
Multi-Objective Compact Differential Evolution

Jesus Moises Osorio Velazquez
CINVESTAV-IPN, Av. IPN 2508,

San Pedro Zacatenco, Gustavo A. Madero,
México D.F. 07360, MEXICO.

e-mail: moises.osorio@wkoder.com

Carlos A. Coello Coello
CINVESTAV-IPN, Av. IPN 2508,

San Pedro Zacatenco, Gustavo A. Madero,
México D.F. 07360, MEXICO.

e-mail: ccoello@cs.cinvestav.mx

Alfredo Arias-Montaño
IPN-ESIME, Av. Ticoman 600,

San José Ticoman, Gustavo A. Madero,
México D.F. 07340, MEXICO.

e-mail: aarias@ipn.mx

Abstract—A wide range of problems in engineering require
the simultaneous optimization of several objectives. Given the
nature of such problems, it is often the case that the optimization
process needs to take place from a device with very limited
resources. Compact algorithms are a suitable alternative for being
implemented in devices with limited computing resources, but so
far, they have been used only to solve single-objective optimization
problems. Here, we present a multi-objective compact algorithm
based on differential evolution. The proposed algorithm obtains
competitive results (and even better in some cases) than state-of-
the-art multi-objective evolutionary algorithms while using less
memory resources because of its statistical representation of the
population.

I. INTRODUCTION

In many areas of engineering, the optimization of two or
more objectives is frequently required. Such problems, called
multi-objective problems (MOPs) have not one, but a set of
optimal solutions. Several mathematical programming methods
are currently available for solving MOPs [1]. Nevertheless,
such methods have some limitations and usually require ad-
ditional information about the problem to be solved. Such
limitations have motivated the use of metaheuristics, from
which multi-objective evolutionary algorithms (MOEAs) have
become a very popular choice.

In the real world, there are many applications that in-
volve solving optimization problems without using too many
computer resources, maybe because of cost or space reasons.
These situations usually arise in robotics and control prob-
lems. For these types of problems, state-of-the-art evolutionary
algorithms (EAs) can normally not be used because of the
high amount of computer resources that they usually require.
Compact evolutionary algorithms (CEAs) have been developed
as a viable choice for these types of problems. A compact EA
belongs to the class of estimation of distribution algorithms
(EDAs) [2] but adopts the principles used in traditional EAs.
EDAs only save a statistical representation of the population.
In this way, CEAs require less memory than their traditional
counterparts. Although there exist CEAs that are suitable
for being implemented in devices with limited computing
resources, few attempts have been made to extend their ap-
plication to the multi-objective optimization case (see [3],
[4]). In these cases, binary code representation and PBIL
strategy [5] are used. To the best of the authors’ knowledge, no
CEAs currently exist for solving multi-objective optimization
problems using real-coded representation. In this paper, we
propose the first multi-objective compact differential evolution
algorithm (mocDE). This algorithm is designed to use less
memory resources by adopting a statistical representation of

the main population instead of the whole population, adopted
by traditional MOEAs. The proposed approach was also de-
signed to produce competitive results with respect to state-of-
the-art MOEAs.

The remainder of this paper is organized as follows: In
Section II we present a brief review of some previous work
related to the design of CEAs. Then, in Section III, we present
our proposed mocDE. Section IV describes the methodology
used for benchmarking our proposed mocDE, using standard
test MOPs and performance measures usually adopted in the
multi-objective optimization literature. Section V is devoted
to present a comparison of results of our proposed approach
with respect to several state-of-the-art MOEAs. Finally, in
Section VI we present our conclusions and some possible paths
for future work.

II. COMPACT EVOLUTIONARY ALGORITHMS

In this section, we describe the main characteristics of
several CEAs found in the literature.

A. Compact Genetic Algorithm

The Compact Genetic Algorithm (cGA) was the first CEA
ever proposed [6]. cGA simulates a traditional genetic algo-
rithm (GA) with binary encoding and consists of a probability
vector v of length n which is initialized with n values equal
to 0.5, determining the probability that a gene has of being
either 0 or 1. At each iteration, it takes two samples from v,
which serve as individuals, and it calculates their fitness to
compete against each other. The winner affects v according to
the virtual population size p. If the winner has a 1 in gene
i and the loser has a 0, the probability of vi increases 1/p.
Otherwise, vi decreases 1/p. In case both individuals have the
same value, v is not modified. The resulting vector v represents
the final solution.

With a population of p individuals, cGA requires only
n log2(p+1) memory bits. The selection process used by the
cGA focuses on favoring the best genes, instead of the best in-
dividuals as in a traditional GA. Therefore, generating individ-
uals from this vector can be seen as a shortcut to the final goal
of crossover. Two different cGA variants were proposed [7]:
Persistent Elitist Compact Genetic Algorithm (pe-cGA) and
Non-Persistent Elitist Compact Genetic Algorithm (ne-cGA).
Both variants, showed a better performance than cGA after
incorporating elitism to the optimization process. Both the
pe-cGA and the ne-cGA make use of an elite individual, in
addition to the probability vector v. At each iteration, these

algorithms only generate one more individual which competes
against the elite one. The main difference between these two
variants resides in the moment a new individual becomes the
elite individual. The pe-cGA only replaces the elite individual
when the new individual is better. In the ne-cGA, the elite
individual is replaced when the new individual is better or
when it has not been replaced after η iterations. Note that the
pe-cGA is equivalent to the ne-cGA when η =∞.

B. Real-Valued Compact Genetic Algorithm

The Real-Valued Compact Genetic Algorithm (rcGA) [8] is
another variant of the cGA that takes the compact feature from
the binary domain to the real domain. In rcGA, the probability
vector v is not a vector of bits but a matrix of dimension n×2:

V = [~µ, ~σ] (1)

where ~µ and ~σ are vectors of length n. Each position i of ~µ
and ~σ represent the mean and standard deviation, respectively,
of the decision variable xi in the problem to optimize. Such
vectors represent a Gaussian probability distribution function
(PDF) truncated to the interval [-1, 1] with a height that is
normalized to an area of 1. At the beginning, the values ~µ
are initialized with 0 and ~σ with α, where α is a constant
(α = 10) so that the PDF works as a uniform distribution
that converges to a Gaussian distribution. As in the pe-cGA
and the ne-cGA, an elite individual is generated to guide the
optimization process, and in each iteration a new individual is
generated, by means of v, to compete against the elite. Because
the rcGA deals with real values instead of binary values, the
update rules of v are different:

µt+1
i = µti +

1

p
(wi − li) (2)

(σt+1
i)2 = (σti)

2 + (µti)
2 − (µt+1

i)2 +
1

p
(w2

i − l2i) (3)

Both persistent and non-persistent variants of the rcGA
work as the pe-cGA and the ne-cGA, and even show the same
features regarding solution quality and convergence speed. The
authors of the rcGA also show that using one variant or another
is problem dependent.

Sampling mechanism: To generate the variable i of a new
individual x by means of the Gaussian PDF, the rcGA uses
the next formula:

PDF (xi) =
e
− (x−µi)

2

2σ2
i

√
2
π

σi

(
erf

(
µi+1√
2σi

)
− erf

(
µi−1√
2σi

)) (4)

where erf is the error function [9], and µi and σi are
the mean and standard deviation of variable i, respectively.
From the PDF, its cumulative distribution function (CDF)
is calculated by Chebyshev polynomials, using the method
described in [10]. Given the co-domain of the CDF is [0, 1],
to obtain a sample si, a random number ri ∈ [0, 1) taken
from an uniform distribution is needed. Then, this random
number is evaluated by the inverse function of the CDF, i.e.,
si = CDF−1(ri). The resulting sample is in the interval

[−1, 1] and to return it back to the original interval [a, b] of
the variable, the formula xi = a+ b−a

2 (si + 1) is applied.

C. Compact Differential Evolution

Compact Differential Evolution (cDE) [11] was introduced
after modifying the rcGA to use the principles of differential
evolution (DE) instead of those of GAs. Since cDE uses the
same sampling mechanism of the rcGA, both algorithms are
very similar. Considering the most common implementation of
DE, DE/rand/1/bin, at each iteration three individuals xr, xs
and xt are sampled by means of v, and are used to create a
new individual x′off . This new individual is recombined with
the elite individual to finally generate individual xoff , which
will compete against the elite individual. cDE and the rcGA
only differ in their crossover and mutation mechanisms. cDE
also has two variants: with persistent elitism (pe-cDE) and with
non-persistent elitism (ne-cDE). Both variants work as in the
rcGA.

cDE has shown a very good performance in a wide range
of problems, and has been compared even against traditional
differential evolution. Some reasons for its success, described
in more detail in [11], are:

• The cDE generates new individuals strictly following
the DE principles, and not only by means of v,
increasing its exploratory power.

• Unlike the cGA and the rcGA, the cDE allows to di-
rectly implement the survival scheme of DE, avoiding
degradation.

• Given that cDE is based on a probabilistic structure,
it is unnecessary to rely on the control parameters
randomness because such randomness is introduced
directly by the cDE in the solutions generated by
means of v.

• Although it does not aim to outperform DE, the cDE is
an excellent light version of DE because it is capable
of achieving a similar performance while reducing the
use of 2 · p individuals to only 4.

III. OUR PROPOSED APPROACH

In this section, we describe the Multi-Objective Compact
Differential Evolution (mocDE) approach, which is proposed
in two versions: with persistent elitism and with non-persistent
elitism. Besides solving unconstrained multi-objective opti-
mization problems, this approach:

• Handles the convergence speed because of its two vari-
ants: with persistent elitism and with non-persistent
elitism.

• Saves memory resources by using a statistical repre-
sentation of the main population.

• Produces a good distribution of solutions by using an
archive based on Chebyshev aggregation functions.

• Has a great exploratory power due to the use of
differential evolution principles.

A. Population representation

As cDE, mocDE operates on a statistical representation of
the main population and not on a set of individuals. This allows
the use of only five vectors of length n (number of decision
variables) instead of p (population size) vectors, achieving a
linear order memory savings. The statistical representation of
the population, v, is defined by vectors µ and σ (both of length
n) that represent the mean and the standard deviation of each
decision variable, respectively. The values of µi and σi define
the Gaussian PDF of variable xi, truncated in the interval
[−1, 1] with normalized height, as follows:

PDF (xi) =
e
− (x−µi)

2

2σ2
i

√
2
π

σi

(
erf

(
µi+1√
2σi

)
− erf

(
µi−1√
2σi

)) (5)

From the PDF, mocDE obtains the inverted CDF that
allows to take a sample si by means of a uniform random
number. The general form of CDF−1 is:

CDF−1(µi, σi) = µi −
√
2σi ×

erf−1
(
(x− C)

(
erf

(
µi − 1√

2σi

)
− erf

(
µi + 1√

2σi

)))
(6)

where erf is the error function, and C is the integration
constant obtained when calculating the CDF:

C = −CDF (−1) = −
erf

(
µi+1√
2σi

)
erf

(
µi−1√
2σi

)
− erf

(
µi+1√
2σi

) (7)

Figure 1 shows the normalization of two truncated Gaus-
sian curves to obtain their PDF, whilst Figure 2 shows a PDF
and its CDF.

During the optimization process, mocDE maintains an elite
solution and, in each iteration, it generates a new solution
to be compared to the elite solution. Then, the winning
solution is added to the population, i.e., it affects the statistical
representation of the population.

B. Elitism

Ahn and Ramakrishna [7] show the benefits of elitism in
the optimization process when using a compact evolutionary
algorithm. Based on that work, mocDE implements the same
elitism classes: persistent and non-persistent. This originates
two variants: Persistent Elitist Multi-Objective Compact Differ-
ential Evolution (pe-mocDE) and Non-Persistent Elitist Multi-
Objective Compact Differential Evolution (ne-mocDE).

Both variants use an extra individual called elite during the
optimization process to compare it against the new generated
solution and determine if such solution improves the popula-
tion or not. If the elite solution is better than the new one,
it affects the statistical representation of the population, else
the new solution affects the population and replaces the elite
solution. Such substitution is only done when:

• The new solution dominates the elite solution.

• Both solutions are non-dominated but the new solution
can be added to the archive (see subsection III-C).

• η iterations have passed since the last time the elite
solution was replaced (only in ne-mocDE).

The main difference between both variants is only the last
case of substitution. This adds an extra parameter to ne-mocDE
called η, which should be no greater than the population size,
i.e., η < p according to [7].

C. Archive of non-dominated solutions

To keep a good distribution in the solutions, mocDE
implements an external archive that works as the one of
MOEA/D. Such archive uses Chebyshev aggregation functions,
where weight vectors λi, i = 1, 2, ..., p are defined by the user
and represent the desired distribution. This archive helps to
determine whether a solution improves the distribution and it
must be declared as the winner when affecting the population.
The Chebyshev scaling method has the powerful feature of
being able to generate all the Pareto optimal solutions [1].
The Chebyshev method is applied as follows:

gi(x) = max
1≤j≤k

λi,j(fj(x)− zj) (8)

where z is a reference vector and λ is a set of vectors that
define the desired distribution. The reference vector z is the
ideal vector found at the current time, i.e., zi = min fi(x) for
all x generated during the optimization process. The maximum
archive size should be defined by the user and represents the
number of solutions to be returned as a result.

Algorithm 1 shows how a new solution x is added to
archive A using the reference vector z, returning true if it
was successfully added or false otherwise.

Algorithm 1 archive function in mocDE
Require: n > 0 ∧ k > 1 ∧ p > 0 ∧ x ∈ Rn ∧ z ∈ Rk ∧ f :
Rn → Rk ∧A ∈ Rp×n ∧ λ ∈ Rp×k ;

Ensure: If solution x was added to archive A
for i = 1→ k do {Update ideal vector}

if fi(x) < zi then
zi ← fi(x)

end if
end for
added ← FALSE
for i = 1→ p do {Update archive}
f1 ← max

1≤j≤k
λi,j |fj(x)− zj |

f2 ← max
1≤j≤k

λi,j |fj(Ai)− zj |
if f1 < f2 then {x is better than Ai}

added ← TRUE
Ai ← x

end if
end for
return added

Fig. 1. Normalization of truncated gaussian curves in interval [−1, 1], with µ = 0 and (a) σ = 1 and (b) σ = 10.

(a) (b)

Fig. 2. Relation of a (a) PDF (with µ = 0 and σ = 0.3) and its (b) CDF.

D. MocDE Algorithm

Our proposed approach works as follows. At the beginning,
the value of µ is set to 0 and σ is set to α, where α is
a constant (α = 10) that allows the PDF to work as a
uniform distribution that converges to a Gaussian distribution.
It also creates an elite individual e that guides the optimization
process, which is added as the first solution to the archive
and initializes the ideal vector z, which works as a reference
vector in the Chebyshev method. At each iteration, mocDE
uses the standard implementation of differential evolution
DE/rand − to − best/1/bin, but it can be replaced by any
other DE variant. It generates three individuals xr, xs and xt
by means of v, to produce a new individual, x′off . The new
individual is recombined with the elite individual to generate
individual, xoff , which will compete against the elite itself. To
decide if xoff is better than e, it is checked if f(xoff) ≺ f(e).
In case both solutions are non-dominated, xoff is the winner if
it can be added to the archive, verifying that there exists some
i ∈ {1, .., p} such that gi(Ai) > gi(xoff) (see equation (8)).
The proposed approach is shown in Algorithm 2, where α is
usually equal to 10.

IV. PERFORMANCE ASSESSMENT

To evaluate the performance of our proposed mocDE, the
Zitzler-Deb-Thiele (ZDT) [12] and the Deb-Thiele-Laumanns-
Zitzler (DTLZ) [13] test suites were used as benchmarks.
To test the quality of the final solutions for each algorithm

Algorithm Parameter Value

mocDE

Variant pe-mocDE
Population size p 100

Differential variation F 1.0
Crossover probability C 0.1

NSGA-II

Population size p 100
Mutation rate m 0.01

Crossover probability C 0.9

MOEA/D

Population size p 100
Niche size 100 (2D), 150 (3D)

Update limit 10 (2D), 15 (3D)
Differential variation F 1.0
Crossover probability C 0.5

Mutation rate m 1.0 / n
Selection probability 0.9

PAES

Population size p 100
Mutation rate m 1.0 / n

Bisection 5
Distribution index 20

TABLE I. PARAMETERS FOR MOCDE AND STATE-OF-THE-ART
MOEAS.

the following quality indicators have been used: Hypervolume
(IH) [14], Inverted generational distance (IIGD) [15], Binary
multiplicative ε (Iε∗) [16], Binary additive ε (Iε+) [16], and
Two set Coverage (IC) [14]. The first two are unary and the
rest are binary indicators.

The different MOEAs and their corresponding parameters
adopted in our comparative study are shown in Table I.

All results were obtained by running the algorithms for

Algorithm 2 Multi-Objective Compact Differential Evolution
(mocDE)
Require: n > 0 ∧ k > 1 ∧ p > 0 ∧ Cr > 0 ∧ F > 0 ∧ η >
0 ∧ f : Rn → Rk ∧ λ ∈ Rp×k

Ensure: Set of solution vectors A
t← 0 {Current iteration}
θ ← 0 {Survived iterations by the elite solution}
for i = 1→ n do {Initialize v = {µ, σ}}
µi ← 0 {Mean}
σi ← α {Standard deviation}

end for
Generate elite individual e, by means of v
Initialize archive of non-dominated solutions A ←
{e}p, z ← f(e)
while stopping criteria is not met do

Generate three individuals xr, xs and xt, by means of V
x′off ← xt+F ·(xr−xs)+F ·(e−xt) {Apply mutation}
for i = 1→ n do {Do crossover}
r ← rand(0, 1) {Generate an uniform random num-
ber}
if r < Cr then
xoffi ← ei

else
xoffi ← x′offi

endif
end for
if f(xoff) ≺ f(e) ∨ θ ≥ η then {Comparison of θ ≥ η
is skipped in the persistent variant}
w ← xoff {Winner}
l← e {Loser}
e← xoff
θ ← 0
archive(A, z, xoff) {Add to the archive}

else
if f(e) ⊀ f(xoff)∧archive(A, z, xoff) then {If non-
dominated and can be added to the archive}
w ← xoff {Winner}
l← e {Loser}
e← xoff
θ ← 0

else
w ← e {Winner}
l← xoff {Loser}
θ ← θ + 1

endif
endif
for i = 1→ n do {Update population representation}
µt+1
i = µti +

1
p (wi − li)

σt+1
i =

√
(σti)

2 + (µti)
2 − (µt+1

i)2 + 1
p (w

2
i − l2i)

end for
t← t+ 1

endwhile
return A

the test problems after 30 independent runs, performing a
maximum of 20,000 evaluations.

V. RESULTS

Because of the results obtained when comparing the dif-
ferent variants of mocDE, pe-mocDE was chosen as the best
mocDE variant (this was the outcome of a comparison against
ne-moCDE not included here due to space limitations) and will
represent mocDE in this section. Next, we compare mocDE
(pe-mocDE) to PAES, MOEA/D and NSGA-II.

In problems ZDT1 and ZDT2, mocDE and NSGA-II show
the best results according to unary quality indicators but
binary indicators determine that mocDE is better than NSGA-
II. Figure V shows the Pareto front approximations of all
algorithms for problem ZDT1.

In ZDT3, NSGA-II presents the best results followed by
mocDE, according to the unary indicators and additive ε
(I+ε). Nevertheless, the two set coverage indicator (IC) and
multiplicative ε (I∗ε) show mocDE as the winner. In ZDT4,
the best results are from MOEA/D followed by PAES and
mocDE, which showed competitive and more consistent results
than PAES. In ZDT6, mocDE shows the best results but
with some instability. For problems DTLZ1 and DTLZ3, both
mocDE and PAES obtained the best results with PAES having
a better graphical outcome. NSGA-II showed highly compet-
itive results according to the unary indicators, but mocDE
presented better results regarding the binary indicators. In
problems DTLZ4 and DTLZ7, NSGA-II was better according
to the unary indicators but the binary indicators showed that
mocDE had a better performance. In DTLZ5, NSGA-II was
the best algorithm, followed by mocDE which was better than
MOEA/D and PAES. In DTLZ6, mocDE obtained the best
results according to all the indicators. Figure V shows the
Pareto front approximations obtained for DTLZ6.

Tables II, III, IV, and V show the complete results of
mocDE, PAES, MOEA/D and NSGA-II for all the ZDT and
DTLZ problems. The best results are shown in boldface.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a MOEA based on the principles of Compact
Differential Evolution (cDE) [11] was proposed. mocDE uses
only one new solution in each iteration, allowing it to apply
cDE concepts as in mono-objective problems. Nevertheless,
mocDE has a non-dominated solution archive whose goal is
to maintain the best set of solutions found and a replacement
criteria for such solutions, helping in approximating the real
Pareto front. The results obtained with our pe-mocDE indicate
that it is very important to rely on elite individuals which can
reach good search regions, and manage to avoid local optima
due to the inherent randomness of the sampling process.
Our proposed mocDE was found to be highly competitive
or superior to several state-of-the-art MOEAs in 10 out of
12 problems and was very close to the best algorithm in the
other two problems. This is remarkable if we consider that our
proposed approach was designed to produce important memory
savings so that it’s suitable for being implemented in hardware.
Our proposed approach also produced good distributions of
solutions, although it was not better than NSGA-II in this
regard. Therefore, it is necessary to investigate alternative

Fig. 3. Outcome of all algorithms when solving problem ZDT1.

Fig. 4. Outcome of all algorithms when solving problem DTLZ6.

MOP Indicator mocDE NSGA-II MOEA/D PAES
µ σ µ σ µ σ µ σ

ZDT1 IIGD 0.0003 0.0000 0.0003 0.0000 0.0008 0.0002 0.0004 0.0013
IH 0.9988 0.0001 0.9983 0.0001 0.9938 0.0016 0.8372 0.1714

ZDT2 IIGD 0.0003 0.0000 0.0003 0.0000 0.0006 0.0002 0.0139 0.0070
IH 0.9957 0.0002 0.9926 0.0007 0.9787 0.0065 0.6757 0.0599

ZDT3 IIGD 0.0021 0.0002 0.0006 0.0000 0.0068 0.0021 0.0310 0.0116
IH 0.9962 0.0004 0.9975 0.0004 0.9345 0.0197 0.7606 0.1506

ZDT4 IIGD 0.0161 0.0077 0.0229 0.0121 0.0068 0.0080 0.0139 0.0043
IH 0.9921 0.0037 0.9893 0.0056 0.9966 0.0039 0.8968 0.1293

ZDT6 IIGD 0.0001 0.0000 0.0011 0.0002 0.0002 0.0001 0.0022 0.0014
IH 0.9985 0.0018 0.9906 0.0014 0.9973 0.0011 0.5277 0.2614

DTLZ1 IIGD 0.0164 0.0066 0.0839 0.0445 0.1371 0.1793 0.0062 0.0035
IH 1.0000 0.0000 0.9998 0.0004 0.9953 0.0122 0.9968 0.0015

TABLE II. VALUES OF THE UNARY PERFORMANCE MEASURES FOR ALL THE MOEAS COMPARED IN THE ZDT TEST PROBLEMS.

MOP Indicator mocDE NSGA-II MOEA/D PAES
µ σ µ σ µ σ µ σ

DTLZ2 IIGD 0.0008 0.0000 0.0008 0.0000 0.0008 0.0000 0.0052 0.0008
IH 0.8956 0.0032 0.8768 0.0098 0.8781 0.0025 0.3937 0.0652

DTLZ3 IIGD 0.0321 0.0152 0.1765 0.0665 0.2794 0.3707 0.0120 0.0061
IH 1.0000 0.0000 0.9998 0.0002 0.9963 0.0093 0.9958 0.0017

DTLZ4 IIGD 0.0035 0.0007 0.0012 0.0000 0.0029 0.0024 0.0143 0.0019
IH 0.8454 0.0255 0.8900 0.0085 0.8598 0.0687 0.2006 0.1358

DTLZ5 IIGD 0.0001 0.0000 0.0001 0.0000 0.0001 0.0000 0.0028 0.0012
IH 0.9830 0.0008 0.9974 0.0006 0.9809 0.0019 0.6649 0.1216

DTLZ6 IIGD 0.0001 0.0000 0.0174 0.0010 0.0006 0.0005 0.0039 0.0016
IH 0.9995 0.0000 0.7912 0.0188 0.9953 0.0043 0.8222 0.0290

DTLZ7 IIGD 0.0021 0.0001 0.0009 0.0001 0.0036 0.0027 0.0089 0.0024
IH 0.9646 0.0015 0.9624 0.0059 0.8988 0.0229 0.6423 0.2512

TABLE III. VALUES OF THE UNARY PERFORMANCE MEASURES FOR ALL THE MOEAS COMPARED IN THE DTLZ TEST PROBLEMS.

archiving methods that allow us to improve the distribution
of the solutions obtained. It would also be interesting to
test our proposed approach in additional multi-objective test
instances such as the WFG and CEC 2009 benchmarks, as
well as to compare our proposed approach against newer
variants of MOEAs, reported in recent CEC competitions.
Finally, it would be interesting to analyze the CPU usage of
our proposed mocDE to determine if it could be used in real-
time applications.

ACKNOWLEDGMENT

The first author acknowledges support from CONACyT to
pursue graduate studies in computer science at CINVESTAV-
IPN. The second author acknowledges support from CONA-
CyT project no. 221551. The third author acknowledges sup-
port from IPN-ESIME through the COTEBAL, SIP/EDI and
SIBE programs.

REFERENCES

[1] K. Miettinen, Nonlinear multiobjective optimization. Kluwer Academic
Publishers, Boston, 1999.

[2] P. Larrañaga and J. Lozano, Estimation of Distribution Algorithms. A
New Tool for Evolutionary Computation. Kluwer Academic Publishers,
2002.

[3] S. I. V. Peña, S. B. Rionda, and A. H. Aguirre, “Multiobjective shape
optimization using estimation distribution algorithms and correlated
information,” in Evolutionary Multi-Criterion Optimization. Springer,
2005, pp. 664–676.

[4] S. Bureerat and K. Sriworamas, “Population-based incremental learn-
ing for multiobjective optimisation,” in Soft Computing in Industrial
Applications. Springer, 2007, pp. 223–232.

[5] S. Baluja, “Population-based incremental learning: A method for in-
tegrating genetic search based function optimization and competitive
learning,” School of Computer Science, Carnegie Mellon University,
Pittsburg, Pennsylvania 15213, Tech. Rep. CMU-CS-94-163, 1994.

[6] G. Harik, F. G. Lobo, and D. E. Goldberg, “The compact genetic
algorithm,” in IEEE Transactions on Evolutionary Computation, vol. 3,
no. 4, 1998, pp. 523–528.

[7] C. W. Ahn and R. Ramakrishna, “Elitism-based compact genetic
algorithms,” IEEE Transactions on Evolutionary Computation, vol. 7,
no. 4, pp. 367 – 385, August 2003.

[8] E. Mininno, F. Cupertino, and D. Naso, “Real-valued compact genetic
algorithms for embedded microcontroller optimization,” IEEE Transac-
tions on Evolutionary Computation, vol. 12, no. 2, pp. 203–219, 2008.

[9] W. Gautschi, “Error function and Fresnel integrals,” in Handbook of
Mathematical Functions, M. Abramowitz and I. Stegun, Eds. New
York: Dover, 1965, ch. 7, pp. 295–329.

[10] W. J. Cody, Jr., “Rational Chebyshev approximations for the error
function,” Mathematics of Computation, vol. 23, no. 107, pp. 631–637,
Jul. 1969. [Online]. Available: http://www.jstor.org/stable/2004390

[11] E. Mininno, F. Neri, F. Cupertino, and D. Naso, “Compact differential
evolution,” IEEE Transactions on Evolutionary Computation, vol. 15,
no. 1, pp. 32 –54, February 2011.

[12] E. Zitzler, K. Deb, and L. Thiele, “Comparison of multiobjective
evolutionary algorithms: Empirical results,” Evolutionary Computation,
vol. 8, pp. 173–195, 2000.

[13] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable Test Prob-
lems for Evolutionary Multiobjective Optimization,” in Evolutionary
Multiobjective Optimization. Theoretical Advances and Applications,
A. Abraham, L. Jain, and R. Goldberg, Eds. USA: Springer, 2005, pp.
105–145.

[14] E. Zitzler and L. Thiele, “Multiobjective Optimization Using Evolution-
ary Algorithms—A Comparative Study,” in Parallel Problem Solving
from Nature V, A. E. Eiben, Ed. Amsterdam: Springer-Verlag,
September 1998, pp. 292–301.

[15] D. A. V. Veldhuizen and D. A. V. Veldhuizen, “Multiobjective evo-
lutionary algorithms: Classifications, analyses, and new innovations,”
Evolutionary Computation, Tech. Rep., 1999.

[16] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G.
da Fonseca, “Performance assessment of multiobjective optimizers: An
analysis and review,” IEEE Transactions on Evolutionary Computation,
vol. 7, pp. 117–132, 2002.

MOP Ind. Alg A Alg B
mocDE NSGA-II MOEA/D PAES

ZDT1

IC

mocDE − − − 0.3072 0.9536 0.0357
NSGA-II 0.0076 − − − 0.9061 0.0179
MOEA/D 0.0004 0.0003 − − − 0.0047

PAES 0.0127 0.2043 0.4496 − − −

I
ε+

mocDE − − − 0.0121 0.0030 0.0106
NSGA-II 0.0127 − − − 0.0036 0.0115
MOEA/D 0.0235 0.0223 − − − 0.0197

PAES 0.3677 0.3661 0.3528 − − −

Iε∗

mocDE − − − 1.0933 1.0155 1.0562
NSGA-II 1939.8397 − − − 3.7745 2.5625
MOEA/D 19415.3127 18.0051 − − − 16.8749

PAES 352979.4390 69357.5846 60707.0336 − − −

ZDT2

IC

mocDE − − − 0.3780 0.8545 0.0291
NSGA-II 0.0046 − − − 0.7233 0.0177
MOEA/D 0.0001 0.0459 − − − 0.0091

PAES 0.0069 0.2018 0.3836 − − −

I
ε+

mocDE − − − 0.0091 0.0040 0.0093
NSGA-II 0.0125 − − − 0.0059 0.0113
MOEA/D 0.0409 0.0357 − − − 0.0185

PAES 0.5870 0.5851 0.5722 − − −

Iε∗

mocDE − − − 1.0144 1.0054 1.0146
NSGA-II 5045.5631 − − − 1.7980 1.1681
MOEA/D 39864.9492 12.8372 − − − 2.5276

PAES 585684.8224 259213.3343 249077.7582 − − −

ZDT3

IC

mocDE − − − 0.1542 0.9779 0.0439
NSGA-II 0.0997 − − − 0.9935 0.0344
MOEA/D 0.0004 0.0000 − − − 0.0059

PAES 0.0564 0.1551 0.4510 − − −

I
ε+

mocDE − − − 0.0218 0.0011 0.0114
NSGA-II 0.0070 − − − 0.0000 0.0065
MOEA/D 0.1442 0.1424 − − − 0.1296

PAES 0.5956 0.5942 0.5224 − − −

Iε∗

mocDE − − − 291.8517 1.0010 141.5607
NSGA-II 2212.7811 − − − 1.0000 322.0125
MOEA/D 110170.1276 108249.1763 − − − 27228.4280

PAES 460754.0149 459013.5366 377671.7812 − − −

ZDT4

IC

mocDE − − − 0.6562 0.1417 0.0146
NSGA-II 0.3078 − − − 0.1058 0.0135
MOEA/D 0.8143 0.8510 − − − 0.0241

PAES 0.7710 0.7489 0.5783 − − −

I
ε+

mocDE − − − 0.0525 0.1750 0.1989
NSGA-II 0.1615 − − − 0.2684 0.2702
MOEA/D 0.0454 0.0322 − − − 0.0906

PAES 0.1719 0.1507 0.2267 − − −

Iε∗

mocDE − − − 2.8921 8.7886 2.1943
NSGA-II 2.1174 − − − 12.8377 2.8963
MOEA/D 44.5183 47.3170 − − − 1.8115

PAES 96014.7412 102119.2899 13659.7303 − − −

ZDT6

IC

mocDE − − − 0.9846 0.8412 0.0077
NSGA-II 0.0008 − − − 0.0004 0.0099
MOEA/D 0.0008 0.9849 − − − 0.0068

PAES 0.0001 0.4649 0.4043 − − −

I
ε+

mocDE − − − 0.0021 0.0123 0.0083
NSGA-II 0.0826 − − − 0.0740 0.0827
MOEA/D 0.0170 0.0002 − − − 0.0156

PAES 0.4066 0.4043 0.4062 − − −

Iε∗

mocDE − − − 1.0052 1.0209 41.9239
NSGA-II 1234.2914 − − − 135.2997 50818.6292
MOEA/D 129.3453 1.0004 − − − 5325.9426

PAES 2.6926 2.4380 2.4569 − − −

DTLZ1

IC

mocDE − − − 0.9904 0.6557 0.0264
NSGA-II 0.0017 − − − 0.3874 0.0003
MOEA/D 0.2392 0.4418 − − − 0.0710

PAES 0.4356 0.6258 0.5366 − − −

I
ε+

mocDE − − − 0.0086 0.2152 0.5467
NSGA-II 2.7682 − − − 1.7941 2.8995
MOEA/D 4.3779 3.7240 − − − 4.4261

PAES 0.3736 0.3630 0.3730 − − −

Iε∗

mocDE − − − 1.0114 1.7860 4.1740
NSGA-II 349976.4876 − − − 16571.9186 82.7071
MOEA/D 3788.8168 689.2635 − − − 89.0216

PAES 361903.4032 252385.3753 67254.1126 − − −
TABLE IV. VALUES OF THE BINARY PERFORMANCE MEASURES FOR ALL

THE MOEAS COMPARED IN THE ZDT TEST PROBLEMS.

MOP Indicator Alg A Alg B
mocDE NSGA-II MOEA/D PAES

DTLZ2

IC

mocDE − − − 0.0222 0.2418 0.0061
NSGA-II 0.0044 − − − 0.0360 0.0027
MOEA/D 0.0068 0.0046 − − − 0.0018

PAES 0.0032 0.0059 0.0160 − − −

I
ε+

mocDE − − − 0.1014 0.0437 0.0903
NSGA-II 0.1800 − − − 0.1787 0.0933
MOEA/D 0.0979 0.1100 − − − 0.1036

PAES 0.7331 0.7056 0.7331 − − −

Iε∗

mocDE − − − 1.1735 1.0862 1.1523
NSGA-II 144748.4553 − − − 37431.2771 9.8529
MOEA/D 67.0391 15.4861 − − − 1.9911

PAES 674812.1680 252530.0816 324288.2939 − − −

DTLZ3

IC

mocDE − − − 0.9996 0.6180 0.0420
NSGA-II 0.0000 − − − 0.4042 0.0009
MOEA/D 0.2357 0.3929 − − − 0.1050

PAES 0.3546 0.5249 0.4590 − − −

I
ε+

mocDE − − − 0.0012 0.5999 1.4145
NSGA-II 8.1380 − − − 4.9019 8.4637
MOEA/D 12.6178 11.1733 − − − 12.6794

PAES 0.9886 0.9761 0.9877 − − −

Iε∗

mocDE − − − 1.0003 1.4620 2.9935
NSGA-II 416845.4902 − − − 7462.1463 507.9522
MOEA/D 5891.1202 1662.3479 − − − 182.9857

PAES 921766.6866 632961.9617 132743.2069 − − −

DTLZ4

IC

mocDE − − − 0.0188 0.1080 0.0172
NSGA-II 0.0065 − − − 0.0229 0.0068
MOEA/D 0.0111 0.0100 − − − 0.0026

PAES 0.0614 0.0038 0.0384 − − −

I
ε+

mocDE − − − 0.1662 0.1425 0.0133
NSGA-II 0.1849 − − − 0.1846 0.1174
MOEA/D 0.1586 0.1559 − − − 0.0114

PAES 0.9638 0.9521 0.9623 − − −

Iε∗

mocDE − − − 4.5330 27.1076 26.4156
NSGA-II 135583.1489 − − − 93819.9909 93625.9635
MOEA/D 18451.1499 896.8074 − − − 4.9309

PAES 894503.4408 452850.1570 490909.7774 − − −

DTLZ5

IC

mocDE − − − 0.0020 0.3023 0.0214
NSGA-II 0.0782 − − − 0.1903 0.0430
MOEA/D 0.0377 0.0011 − − − 0.0143

PAES 0.0542 0.0043 0.1177 − − −

I
ε+

mocDE − − − 0.0262 0.0046 0.0216
NSGA-II 0.0078 − − − 0.0075 0.0081
MOEA/D 0.0095 0.0265 − − − 0.0220

PAES 0.5499 0.5499 0.5499 − − −

Iε∗

mocDE − − − 1.0444 1.0077 1.0372
NSGA-II 80.7762 − − − 57.5902 1.0133
MOEA/D 6.5056 1.8791 − − − 1.0453

PAES 549916.7838 79694.1601 356232.9212 − − −

DTLZ6

IC

mocDE − − − 0.9983 0.9451 0.0104
NSGA-II 0.0000 − − − 0.0000 0.0002
MOEA/D 0.0000 0.9937 − − − 0.0058

PAES 0.0012 0.7497 0.3875 − − −

I
ε+

mocDE − − − -0.0000 0.0037 0.0165
NSGA-II 1.3309 − − − 1.3205 1.2812
MOEA/D 0.0798 0.0062 − − − 0.0612

PAES 0.6345 0.6345 0.6345 − − −

Iε∗

mocDE − − − 1.6239 4.2058 1.5164
NSGA-II 171.1133 − − − 97.0971 23.2563
MOEA/D 9.3099 1.1650 − − − 1.9309

PAES 572759.7626 68363.3602 317401.6423 − − −

DTLZ7

IC

mocDE − − − 0.1312 0.5262 0.0483
NSGA-II 0.0020 − − − 0.2680 0.0422
MOEA/D 0.0008 0.0186 − − − 0.0156

PAES 0.0048 0.0794 0.1131 − − −

I
ε+

mocDE − − − 0.1542 0.0730 0.1259
NSGA-II 0.1736 − − − 0.0940 0.0905
MOEA/D 0.7488 0.7118 − − − 0.3311

PAES 1.9071 1.8674 1.5094 − − −

Iε∗

mocDE − − − 1.1983 3.9230 1.1368
NSGA-II 37462.4683 − − − 1851.1962 19.1559
MOEA/D 309.8735 27.6673 − − − 4.8843

PAES 283791.0577 114238.3751 97017.9213 − − −
TABLE V. VALUES OF THE BINARY PERFORMANCE MEASURES FOR ALL

THE MOEAS COMPARED IN THE DTLZ TEST PROBLEMS.

