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Abstract. In recent years, there has been an increasing interest in Op-
posite Learning strategies. In this work, we propose COISA, a Coop-
erative Opposite-Inspired Strategy for Ants. Inspired on the concept of
anti-pheromone, in this approach, sub-colonies of ants perform differ-
ent search processes to construct an initial pheromone matrix. We aim
to produce a repel effect to (temporarily) avoid components that were
related to an undesirable characteristic. To assess the effectiveness of
COISA, we selected Ant Knapsack, a well-known ant-based algorithm
that efficiently solves the Multidimensional Knapsack Problem. Results
in benchmark instances show that the performance of Ant Knapsack
is improved considering the opposite information, so that it can reach
better solutions than before.

1 Introduction

We propose here an Opposite-Inspired Learning strategy where the search pro-
cess of an ant-based algorithm is divided into two steps: a First Step used to
identify a uD-characteristic from complete instantiations and a Second Step used
to solve the problem of interest. Three sub-colonies of ants cooperate obtain-
ing information during the First Step. Such information will be considered in
the Second Step to change its decisions during the construction process. Each
sub-colony performs a search process defined by a Method. Here, we propose a
collaboration between these Methods that were previously proposed in [10, 11].
Sections 2 and 3 present details of our proposed strategy.

Opposite Learning (OL) is a search strategy that has been applied for map-
ping candidate solutions with the objective of increasing the coverage of the
solution space [5]. Opposition-Inspired Learning (OIL) [12] was proposed con-
sidering that, in some cases, the idea of mapping solutions is not intuitive because
of some algorithm-specific properties. Some previous OIL ant-based approaches
have been proposed [2, 4, 6, 7]. In our case, the term opposite is related to the pos-
sible decisions made by ant-based algorithms, that could lead the search process
towards poor quality candidate solutions.

To evaluate our strategy, we selected the well-known Ant Knapsack (AK)
algorithm [1] originally proposed for solving the Multidimensional Knaspsack
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Problem (MKP). The implementation in AK is described in Section 4. It is
important to mention, however, that our objective is not to propose the best
algorithm for the MKP. The idea is to evaluate the use of a learning strategy to
focus the search process of a specific ant-based algorithm.

2 An OIL Strategy for Ant-based Algorithms

Let’s assume a combinatorial problem P and an ant-based algorithm A. We
are interested in improving the search process of A, in terms of the quality of
the solutions that A can build. For this, we are interested in providing useful
information to A in order to improve its intermediate decisions. Let’s assume
that each ant k of A incrementally constructs a complete instantiation of a
solution IkC , making stochastic intermediate decisions to include components
into a partial instantiation IkP .

In most cases, components are included in IkC because a certain preference
related to their heuristic knowledge (η) and pheromone information (τ) was
considered in the intermediate decisions of A. As η is particularly defined in A
and the information in the pheromone matrix is limited by the vertices which
were already visited during the current execution, in some cases, the information
provided to perform intermediate decisions might be poor. Considering that P
is complex to solve, this information can affect some intermediate decisions and
lead the construction process to solutions with less quality than expected.

Let’s assume that IkC has some characteristic w that can be measurable and
related to: a structural property of IkC , a quality feature of IkC , a feature re-
lated to the (in)feasibility in IkC , and a problem-specific property feature not
detectable by A, among others. During the construction process of IkC , interme-
diate decisions are biased giving priority to some components that look more
promising than others. We name this characteristic as undesirable (uD) because
these intermediate decisions prefer components that are locally interesting, but
finally produced that F (IkC) < F (I∗C).3 It is important to remark that this char-
acteristic is not inherent to the problem P, but it cannot be perceptible by the
current pheromone information and by the heuristic knowledge, as it is specifi-
cally defined in A. We propose to learn about this uD−characteristic w in IkC to
decrease the attraction to components that A considers promising. The objec-
tive is to allow A to consider other intermediate decisions during its construction
process and, finally, obtain better quality solutions.

Let S(A,i) be a set of complete instantiations obtained by A during its ith

iteration and w a uD-characteristic. As w is measurable, solutions in S(A,i) can be
compared considering the presence of a uD-characteristic. We define Sw

(A,i) as the
set of complete instantiations that have more presence of w. As the pheromone
produces a modification of the way in which the problem is represented and
perceived by artificial ants [3], we decided to use the pheromone to learn about
the uD-characteristics. Our hypothesis is the following: if we consume a certain

3 Considering that P is a maximization problem with an objective function F and I∗C
is an optimal solution.
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amount of resources in identifying and learning about some uD-characteristic w
in S(A,i), the search process could be further focused making decisions using this
knowledge so that we can obtain complete instantiations of a better quality. For
this, we propose to divide the search process of A into two steps.

2.1 Division of the Process

First, we propose to divide the search process of A into two steps: a First Step
(FS ) to learn about w in S(A,i) and a Second Step (SS ) performed by A using the
knowledge obtained in the FS. Inspired in the concept of anti-pheromone [13],
the idea is to produce a repellent effect to some pairs of components of solutions
in Sw

(A,i), allowing A to consider other components that, originally, would not
be included. From now on, the pheromone used during the FS will be called
anti-pheromone. As A was designed, normal pheromone is used during the SS.

Let A◦ be an ant-based algorithm that will perform the FS and let’s use anti-
pheromone to decrease the attraction of paths that are related with complete
instantiations in Sw

(A,i). The definition of the representation for P and the state
transition rule of A◦ is the same as in A. The FS is performed by A◦ consuming
an amount B∗maxRes of resources4, where B ∈ [0, 1] is a parameter that defines
the budget of resources designed for the learning step. At the end of the FS, an
initial pheromone matrix will be obtained and used by A. Finally, A performs
its search process considering the remaining (1−B) ∗maxRes resources.

2.2 Methods

In order to explore and compare different possibilities to identify a uD-cha-
racteristic, we propose three different Methods. Each method will consider a
different definition for the heuristic knowledge and anti-pheromone management
for A◦. The methods are named Soft Opposite-Learning (SOL), Worst Opposite-
Learning (WOL) and Half Opposite-Learning (HOL).

SOL: This method is focused on identifying a uD-characteristic related to
the quality of complete instantiations but trying to perform a similar search
process as in A. For this, η of A◦ will be the same as in A. On the other hand,
anti-pheromone will be decreased in edges that are related to the lowest quality
solution of each iteration. The information obtained during a FS performed by
the SOL method will reduce the level of attraction produced by the heuristic
knowledge in the corresponding intermediate decisions of A.

WOL: This method is focused on evaluating the effect of taking totally op-
posed decisions to the objective of the problem P. For this, the heuristic knowl-
edge should be inverted in each intermediate decision (Eq. 1), where Jk(i) is a
list of candidate components, ηAij is the heuristic knowledge of A, and the maxi-
mum and minimum heuristic knowledge of values of the current decision are also

4 These resources can be execution time, a fixed number of evaluations, and conflict
checks, among others. In general, the amount of resources can be defined considering
how A was originally evaluated.
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considered. Here, the construction process is biased towards actual poor quality
solutions by the translated heuristic information and the anti-pheromone. Fur-
thermore, components of the lowest quality solution obtained will be marked
with anti-pheromone at each iteration.

ηA
◦

ij = max
u∈Jk(i)

(ηAiu) + min
u∈Jk(i)

(ηAiu)− ηAij (1)

HOL: This method is focused on detecting a problem-specific uD-charac-
teristic w. In order to detect this problem-specific feature, the heuristic knowl-
edge ηA

◦
should be redefined in A◦. The construction process should be guided

considering new information from ηA
◦
, allowing the search process to consider

information in the presence of w in the complete instantiations obtained. Anti-
pheromone will be used to reinforce the objective of ηA

◦
.

3 Cooperation Between Sub-colonies

In our proposed approach, three sub-colonies of ants cooperate in the construc-
tion of a pheromone matrix. Each sub-colony focuses in obtaining information
about a uD-characteristic and is guided by one Method. During the FS, all ants
consider the same anti-pheromone matrix M to construct solutions. At the end of
each iteration, anti-pheromone will be updated by antSOL, antHOL and antWOL

considering the following rule:

antiτnewij = antiτoldij −∆SOL
ij −∆HOL

ij −∆WOL
ij (2)

where ∆SOL
ij , ∆HOL

ij and∆WOL
ij are the decreased amounts of antipheromone.

As the collaboration of these three sub-colonies can be time consuming, we de-
cided to execute the FS in parallel and the SS is executed sequentially. COISA
was implemented in POSIX Threads. Two types of threads will be considered:
constructor or manager threads. Considering a total of N threads and m ants,
one manager thread will be focused on the pheromone management and (N −1)
constructor threads are focused in constructing and evaluating solutions. The
manager thread waits until all constructor threads finish, using a barrier, to con-
struct their tasks to update the pheromone matrix M . For the synchronization
of all the threads, a barrier, a conditional variable and a mutex are used.

4 Case Study: Multidimensional Knapsack Problem

Multidimensional Knapsack Problem (MKP) is an NP-hard combinatorial opti-
mization problem. It considers a set of objects and a knapsack with T dimensions,
each one with a maximium capacity defined (bt). Each object has a defined profit
pi and weight wit in each problem dimension t. The idea is to select a subset of
objects maximizing the total profit, satisfying each capacity constraint.

Here, we introduce COISA into Ant Knapsack [1] (AK), a well-known ACO
algorithm designed for solving the MKP. AK is a MAX −MIN Ant Sys-
tem [14] that constructs feasible complete instantiations. Pheromone represents
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the desirability of including pairs of objects simultaneously. The heuristic knowl-
edge is defined as: ηIk

P
(oj) =

pj∑T
t=1

wjt
CCt

, where CCt is the Current Capacity in

dimension t (defined as CCt = bt−
∑

ov∈Ik
P
wvt). Pheromone is deposited in each

pair of objects of the best quality solution found of each iteration (Lb i). Here,
an amount of ∆τ = 1

1+|F (Lb f )−F (Lb i)| is deposited, considering that Lb f is the

best solution found during the execution.

4.1 Details of the Implementation

This section presents some details that should be considered before the imple-
mentation of COISA in AK. First, the amount of anti-pheromone ∆antiτ is
defined similarly as in AK. In this case, the worst solution found in the current
iteration (Lw i) and the worst solution found during the execution (Lw f ) are
considered. Moreover, as in AK, one ant per sub-colony will be allowed to de-
posit anti-pheromone during the FS. In order to obtain information without any
perturbation, the evaporation is not considered during the FS.

SOL and WOL methods are implemented as was already explained in Sec-
tion 2.2. For the HOL method, it is necessary to define a heuristic knowledge
for guide its search process. In this case, we considered the same η used in [11]:
ηIk

P
(oj) =

pj∑T
t=1 RCt

, where RCt is the remaining capacity in the dimension t

defined as RCt = bt−wjt. In this case, the uD−characteristic points to identify
the core of objects for which it is hard to decide if they will be part of an op-
timal solution or not [8]. Moreover, anti-pheromone will mark the lower quality
solution of each iteration.

5 Experiments and Results

We considered two sets of 30 instances from the OR Library proposed by Chu
and Beasley: 10×100 (10 dimensions and 100 objects) and 5×100 (5 dimensions
and 100 objects). In order to compare the collaboration between the three sub-
colonies, we present results by each method independently: SOL-AK, HOL-AK
and WOL-AK. For all the executions we considered a number of ten threads. The
hardware platform used was a Power Edge R630 server with 2 Intel(R) Xeon(R)
CPUE5-2680v3 @ 2.50GHz, 128 GB of RAM using Ubuntu x64 16.10 distribu-
tion. We considered the same parameter values proposed in [1]: α = 1, β = 5,
ρ = 0.01, NTotal = 30, τmax = 6 and τmin = 0.01. To determine the parame-
ter values for our approaches we used Evolutionary Calibrator (EVOCA) [9], a
parameter tuner algorithm, considering randomly selected instances from both
sets. The objective was to obtain the number of ants for each sub-colony and the
budget B. The obtained parameter values after 3500 evaluations of EVOCA are:
(1) for COISA are NSOL = 16, NHOL = 11, NWOL = 8 and B = 0.211, (2) for
SOL are NSOL = 20 and B = 0.241, (3) for HOL are NHOL = 2 and B = 0.422,
(4) for WOL are NHOL = 16 and B = 0.408. Table 1 shows the results obtained
for the 10×100 set and Table 2 shows the results for the 5×100 set. We consid-
ered 50 independent runs per instance, each with 60000 evaluations (maxRes).
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Table 1. Results for Set 10×100 from OR Library

AK COISA-AK SOL-AK HOL-AK WOL-AK
# BK

AVG SDV BEST AVG SDV BEST AVG SDV BEST AVG SDV BEST AVG SDV BEST

1 23064 23016.0 42.2 23064 23014.3 46.4 23064 22998.6 47.5 23057 23008.0 41.0 23064 23006.7 42.7 23064

2 22801 22714.0 67.2 22801 22702.2 83.8 22801 22713.8 66.5 22801 22694.6 58.3 22801 22693.6 69.4 22801

3 22131 22034.0 66.9 22131 22046.6 56.0 22131 22024.4 69.7 22131 22008.2 69.9 22131 22035.5 65.3 22131

4 22772 22634.0 60.6 22717 22613.3 63.9 22763 22623.4 64.0 22772 22598.2 73.7 22772 22601.7 53.8 22709

5 22751 22547.0 66.3 22654 22559.2 47.6 22654 22543.2 70.8 22697 22533.0 66.9 22697 22542.7 51.4 22697

6 22777 22602.0 63.3 22716 22593.4 46.8 22716 22610.3 51.4 22716 22594.7 46.0 22664 22591.9 40.5 22675

7 21875 21777.0 44.9 21875 21790.8 36.7 21875 21773.4 45.5 21875 21780.1 48.6 21875 21774.3 54.2 21875

8 22635 22453.0 89.2 22551 22498.8 54.1 22635 22512.0 40.6 22551 22511.7 57.8 22635 22500.1 57.5 22635

9 22511 22351.0 69.4 22511 22379.6 47.0 22511 22369.7 40.3 22438 22362.4 51.6 22511 22352.2 62.5 22511

10 22702 22591.0 88.5 22702 22616.0 102.9 22702 22600.1 99.8 22702 22576.5 91.0 22702 22572.9 88.8 22702

1 41395 41329.0 48.5 41395 41324.1 47.4 41395 41329.1 49.8 41395 41312.4 51.8 41393 41309.0 48.7 41395

2 42344 42214.0 49.5 42344 42233.5 47.0 42344 42232.2 60.4 42344 42210.2 45.5 42344 42221.4 54.9 42344

3 42401 42300.0 58.1 42401 42309.0 38.4 42401 42311.5 41.7 42401 42316.1 47.2 42401 42313.6 43.5 42401

4 45624 45461.0 73.6 45624 45484.2 69.4 45624 45450.2 70.9 45585 45462.3 71.6 45585 45474.4 64.2 45598

5 41884 41739.0 57.3 41884 41770.0 53.0 41884 41769.9 52.0 41884 41758.8 53.0 41884 41750.4 50.2 41884

6 42995 42909.0 76.3 42995 42910.6 76.5 42995 42898.8 72.7 42995 42891.3 78.1 42995 42923.4 69.8 42995

7 43574 43464.0 71.7 43553 43466.9 50.0 43553 43470.0 43.0 43553 43479.0 47.6 43553 43463.7 46.5 43552

8 42970 42903.0 47.7 42970 42904.7 39.4 42970 42901.5 48.1 42970 42924.6 35.3 42970 42915.2 40.1 42970

9 42212 42146.0 48.0 42212 42167.3 39.8 42212 42165.7 39.7 42212 42160.6 38.4 42212 42162.5 42.2 42212

10 41207 41067.0 89.7 41207 41098.7 36.9 41207 41085.9 39.0 41134 41093.5 38.3 41207 41077.7 44.8 41207

1 57375 57318.0 59.5 57375 57295.9 66.1 57375 57307.8 68.1 57375 57311.7 74.1 57375 57321.9 61.3 57375

2 58978 58889.0 40.2 58978 58914.2 32.4 58978 58899.4 54.6 58978 58886.4 43.3 58934 58898.1 24.1 58978

3 58391 58333.0 29.5 58391 58337.7 26.3 58391 58321.2 47.8 58391 58326.8 32.5 58391 58335.4 27.2 58391

4 61966 61885.0 42.4 61966 61891.2 36.4 61966 61876.0 47.9 61966 61873.9 40.6 61966 61882.7 36.6 61966

5 60803 60798.0 5.0 60803 60800.6 3.0 60803 60799.9 3.2 60803 60800.5 3.1 60803 60800.0 5.2 60803

6 61437 61293.0 52.7 61437 61295.3 55.6 61437 61294.1 52.6 61437 61288.3 48.6 61437 61297.5 52.5 61437

7 56377 56324.0 35.7 56377 56319.0 35.4 56377 56311.0 47.0 56377 56313.9 49.1 56377 56328.3 33.8 56377

8 59391 59339.0 53.3 59391 59340.7 42.6 59391 59331.5 51.4 59391 59331.2 53.0 59391 59341.3 37.5 59391

9 60205 60146.0 62.6 60205 60167.7 50.7 60205 60123.1 73.5 60205 60096.8 70.9 60205 60155.8 56.9 60205

10 60633 60605.0 36.1 60633 60613.9 32.2 60633 60589.4 47.6 60633 60571.7 48.4 60633 60613.5 30.7 60633

Light grey cells show the best average quality (AVG) of the 50 seeds and dark
grey cells show the Best quality solution obtained. Also, the standard deviation
(SDV) is shown for each instance and algorithm. First, results show that AK
could find most of the best known solutions for the instances from both sets
(51 of the 60 instances). Moreover, COISA-AK outperformed AK obtaining the
best known solution in 53 of the 60 instances. This shows that the collaboration
between sub-colonies is better than each method on their own. Regarding the
average quality, results show that AK obtained better results in the 5× 100 set
and COISA-AK was better for the 10×100 set. Finally, considering the indepen-
dent and the cooperative approaches, all the best known solutions can be found
using opposite information. The non-parametric Wilcoxon test was applied to
assess that these algorithms are statistically different (pvalue = 0.01). About
the Speedup obtained by COISA-AK, the average was 1.8, with a maximum of
4.9 and a minimum of 1.4. As the FS only consumes 20% of the evaluations,
these metrics show the positive effect of using a parallel architecture.

6 Conclusions

In this work, we proposed a Cooperative Opposite-Inspired Strategy for ants-
based algorithms. The objective of this approach is to obtain information about
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Table 2. Results for Set 5×100 from OR Library

AK COISA-AK SOL-AK HOL-AK WOL-AK
# BK

AVG SDV BEST AVG SDV BEST AVG SDV BEST AVG SDV BEST AVG SDV BEST

1 24381 24342.0 29.3 24381 24340.6 29.0 24381 24329.4 38.2 24381 24335.1 35.3 24381 24330.4 31.4 24381

2 24274 24247.0 38.5 24274 24241.2 35.1 24274 24234.9 42.8 24274 24246.0 33.5 24274 24229.2 38.8 24274

3 23551 23529.0 8.0 23551 23527.2 9.2 23551 23526.3 13.6 23551 23525.6 14.1 23551 23527.1 11.9 23551

4 23534 23462.0 32.6 23534 23460.1 32.7 23527 23453.3 44.4 23534 23458.4 34.8 23527 23457.8 30.2 23511

5 23991 23946.0 31.8 23991 23942.5 26.8 23991 23934.2 33.8 23991 23940.1 35.0 23991 23950.5 29.0 23991

6 24613 24587.0 31.3 24613 24585.3 25.8 24613 24583.0 28.9 24613 24573.3 34.2 24613 24579.2 28.8 24613

7 25591 25512.0 43.8 25591 25521.8 41.3 25591 25524.2 47.8 25591 25506.2 39.7 25591 25509.5 45.9 25591

8 23410 23371.0 30.3 23410 23375.1 33.5 23410 23378.2 29.6 23410 23378.8 29.4 23410 23381.5 31.9 23410

9 24216 24172.0 32.9 24216 24177.0 31.1 24216 24171.7 32.7 24216 24163.1 38.0 24216 24164.5 39.3 24216

10 24411 24356.0 44.3 24411 24346.1 45.8 24411 24340.5 44.5 24411 24342.9 47.2 24411 24346.7 44.8 24411

1 42757 42704.0 14.3 42757 42706.5 25.4 42757 42709.8 21.0 42757 42700.6 11.4 42757 42701.6 14.8 42757

2 42545 42456.0 15.8 42510 42458.4 14.6 42471 42459.5 12.9 42494 42455.0 21.3 42545 42458.8 25.4 42545

3 41968 41934.0 22.3 41967 41939.8 15.9 41968 41935.2 23.0 41967 41930.9 26.3 41967 41930.8 27.7 41967

4 45090 45056.0 24.0 45071 45056.1 24.1 45071 45058.3 23.1 45071 45041.0 29.4 45071 45049.4 31.7 45071

5 42218 42194.0 33.2 42218 42201.9 31.4 42218 42196.0 31.2 42218 42189.6 41.8 42218 42202.2 28.1 42218

6 42927 42911.0 33.3 42927 42913.5 32.6 42927 42903.5 40.8 42927 42913.0 34.0 42927 42908.0 39.5 42927

7 42009 41977.0 45.2 42009 41985.2 40.9 42009 41978.9 42.9 42009 41984.6 40.6 42009 41978.0 49.0 42009

8 45020 44971.0 32.5 45010 44988.8 22.1 45020 44984.4 29.2 45020 44969.9 35.5 45010 44979.7 31.9 45010

9 43441 43356.0 38.5 43441 43349.1 42.9 43441 43353.6 49.7 43441 43345.1 40.9 43441 43347.1 40.7 43441

10 44554 44506.0 25.2 44554 44512.8 23.5 44554 44513.9 25.5 44554 44510.4 28.2 44554 44515.8 25.2 44554

1 59822 59821.0 3.2 59822 59822.0 0.0 59822 59815.1 20.2 59822 59822.0 0.0 59822 59822.0 0.0 59822

2 62081 62010.0 47.1 62081 62010.7 44.1 62081 62003.6 44.8 62081 61994.7 31.0 62081 62011.0 49.0 62081

3 59802 59759.0 21.7 59802 59757.9 16.1 59802 59745.8 24.7 59802 59750.2 20.2 59802 59760.1 22.2 59802

4 60479 60428.0 21.8 60479 60444.8 27.3 60479 60417.2 30.0 60479 60438.6 24.2 60479 60435.8 23.6 60479

5 61091 61072.0 20.0 61091 61075.5 18.7 61091 61066.8 35.9 61091 61078.4 21.2 61091 61077.6 18.2 61091

6 58959 58945.0 14.5 58959 58940.6 12.3 58959 58929.4 35.5 58959 58943.9 19.4 58959 58943.3 14.1 58959

7 61538 61514.0 24.0 61538 61511.7 26.6 61538 61508.9 27.2 61538 61498.9 36.9 61538 61513.6 25.9 61538

8 61520 61492.0 25.6 61520 61494.0 22.7 61520 61473.7 34.7 61520 61475.4 32.7 61520 61496.5 23.0 61520

9 59453 59436.0 40.5 59453 59434.8 43.1 59453 59413.9 59.1 59453 59427.4 53.4 59453 59435.2 39.7 59453

10 59965 59958.0 8.4 59965 59956.0 11.2 59965 59944.9 26.9 59965 59946.0 25.8 59960 59959.1 5.2 59965

some uD-characteristic that could bias the search process to poor quality solu-
tions. We proposed to divide the search process into two steps: a First Step for
learning about an uD-characteristic and, a Second Step performed by a target
ant-based algorithm. During the First Step, three sub-colonies of ants coop-
erate to define an initial pheromone matrix. Each sub-colony is guided by one
Method : SOL, HOL and WOL. To evaluate our strategy, we used the well-known
Ant Knapsack algorithm for solving the MKP. Our preliminary results show that
the inclusion of COISA in Ant Knapsack improves its robustness and helps to
obtain better quality solutions. Additionally, we were able to show that the co-
operation between the three methods adopted is better than using only one of
them in isolation. As part of our future work, we are interested in evaluating
COISA in other ant-based algorithms for solving other combinatorial optimiza-
tion problems. Also, we are interested in comparing COISA with other existing
pre-processing schemes for ant-based algorithms.
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14. Stützle, T., Hoos, H.H.: MAX–MIN Ant System. Future generation computer sys-
tems 16(8), 889–914 (2000)


