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Abstract

In this paper, we extend an optimization model for design of rectangular
reinforced concrete beams subject to a specified set of constraints. This
extended model is closer to concrete design regulations and practical recipes
used by experienced engineers. To solve it, we used an artificial intelligence
search technique known as the genetic algorithm (GA), and our results were
compared with a mathematical programming technique that deals with the
non-linear equations of our model. Some of the issues involved when using
GAs such as representation, parameter tuning and genetic operators are
also discussed, and we present our own methodology to deal with them. A
prototype of a system that follows such methodology is currently being used
as a design tool in México.

1. Introduction

The design of a rectangular reinforced concrete beam is normally an inter-
active process in which the engineer assumes the self-weight of the element
beforehand, and chooses a trial section. Then, the moment of resistance of
such section is determined, to check its suitability against the given applied
bending moment. This process is repeated until a trial section is found
suitable. However, some difficulties normally arise when trying to match
the moment of resistance of the section with the total applied bending mo-
ment due to the self-weight of the beam, which may be quite substantial in
many cases. As a consequence, this procedure tends to be slow, and it has



a complete lack of economics, since the only concern is to find any section
suitable for the given conditions, without even considering the possibility
of making it as cheap as possible. In this paper, we’ll present a model
for optimal design which minimizes the cost of a reinforced concrete beam
based not only on the allowable stresses of the element, but also in the
costs of concrete, steel and formwork. Our model follows that proposed by
Chakrabarty [1] [2], with additional constraints that makes it suitable for
practical applications in México. In the next section, we’ll introduce some
general concepts from reinforced concrete design. Then, our model will be
shown and the genetic algorithm approach will be described. Finally, we’ll
present the results of applying our model to some problems found in the
literature.

2. Basic Concepts

According to the strength design method, the nominal moment capacity M,
of a rectangular beam with tension reinforcement only is given by [3]:

M, = bd*fw(1 — 0.59w) (1)

where b is the width of the beam, d is the distance from the extreme
compressive fibre to the centroid of tension reinforcement, f; is the com-
pressive strength of concrete, w = (4,f,/bdf.), f, is the yield strength of
reinforcement and A, is the area of tension reinforcement. There is an in-
finite amount of solutions to equation (1) that yield the same value of M,
[3]. In the traditional design process, the values of b and/or d are assumed,
and the remaining parameters are calculated based on them, iterating un-
til a suitable section is found. An obvious restriction of this approach is
that only a few sections can be evaluated in this manner. Since equation
(1) does not incorporate any cost parameter, there is no way of achieving
a least-cost design. Therefore, we need to include certain cost parameters
combined with the design parameters in our optimal design model, so that
we can produce least-cost suitable designs.

3. Previous Work

The optimal design of beams was first proposed by Galileo [4], even though
his calculations were wrong. Apparently, the doctoral dissertation by E. J.
Haug Jr. [5] in 1966 is one of the first modern attempts to use a digital
computer as a tool for the optimal design of this structural element. Haug
reduced the non-linear optimal design problem to a Lagrange problem in



Figure 1: Schematic section of a singly reinforced rectangular beam.

the Calculus of Variations. His model includes restrictions and tries to
minimize the weight of the beam in several different situations. Venkayya [6]
developed a method based on an energy criteria and a search procedure for
design of structures subjected to static loading. He argues that his method
can handle very efficiently: (a) designs for multiple load conditions, (b)
stress constraints, (c) constraints on displacements, (d) constraints on sizes
of the elements. His method has been successfuly applied to the design of
trusses, frames and beams. Prakash et al. [7] proposed a model for optimal
design of reinforced concrete sections in which the costs of steel, concrete and
formwork were included. Chakrabarty’s model [1] [2] has some similarities
with Prakash’s model, but the former is more complete and detailed. That’s
the main reason why we decided to use Chakrabarty’s model as a basis for
our implementation, even though we had to slightly modify it in order to
produce designs that fall into Mexico’s standard regulations for reinforced
concrete design, since the original model led in some cases to inconsistent
designs.

4. The Optimal Design Model

A schematic section of a rectangular singly reinforced concrete beam is
shown in Figure 1 (taken from Chakrabarty [2]). The cost per unit length of
the beam will be given by the expression [2] y(z) = c1z1+cazaza+cs3zatcaza,
where y(z) is the cost per unit length of the beam ($/cm), ¢; is the cost
coefficient due to volume of tensile steel reinforcement in the beam ($/cm?),
¢z is the cost coefficient due to volume of concrete in the beam ($/cm?),
c3 is the cost coefficient due to formwork along the vertical surfaces of the
beam ($/cm?), ¢4 is the cost coefficient due to formwork along the bottom



horizontal surface of the beam ($/cm?), z; is the variable giving the area
of tensile steel reinforcement as shown in Figure 1 (cm?), z, is the variable
giving the depth of the beam as shown in Figure 1 (e¢m) and z3 is the
variable giving the width of the beam, as shown in Figure 1 (e¢m). The
variables z;, z, and z3 not only affect the cost of a beam, but will also
determine its moment of resistance. Since z; may be calculated if we know
z, and z3 [3], we'll propose different values for these two variables so that
the total cost of the beam is minimum, verifying at the same time that our
section has a proper resistant moment. Then, our optimal design model is
the following:

minimize: f(z) = c121 + c2Z223 + caza + caz3

subject to:

a1z] ' z3zs < 1 (equilibrium constraint) (2)

azmzl + Ggmgmngl <1
(bending moment compatibility constraint) (3)

0.25 < z3/zy < 0.6
(width — height ratio constraint) (4)

Q(z2 — a'5$5)(f'rfc’m5m3 + z1fy)as/zs > 1

(acting moment constraint) (5)
as/z3 <1 (manimum width constraint) (6)
T1, T2, T3, 4,25 > 0 (non — negativity constraint) (7)

Here z, is a variable defining the total applied bending moment including
the bending moment due to self-weight of the beam; z5 is a variable defining
the depth of the equivalent rectangular stress block. Additionally, ¢; = w, X
¢cs ($/cm?), where w, = 0.00785 kg/cm?® (assumed value) is the unit weight
of steel reinforcement, and ¢, is the unit cost of steel reinforcement ($/kg).
Similarly, ca = (147)c. x 1078 (8/cm?), where c. is the unit cost of concrete
($/m3) and r is the cover ratio; c3 = 2(147)c, x 107* (§/cm?),where ¢, is the
unit cost of formwork ($/m?); cs = ¢, x 107* ($/cm?). Also, a; = 0.85f./ f,,
where f, is the yield strength of steel reinforcement (N/cm?) and f, is the
compressive strength of concrete (N/cm?); az = D(1 + r)w.kL?, where
D = 1.4 (assumed) is the load factor for dead load, w. = 0.0228 N/cm?
is the unit weight force of concrete, k£ is the moment coefficient for the
design section (= 1.8 for simply supported beam) and L is the span of the
beam (cm). Finally, ay = 1/(f,Qf.), where Q is the capacity reduction
factor (= 0.90 for flexure) and f, = 0.85 (assumed) is the reduction factor
of concrete. Also, a, is the applied bending moment (N — e¢m), a5 = %
(assuming the centroid of compressive force at half the depth of equivalent
rectangular stress block), and ag is the minimum acceptable width of the

beam. To determine the total bending moment (including self-weight of the



beam), we use £4 = ay+azzazs. To calculate the area of reinforcement steel,
_ 4(0.59)zy

0.9z3 zg fi
‘ ‘ ‘ 1.18 ‘
be derived from equation (1). Finally, the depth of the equivalent stress

block is given by z5 = z1/(a;1z3).

1-,/1

! . .
we use z; = wzaz3f,./ fy, where w = This last expression can

5. Use of Genetic Algorithms

To solve this optimization problem, we used the Simple Genetic Algorithm
(SGA) proposed by Goldberg [8]. We won’t talk much about the GA itself,
since we have done that before [9]. Instead, we’ll give some details about
the different representation schemes that we used in our experiments. The
traditional representation used by the GAs community is the binary scheme.
Since the binary alphabet offers the maximum number of schemata per bit
of information of any coding [8], its use has been very popular among sci-
entists. However, since the “implicit parallelism” property of GAs does not
depend on using bit strings [10] it has been common practice to experiment
with larger alphabets. In particular, for optimization problems in which the
parameters to be adjusted are continuous, a floating point representation
scheme seems a logical choice. One of the advantages of this representation
is that it has the property that two points close to each other in the repre-
sentation space must also be close in the problem space, and vice versa [10].
This is not generally true in the binary approach, where the distance in a
representation is normally defined by the number of different bit positions.
Such discrepancy may be reduced by using Gray coding representation,
which has the property that any two points next to each other in the prob-
lem space differ by only one bit. In all our experiments, we used a two-point
crossover, and binary tournament selection. The only operator that had to
be redefined was mutation. Our fitness function was given by the cost func-
tion, using a penalty function of the form fitness = 1/(cost * (v %500 + 1))
where v depends on the number of constraints violated, and 500 was a value
derived experimentally. Whenever the design doesn’t violate any constraint,
the fitness function is just the inverse of the cost.

6. Examples

Design a least-cost reinforced concrete rectangular beam simply sup-
ported over a span of 10 m supporting a uniform dead load of 15 kN/m and
a uniform live load of 20 kN/m. The concrete strength f. = 30 M Pa and
the steel yield strength f, = 300 M Pa. The unit cost of steel (CS), con-
crete (CC) and formwork (CFW) are $ 0.72/kg, $ 64.5/m? and $ 2.155/m?,
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Figure 2: Optimum design of the beam of the first example.

Parameter | Chakrabarty | GA (B) | GA (GC) | GA (FP)
z; (cm?) 37.6926 36.1893 41.5905 37.5205
zy (cm) 86.0629 89.5402 78.6177 86.4776
z3 (ecm) 30.0000 30.0162 30.0447 30.0022

cost ($/cm) 0.4435 0.4442 0.4464 0.4436

Table 1: Comparison of the geometric programming approach used by
Chakrabarty and the GA using binary (B), Gray coding (GC) and floating
point (FP) representation.

respectively. Assume a cover ratio (r) of 0.10, unit weight of concrete of
2323 kg/m?> and capacity reduction factor as 0.90. The ultimate uniform
load is = 1.4 x 15 + 1.7 x 20 = 55 kN/m. The ultimate applied bending
moment is = 55 x 10%/8 = 687.5 kN, m = 687.5 x 10° N — cm. Using
this information, we can get the values of the cost coefficients and the other
model constants [3]: ¢; = 0.0056520, ¢, = 0.00007095, c3 = 0.00047410,
cs = 0.00021550, a; = 0.08500, a; = 68'750,000, a3 = 438233, 950,
aq = 0.00043573, a5 = 0.50, ag = 30.00.

Our results and their comparison with the method used by Chakrabarty
[1] (geometric programming) are shown in Table 1. As we can see, the
floating point representation produced the best results and Gray coding the
worst. QOur final design for this problem is shown in Figure 2, and has a
total height of 95.125, which is about 1% more than Chakrabarty’s design.
This slight difference is due to the fact that Chakrabarty’s model considers
the area of reinforcement steel as a variable, even when this is a parame-
ter that depends on the beam section, and can’t take any arbitrary value.



Method | z; (cm?) | z, (cm) z3 (cm) cost ($/cm)

Constants b=40cm | CS5 =036 | CC =645 | CFW = 2.155
Chakrabarty | 57.0072 59.8678 40.000 0.3680

GA (FP) 50.2583 66.7029 40.0033 0.3716

Constants b=40cm | CS=0.72 | CC =129.0 | CFW = 2.155
Chakrabarty | 55.4240 61.2698 40.000 0.6987

GA (FP) 49.9278 67.0981 40.0050 0.7035

Constants b=40cm | CS=0.72| CC =645 | CFW =1.0775
Chakrabarty | 42.3510 78.3650 40.000 0.4847

GA (FP) 42.5568 78.0625 40.0001 0.4848

Table 2: Comparison of the geometric programming approach used by
Chakrabarty and the GA using floating point representation.

On the other hand, our costs of steel, concrete and formwork represent the
47.80%, 41.50% and 10.70% of the total cost, which corresponds almost ex-
actly to the costs obtained by Chakrabarty. Floating point representation
was used in all the further experiments, since it provided the best results
overall. Notice that our model has more constraints than Chakrabarty’s
model, in order to make it more realistic. For example, we require the re-
lation z3/z, to be between 0.25 and 0.60 in order to have a “reasonable”
amount of reinforcement steel in our designs, so that we can guarantee a
good adherence between steel and concrete, and we can provide a good
control of the beam’s deflection. Since Chakrabarty doesn’t impose this
constraint in his model, some of his results violate it. The results of exper-
imenting with different values for the costs of reinforcement steel, concrete
and formwork are shown in Table 2. The discrepancies between our results
and those produced by Chakrabarty’s method will indicate some violation
of the constraints imposed by our model.

Future Work and Conclusions

Even when we already have some concrete results in this research, a lot of
work remains to be done. For example, we are currently exploring tech-
niques for adjusting the parameters of the GA, such as fuzzy logic. Also,
we are interested on doing a theoretical analysis of the search space of this
optimization problem, so that we can devise some strategies to solve it
more efliciently. Nevertheless, our current results are very promising, and
the system has called the attention of more than one engineer both in the
academia and the building industry in México. We have been working in
the use of GAs for structural optimization problems during the last two



years, and so far, we have implemented systems to generate optimal designs
of beams, columns and plane and space trusses. However, our final goal is
to develop a complete structural optimization system that uses GAs, and
that probably incorporates also the traditional mathematical programming
techniques available, together with some other powerful heuristics such as
tabu search and simulated annealing. Such a system intends to be a very

powerful tool for computer aided structural design that will allow to reduce
costs without sacrificing safety.
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