ — 014.4@—04 6.60e — 013.9@—04 6.6le — 011‘55704 6.6le — 0132@704 6.6le — 012‘55704 6.62e — 015(36_05
ZDT2 3.26e — 014‘35704 3.26e — 018.1@—04 3.28e — 012‘55704 3.28e — 012.8@—04 3.28e — 014‘33704 3.29e — 014(7g—05
ZDT3 5.15e — 012_36704 5.14e — 013_58704 5.10e — 013.86703 5.16e — 013456703 5.15e — 013_16704 5.16e — 011426704
ZDT4 6.56e — 014.5¢—03 6.51e — 011.2¢—02 . 6.55e — 016.0e—03 6.59e — 013.0¢—03 6.6le — 011.6e—04
ZDT6 3.88e — 012‘35703 3.79¢ — 013_(‘,@703 4.0le — 011,5@704 4.00e — 011.9@—04 3.97e — 011‘15703 4.0le — 017(96_05
DTLZ1 4.88¢ — 015.5¢—03 4.89e — 0l6.2¢—03 . 4.86e — 011.7¢—02 4.91e — 013.8¢—03 4.94e — 011.6e—04
DTLZ2 2.11e — 013‘15704 2.12e — 011.7@—04 2.10e — 014‘55704 2.12e — 016“55705 2.12e — 014,5&—05 2.12e — 011.3@—04
DTLZ3 . 3 . o 0.00e + 001 .7¢—01 2.12e — 012 8¢—04
DTLZ4 2.09e — 012_16701 2.10e — 012_16701 1.96e — 016.16703 2.11e — 015496705 2.11e — 012.18701 2.10e — 011_33704
DTLZ5 2.11e — 013_56704 2.12e — 011_73704 2.11e — 015_46704 2.12e — 016,86705 2.12e — 013.15705 2.12e — 011_33704
DTLZ6 1.75e — 013.65—02 9.02e — 031.4@—02 2.12e — 014,4&—05 1.11e — 014.1@—02 1.61e — 014‘25702 2.12e — 01&4@705
DTLZ7 3.33e — 012.1@—04 3.34e — 012.2@—04 3.34e — 013‘25704 3.34e — 017A86705 3.34e — 019‘55705 3.34e — 013(1g—05
TABLE VI
NON-SUCCESSFULSTATISTICAL TEST FOR THEHYPERVOLUME INDICATOR
NSGA-II ZDT2, ZDT4 DTLZ4 ZDT3 ZDT3 -
DTLZ1, DTLZ4, DTLZ7 - DTLZ1 DTLZ6
SPEA2 DTLZ7 DTLZ1 - -
OMOPSO ZDT1 DTLZ7 ZDT6
ZDT2 - -
AbYSS ZDT2, ZDT3 -
DTLZ2, DTLZ5 -
MOCell DLTZ4
SPEA2 OMOPSO | AbYSS MOCell SMPSO

Fig. 2. The ZDT4 problem
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solved using the compared algorthMSGA-II, SPEA2, OMOPSO, AbYSS, MOCell, and SMPSO.




Pareto fronts whose quality indicators are the best or the 2DT2: Evolution of the HV
second best in any of the evaluated problems.

To illustrate the performance of the six algorithms, we
have included in Fig. 2 the obtained approximations to the
optimal Pareto front on the ZDT4 problem. As we can observe,
those obtained by SMPSO, MOCell, and AbYSS are the best
choices in terms of convergence and spread to the optimal
front, whereas the solution set obtained by OMOPSO has
not converged and thus it is the worst approximation. As to
the solutions of NSGA-Il and SPEA2, both have converged
towards the Pareto front but the distribution of points ig no
as good as in SMPSO, MOCell, and AbYSS. A SMPSO

2) Convergence Speedable VIl includes, for each multi- ; s L0000 o0 20000 25000
objective problem, the median and the IQR of the number of Evaluaions
evaluations required by all the algorithms to reach 98% the
HV value of the true Pareto front. The™ symbol in some
cells means that the given algorithm has been not able tthreac
such HV value in some (if not all) of the independent runs
performed.

The first conclusion that can be drawn from the values
in Table VIl is that the new proposal, SMPSO, is always
either the fastest (in five out of the twelve problems) or the
second fastest (the remaining seven problems) algorithm in
reaching the target HV value. SMPSO has never failed at
meeting the convergence criterion (i.e., never requireademo
than 1,000, 000 evaluations to reach 98% of the true Pareto i) MOCell
front), while the others fail in at least one problem. This 1, ‘ | "= SwPso
fact clearly shows the enhanced exploration capabilities o ° 00 oo oo
SMPSO and its robustness for solving the studied problems.

Of particular relevance is the comparison of OMOPSO a Evolution of the HV during the different generatiocarried out in
SMPSO, since the former has not been able to approxma{%pmmems ZDT2 (top) and DTLZ7 (bottom).

fronts with the target HV in three problems (ZDT4, DTLZ1,

and DTLZ3), whereas the latter can effectively achievelite T

results also show that, under this experimental setup,vibe tPareto front. This means that using a lower percent of the HV
most well-known algorithms in the literature, NSGA-Il andas stopping condition, OMOPSO would be the fastest solver.
SPEA2, are outperformed by new proposals such as AbYS8js also interesting to observe the behavior of SMPSO: in
MOCell, and particularly SMPSO. Indeed, both NSGA-Il an@DT2 there is a region where the HV is stalled in a fixed value
SPEAZ2 require a number of function evaluation that is on®@etween 2500 and 6000 evaluations), but then it converges
order of magnitude greater than the fastest algorithmsiétite rapidly. Similarly, SMPSO is among the slowest techniques
out of the twelve considered problems. Table IX summarizés yielding a HV greater than zero, but then it arrives to
the results of the statistical tests considering the nunaber the stopping condition in a few hundreds of evaluationssThi
evaluations required by the different solvers. We see that tsuggests lines for further research, in which the behavior o
differences between SMPSO and the other algorithms ake algorithms during their search process could be studied
statistically significant in most of the problems evaluate§¥e could envision, for example, an algorithm behaving like
As to the comparison between SMPSO and OMOPSO, @MOPSO at the beginning of the search and then commuting
differences exist only in three out of the twelve evaluated SMPSO, with the idea of combining the best of them.
problems according to the significance levels considered.

Although the results reported in this section are relevant, V. CONCLUSIONS ANDFUTURE WORK
it is worth showing how the HV evolves during the exe- We have described SMPSO, a new multi-objective PSO
cution of the algorithms. We have included in Fig. 3 thelgorithm which incorporates a velocity constriction mach
HV values of the algorithms when solving the ZDT2 andism. By using it, the maximum velocity of the particles is
DTLZ7 problems, recorded every 100 function evaluationfmited with the aim of enhancing the search capability of
Focusing on OMOPSO and SMPSO, the fastest algorithmsthe technique. The new proposal has been evaluated using
these problems, we can observe that OMOPSO is the fastest benchmark families, ZDT and DTLZ, and it has been
technique in finding approximation sets having a HV greateompared against five state-of-the-art multi-objectivdi-op
than 0; however, SMPSO arrives first to 98% of the HV of thmization algorithms: NSGA-II, SPEA2, OMOPSO, AbYSS,

HV value
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TABLE VI
MEDIAN AND IQR OF THENUMBER OF EVALUATIONS REQUIRED BY THE SOLVERS TO REACH 98% T THE HV OF THE TRUEPARETO FRONT.

AbYSS
TIQR

MOCell
TIQR

SMPSO
TIQR

1.37Oe+041 .6e+03
1.710e+042 et 03
1.270e+042 e t03
2.285e+04; . le404
1.560e+04 . 2e403

1.300e+04 . 2e+03
1.17Oe+044,09+03
1.300e+04,; .3e+03
l.635€+045‘06+03
2.090e+04; . 3e+03

7.5009+033‘()e+03
8.200e+033 4¢ 103
1.160e+045 4¢103
4.7006+031‘2e+03
3.7509+031‘3e+03

NSGA-II SPEA2 OMOPSO

Problem jIQR jIQR jIQR
ZDT1 1.435e+04g pe+02 1.600e+04; .1¢+03 6.800e+03.0c+03
ZDT2 2.430e+04, .8e+03 2.480e+04, 9e+03 8.9008+033,_66+03
ZDT3 1.270e+049_oe+02 1.520e+04, .0e+03 9.8506+0%.7e+03
ZDT4 2.130e+045 0c+03 2.520e+045.0c+03 .

ZDT6 2.880e+04; 2¢+403 3.335e+04; .ge+03 2.800e+03; .5¢ 403
DTLZ1 2.515e+04y 4c+03 2.400e+047 5¢+03 .

DTLZ2 8.100e+03; .2¢+03 7.400e+038.0c+02 8.200e+033.1¢+03
DTLZ3 1.180e+055 . 7¢ 404 1.000e+053.0e+-04 .

DTLZ4 8.500e+03; . 4¢+03 7.800e+035.0c+05 1.255e+043 8¢ 403
DTLZ5 7.950e+03; .1c+03 7.500e+037 0c+02 8.450e+03; 9¢+03
DTLZ6 . . 4.1006+03; 50405
DTLZ7 1.360e+04; ge+03 1.585e+04; .1¢403 6.150e+03 ge+03

2.375e+04, . 2e+04

4-7009+039,0e+02

1.194e+057 5¢404

4.8006+037 5. 1 02

4.6506+0%‘Oe+02
L]

1.06Oe+041_75+03

2.0159+047‘7e+03

5.6009+039_05+02

6.735e+043 3104
L[]

5.8009+0?§;_55+02
()

1.110e+04; 6e405

5-3009"'0%,0&-}—03
4.8009+031‘3e+03
8.5006+03; 3¢+ 03
5.400e+03; .4¢ 103
5.2509+031‘4e+03
8.1509+0?’5‘1e+03
5.5006+0%‘4e+03

NON-SUCCESSFULSTATISTICAL TEST FOR THENUMBER OF EVALUATIONS REQUIRED BY THESOLVERSTO REACH THE 98% THE HV OF THE TRUE

TABLE IX

PARETO FRONT

and MOCell. The results have shown that SMPSO overcomés J. Kennedy and R.C. Eberhart.
the limitations of the algorithms it has been compared with.

NSGA-II ZDT2 - ZDT1, ZDT3, ZDT4 ZDT3 ZDT3
DTLZ1, DTLZ3, DTLZ4, DTLZ6 DTLZ4 DTLZ1, DTLZ3 DTLZ4, DTLZ7 -
SPEA2 - ZDT4 - -
DTLZ6 DTLZ1, DTLZ3 DTLZ4, DTLZ6 -
OMOPSO - - ZDT1, ZDT2
- DTLZ4 DTLZ7
AbYSS ZDT3 ZDT3
DTLZ6, DTLZ7 | DTLZ2, DTLZ4
MOCell ZDT3
SPEA2 OMOPSO AbYSS MOCell SMPSO

Indeed, in the context of the experiments carried out, it i

the most salient technique in terms of the quality of the
approximations to the Pareto front found, and it is also the
fastest converging towards the Pareto front in most of trﬂﬁ,]

studied problems. As part of our future work, we plan to

study new schemes for updating the velocity of the partjcle§
and to apply SMPSO to other benchmarks composed [o%]
rotated problems as well as of problems with more than two

objectives.
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