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ABSTRACT
Multi-Objective Evolutionary Algorithms (MOEAs) are po-
werful tools for solving a wide range of real-world appli-
cations that involve the simultaneous optimization of seve-
ral objective functions. However, their scalability to many-
objective problems remains as an important issue since, due
to the large number of non-dominated solutions, the search
is guided solely by the diversity criterion. In this paper, we
propose a novel MOEA that incorporates a density estima-
tor based on a visualization technique called Parallel Coor-
dinates. Using this approach, a graph is represented by a
digital image, where a pixel identifies the level of overlapping
line segments and those individuals covering a wide area of
the image have a high probability of survival. Experimental
results indicate that our proposed approach, called Multi-
objective Optimizer based on Value Path (MOVAP), out-
performs existing algorithms based on clustering (SPEA2),
crowding distance (NSGA-II), reference points (NSGA-III)
and the hypervolume indicator (HypE) on most of the pro-
blems of the WFG test suite for five and seven objectives,
while its performance in low dimensionality remains com-
petitive.
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1. INTRODUCTION
A Multi-objective Optimization Problem (MOP) is de-

fined as follows:

Minimize ~F (~x) := (f1(~x), f2(~x), . . . , fm(~x)) (1)

subject to ~x ∈ S, (2)

where ~x is the vector of decision variables, S ⊂ IRn is the
feasible region set and ~F (~x) is the vector of m (≥ 2) objective
functions (fi : IRn → IR). The aim is to seek from among
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the set of all values which satisfy the constraint functions
defined in equation (2) the particular set ~x ∗ which yields
the optimum values of all the objective functions.

Multi-Objective Evolutionary Algorithms (MOEAs) have
been successfully applied to solve MOPs, thus becoming
increasingly popular in recent years [4]. Their main com-
ponents are a population of individuals P = {(~x, ~y) : ~x ∈
S, ~y = ~F (~x)}; the operators: parent selection (π), variation
(ν) and survival selection (σ); as well as the iterative rule
P t+1 = σ

(
ν(π{P t}), P t

)
. The final population of a MOEA

is known as approximation set.
The main aims of a MOEA are: 1) to achieve convergence

to the Pareto optimal front,1 2) a uniform distribution along
the Pareto front and 3) a good spread of solutions. The lat-
ter two are closely related, generally applied in objective
space (IRm), and denoted by diversity. Convergence is usua-
lly achieved by means of Pareto dominance,2 while diversity
is handled through a density estimator.

During the last two decades, a number of density estima-
tors have been proposed, such as clustering [21] and crow-
ding distance [7]. Even though they are scalable to any num-
ber of objectives, their proximity to the Pareto optimal front
is poor, aggravating in many-objective problems (m ≥ 4)
[12, 16]. This is mainly due to the fact that most or all solu-
tions in the population quickly become non-dominated with
respect to the rest, and the best individuals are identified by
the density estimator. Thus, in some cases good locally non-
dominated solutions in terms of proximity toward the Pareto
optimal front might be filtered out at the expense of keeping
good solutions in terms of diversity, but which may be dis-
tant from the Pareto optimal front [1]. Another example of
a density estimator is the hypervolume indicator [19], which
leads to sets of solutions whose spread along the Pareto front
is maximized (although this does not guarantee a uniform
distribution). Nevertheless, the computational cost of the
hypervolume increases exponentially on the number of ob-
jectives [3], which makes it prohibitive for many-objective
problems. Finally, another diversity strategy is the use of
a set of reference points [6], which should be uniformly dis-
tributed in objective space. When using the most recom-
mended method for generating such points (Simplex-Lattice

1The Pareto optimal front is defined as POF := {~F (~x) ∈
IRm : ~x ∈ S, 6 ∃~y ∈ S, ~y ≺ ~x}.
2A solution ~x ∈ S dominates a solution ~y ∈ S (~x ≺ ~y), if and
only if ∀i ∈ {1, . . . ,m}, fi(~x) ≤ fi(~y) and ∃j ∈ {1, . . . ,m},
fj(~x) < fj(~y).
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Figure 1: An example of approximation set in two-
dimensional objective space (left) and its correspon-
ding Parallel-Coordinates graph (right).

Design (SLD) [17]), the cardinality of this set becomes very
large as the number of objectives increases.

In this paper, we address this issue and propose a novel
MOEA that incorporates a density estimator based on the
Parallel Coordinates [11] (also called Value-Path [14]). This
technique has been frequently used for visualizing results in
multi-objective optimization, specially in high-dimensional
spaces. Its applicability varies from the identification of dif-
ferences and similarities between alternatives, guidance in
selecting solutions, monitoring the progress of an optimiza-
tion run, assessment of the relative performance of different
algorithms [14, 18] to, more recently, guidance during the
search in bio-inspired meta-heuristics [9].

Value-Path is built in the 2-dimensional plane, where m
copies of the real line IR are placed perpendicular to the x-
axis and a point in IRm is represented by a polygonal line3

with vertices on the parallel axes. In Figure 1, we show an
example of this graph with its corresponding Pareto front,
composed of eleven non-dominated solutions. The basic idea
of our proposal is based on the following observations:

1. The POF is represented by the shaded area, which we
named trade-off area.

2. The boundaries between the white regions and the
trade-off area, which we call Pareto coordinates, give
us a hint of the shape of the POF.

3. As the number of uniformly distributed solutions in
the approximation set increases, the coverage of the
trade-off area becomes better.

4. Those individuals intersecting the upper-Pareto coor-
dinate are beyond the POF.

Therefore, the 2D-graphs of each distinct pair of objective
functions are transformed into a digital image4 and this in-
formation is extracted in order to assign a contribution to

3A polygonal line or polyline is a connected series of line
segments.
4The term image refers to a two dimensional light intensity
function g(a, b) where a and b denote spatial coordinates
and the value of g at any point (a, b) is proportional to the
brightness (or gray level) of the image at that point. A
digital image is an image that has been discretized in both
its spatial coordinates and brightness [8].

each individual. The aim of this paper is to propose a den-
sity estimator that can handle many-objective problems at
an affordable computational cost. To the best of our know-
ledge, this is the first MOEA that incorporates automatic
image analysis [8] in its search mechanism.

The remainder of this paper is organized as follows. In
Section 2, we briefly review some previous related work.
Section 3 is devoted to the description of our proposed algo-
rithm. In Section 4, we present a comparative study using
the Zitzler-Deb-Thiele (ZDT) [20] and the Walking-Fish-
Group (WFG) [10] test suites. Finally, Section 5 provides
our conclusions and some paths of future work.

2. PREVIOUS RELATED WORK
In this section, we briefly review some optimizers that

have a selection mechanism based on Pareto dominance plus
a density estimator that is applied in objective space. A
more comprehensive review can be found in [4, 13].

The Strength Pareto Evolutionary Algorithm 2 (SPEA2)
[21] assigns a fitness value to each individual by conside-
ring its density, the number of solutions that it dominates
as well as the number of solutions that dominate it. Such
fitness takes part in the processes of parent and survival se-
lection. The density is based on the clustering technique of
the kth nearest neighboring method, having a computational
complexity of O(|P |2(log |P |+m)).5 In addition, an archive
of non-dominated solutions computed so far is maintained
within a (pre-defined) limit, and periodically combined with
the current population.

The Nondominated Sorting Genetic Algorithm II (NSGA-
II) [7], ranks an individual according to the number of so-
lutions that dominate it. Thus, non-dominated members
obtain the first rank. Next, to discern between two indivi-
duals of the same hierarchy, the one that is located in a less
crowded region is preferred. In this case, crowding is calcu-
lated as the average distance of the two nearest neighbors
that surround the particular solution corresponding to each
objective, and it has a complexity of order O(|P |m log |P |).
The rank and the crowding distance induce a total order,
which is used in both parent and survival selection schemes.

NSGA-III [6] is an improved version of its predecessor
that is able to deal with many-objective problems. Thus,
the crowding distance is replaced by a niching strategy (of
complexity O(|P |2m + m3)), that requires a set of well-
spread reference points, which can be supplied by the user
or generated by the Simplex-Lattice Design (SLD) method
[17]. The population is normalized and associated with the
lines passing through the reference points and the origin.
Those individuals having the closest perpendicular distance
to segregated lines are chosen for the next generation. Un-
like NSGA-II, the parent selection is conducted by random
sampling.

Another interesting proposal is the Hypervolume Estima-
tion Algorithm (HypE) [2], which ranks the population as
NSGA-II, and uses a density estimator based on the indi-
vidual contributions to the hypervolume indicator. When
the number of objectives is small (≤ 3), the exact hypervo-
lume is calculated in O(|P |m+m|P | log |P |); otherwise, it is
estimated in O(|P |ms) using Monte Carlo sampling, where
a predefined number of samples (s) of objective vectors are
randomly drawn and the portion of objective vectors that

5|P | denotes the population size.
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Figure 2: Digital image of the Value Path of Fig. 1.

are dominated by a specific solution represents an estimate
for the hypervolume contribution of this solution. This ap-
proach is considered in the two selection schemes.

Hu and Yen [9] have been the only ones to propose den-
sity estimators based on Value Path, embedding them with
a multi-objective particle swarm algorithm. The basic prin-
ciple is that non-dominated solutions are ranked according
to the height of intersection between the parallel axes and
the polylines. In contrast with our proposal, this algorithm
is sensitive to objective ordering.

3. OUR PROPOSED APPROACH
In this section, we describe a new MOEA called Multi-

objective Optimizer based on Value Path (MOVAP), which
uses Pareto dominance as its primary search engine and a
density estimator based on Parallel Coordinates. The latter
is applied to parent and survival selection.

The core idea is to create a digital image containing the
Parallel Coordinates of each distinct pair of objective func-
tions (see Algorithm 1). These sub-graphs are attached next
to each other and only normalized individuals are conside-
red (line 5). In this case, the digital image is represented
as a matrix, where its dimensions are fixed, depending on
the number of objectives (m), the population size (|P |) and
the resolution parameter (γ) (lines 1-4). An element of this
array (pixel) corresponds to the number of intersecting poly-
lines (line 15) and the region above the upper-Pareto coor-
dinate is identified with the value minus one (lines 17-21).
Therefore, the gray levels oscillate in the range [−1, |P |].

In Algorithm 1, we adopt the notation p.~y to refer to the
objective vector of an individual p. The total number of sub-
graphs is given in line 1, and the equation of a line segment
is given in line 11. In the worst case, the computational
complexity of this algorithm is O(|P |2m2). Furthermore, in
Figure 2, we show an example of a digital image using a
resolution parameter γ = 3.

The next step is to determine the density of an individual
(see Algorithm 2). For this purpose, all pixels, as well as
their boundaries of a polyline are inspected (lines 13-27).
The boundary of a pixel q is limited to the eight points that
are at a unit distance from it, denoted by N8(q) (see, e.g.,
coordinate (15, 7) from Figure 2). This set of neighbors must
fall inside the current sub-graph (denoted by c).

During the inspection process, the number of edged, empty

Algorithm 1 Build PC-image

Require: Population P , resolution γ, objectives m
Ensure: Image IA×B , parameter θ
1: s← m(m− 1)/2
2: θ ← γ|P |/s
3: A← θ,B ← θs
4: I ← 0A×B
5: for all {p ∈ P : p.~y ∈ [0, 1]m} do
6: c← 0
7: for all i ∈ {1, . . . ,m− 1} do
8: for all j ∈ {i+ 1, . . . ,m} do

9: m← P.yj−P.yi
θ−1

10: for all k ∈ {0, . . . , θ − 1} do
11: y ← mk + P.yi
12: a← b(A− 1) (1− y)e
13: b← θc+ k
14: if a ∈ [0, A) then
15: I[a, b]← I[a, b] + 1
16: c← c+ 1
17: for all b ∈ {0, . . . , B} do
18: a← 0
19: while a < A and I[a, b] = 0 do
20: I[a, b]← −1
21: a← a+ 1
22: return I

and filled pixels are counted (lines 14-17). The overall den-
sity is updated according to their values, in such a way that
highly dense points (lines 18 and 27) or those intersecting
the upper-Pareto coordinate (lines 19 and 20) are penali-
zed, whereas isolated ones (line 22 and 25), belonging to the
trade-off area, are rewarded.

Once the matrix has been processed, the population den-
sity is normalized (line 31). Thus, extreme solutions6 ob-
tain zero (the best) value and the most crowded gets one
(the worst value). The density of individuals lying outside
the interval [0, 1] is equal to the Euclidean norm of the ob-
jective vector. The complexity of this procedure is of order
O(|P |2m2).

The proposed density estimator is coupled with a steady
state genetic algorithm, where one offspring is created at
each generation. In the following paragraph, we describe
the main loop of MOVAP, given by Algorithm 3.

First, the population is initialized, either randomly or
from a previously computed solution (line 3). At each ite-
ration, a binary tournament selection is performed, based
on the population density (line 5). Thus, isolated indivi-
duals have a high probability of mating. Next, an offspring
is created using the variation operators (line 6). The new
individual is added to the current population and a norma-
lization procedure (explained later on) is invoked (lines 7
and 8). If there are individuals outside the region of in-
terest, the one with the highest norm is removed from the
population. Otherwise, the population is ranked using the
non-dominated sorting procedure of NSGA-II [7] (lines 10-
13). If the last front consists of one individual (lines 14 and
15), then it is eliminated. Otherwise, the digital image is
built for calculating the density estimator, and the indivi-
dual with the highest value is discarded (lines 17-19).

6The set of all m points in IRm that yield the best value of
one objective function with the lowest norm.



Algorithm 2 Calculate population density

Require: Population P , image IA×B , parameter θ, extreme
solutions E, objectives m

Ensure: Density values D|P |×1

1: D ← 0|P |×1

2: vmin ←∞, vmax ← −∞
3: for all {p ∈ (P \ E) : p.~y ∈ [0, 1]m} do
4: c← 0
5: for all i ∈ {1, . . . ,m− 1} do
6: for all j ∈ {i+ 1, . . . ,m} do

7: m← P.yj−P.yi
θ−1

8: for all k ∈ {0, . . . , θ − 1} do
9: y ← mk + P.yi

10: a← b(A− 1) (1− y)e
11: b← θc+ k
12: if a ∈ [0, A) then
13: S ← N8(I[a, b])
14: nedge ←| {s ∈ S : s = −1} |
15: nempty ←| {s ∈ S : s = 0} |
16: nfilled ← 8− nedge − nempty
17: nsum ←

∑
s∈S,s>0 s

18: D[p]← D[p] + (A− a)I[a, b]
19: if nempty > 0 and nedge > 0 then
20: D[p]← D[p] + (a+ 1)nedgenempty
21: else
22: D[p]← D[p]− (a+ 1) (nedge + nempty)
23: if nfilled > 0 then
24: if m > 2 and (b mod 2) = 0 then
25: D[p]← D[p]− (A− a)nfilled
26: else
27: D[p]← D[p] + (A− a)nsum/nfilled
28: c← c+ 1
29: vmin ← min{vmin, D[p]− 1}
30: vmax ← max{vmax, D[p]}
31: Normalize ∀p ∈ (P \ E):

D[p]←

{
D[p]−vmin
vmax−vmin

if p ∈ [0, 1]m

‖p.~y‖ otherwise

32: return D

The normalization done in Algorithm 4 works in objective
space and serves for three purposes: it translates vectors to
the origin, if their coordinates are negative (lines 1-3); it
finds the extreme points (lines 5-8); and it normalizes the
population (line 9). It is noteworthy that if there are several
candidates parallel to one axis, the solution with the lowest
norm is preferred. Additionally, each component of ~zmin

corresponds to the best found objective value (line 4).
In the following, we determine the complexity of this ap-

proach. Parent selection is performed in O(1), as well as the
offspring generation and population reduction. The norma-
lization and verification of individuals inside the region of in-
terest is done in O(|P |m), each. The nondominated sorting
is of O(|P |2m). As seen before, the building of the image
and the density calculation can be performed in O(|P |2m2).
Therefore, the overall complexity of MOVAP at each itera-
tion is O(|P |2m2) with a maximum storage of O(|P |2).

Re-taking our previous example of Figure 1, we provide
the density values of the eleven non-dominated individuals
in Table 1. The best individuals are the extreme solutions
a and h, whereas the three candidates to be removed are

Algorithm 3 Main loop of MOVAP

Require: MOP, stopping criterion, image resolution γ
Ensure: Approximation set P
1: i← 1
2: D ← 0|P |×1

3: Initialize population P i

4: while termination condition is not fulfilled do
5: Perform parent selection
6: Create an offspring o
7: P i ← P i ∪ {o}
8: [P ′, E]← Normalize objectives (P i,m)
9: Q← {p ∈ P ′ : p.~y /∈ [0, 1]m}

10: if Q 6= ∅ then
11: r ← arg max~q∈Q ‖q.~y‖
12: else
13: {F1, . . . , Fk} ← Non-dominated sorting(P i)
14: if |Fk| = 1 then
15: r ← Fk
16: else
17: [I, θ]← Build PC-image (P ′, γ,m)
18: D ← Calculate pop. density (P ′, I, θ, E,m)
19: r ← arg maxp∈Fk

D[p]

20: Reduce population P i+1 ← P i \ {r}
21: i←i + 1
22: return P i

Algorithm 4 Normalize objectives

Require: Population P , objectives m
Ensure: Population P ′, extreme points E
1: vi ←| min ({0} ∪ {p.yi : p ∈ P}) |, ∀i ∈ {1, . . . ,m}
2: if ~v 6= ~0 then
3: P ′ ← {p.~y + ~v : p ∈ P}
4: Update the minimum reference point ~zmin

5: for all i ∈ {1, . . . ,m} do
6: e← arg minp∈P ′

p.yi
‖p.~y‖

7: E ← E ∪ {e}
8: zmaxi ← ei {see Figure 1}
9: p.~y ← p.~y−~zmin

~zmax−~zmin , ∀p ∈ P ′

10: return P ′, E

i, j and k. This is because they are outside the region of
interest, beyond the Pareto Front or too close to other indi-
viduals. Moreover, the special pattern of solution j, where it
intersects the upper-Pareto coordinate, is recognized in the
bounded pixels of Figure 2. Finally, the concave geometry
of the approximation set can be appreciated as a valley-like
curve in the upper-Pareto coordinate. Here, it is worth men-
tioning that when the geometry is convex, the lower-Pareto
coordinate takes a mountain-like curved shape, while when
it is linear, the upper-Pareto coordinate forms a triangle.
In high dimensionality, if the same pattern is repeated for
each pair of objectives, we can deduce that the Pareto front
adopts such form. Otherwise, it corresponds to a mixed
shape.

4. EXPERIMENTAL RESULTS
In this section, we investigate the effectiveness of MOVAP,

not only in many-objective artificial problems (of 5D and
7D), but also in low dimensionality. For this purpose, we
present a comparative study that includes the algorithms



Table 1: Example data

Solution ~F Density

a (1e-12, 1.00) 0.0000
b (0.17, 0.99) 0.0003
c (0.40, 0.92) 0.2491
d (0.58, 0.82) 0.4747
e (0.74, 0.68) 0.4753
f (0.86, 0.51) 0.6107
g (0.95, 0.32) 0.2067
h (1.00, 0.00) 0.0000
i (0.00, 1.20) 1.2000
j (0.73, 0.81) 1.0000
k (0.83, 0.55) 0.6819

Table 2: Parameters adopted in our study

m
WFG |P | NSGA-III MOVAP

n k SLD γ

2 24 4 100 99 3
3 24 4 120 14 2
5 47 8 196 4,5 2
7 71 12 210 4,5 2

SPEA2, NSGA-II, NSGA-III and HypE; all which were de-
veloped in EMO Project, our framework for Evolutionary
Multi-Objective Optimization. Next, we describe the test
problems, experimental settings and the performance mea-
sure adopted, closing with the discussion of the results.

For two objectives, we select the five real-valued problems
of the Zitzler-Deb-Thiele (ZDT) set [20] and for larger di-
mensionality, we use the Walking-Fish-Group (WFG) [10]
benchmark. In all the cases, the optimum is known and their
Pareto front geometries are diverse (e.g., convex, concave,
linear, degenerated, disconnected, etc.). In the WFG bench-
mark, properties such as non-separability, multi-modality,
deceptiveness and bias, are preserved as we increase the
number of objective functions, making them harder to solve
for MOEAs.

The decision variables (n) for ZDT1-3 was set to 30 and
for ZDT4,6 was set to 10. In the case of WFG, the variables
and position-related parameter (k) are specified in Table 2.
The number of function evaluations was set to 40,000 and
50,000 for the ZDT and WFG test problems, respectively.

All the MOEAs were implemented using real-numbers en-
coding and their parameters were identical (see Table 2).
The variation operators were polynomial-based mutation and
simulated binary crossover (SBX) [5] in all algorithms. As
suggested in [6], the crossover rate and its distribution index
were set to 0.9 and 20, for 2 and 3 objectives, and 1.0 and
30 for many-objective problems. The mutation rate and its
distributed index was set to 1/n and 20, respectively. For
NSGA-III, the set of weight vectors was generated using the
SLD method [17]. For HypE, the number of sampling points
was fixed to 20,000.

In MOVAP, the image resolution was empirically deter-
mined, being independent of the problem to be solved. For
this purpose, we correlated its behavior with the hypervo-
lume indicator, and we found the average optimum values of
Table 2. We observed that as this value increases, the over-
lapping level among polylines is minimum, and even though
the individuals are not well distributed, the density estima-
tor reflects the contrary.

For comparing results, we adopted the hypervolume in-

dicator,7 because it rewards both convergence towards the
Pareto front as well as the maximum spread of the solu-
tions obtained. The reference points used were (1.1, . . .) for
the ZDT test suite, (3, 5, 7, . . .) for the instances WFG1 and
WFG3; and (2.2, 4.2, 6.2, . . .) for the rest of the problems.
We also used the Value Path for inspecting diversity.

We performed 30 independent runs of each of the five
MOEAs compared on all the test instances adopted. With
the aim of comparing the performance of all algorithms a-
mong themselves in a pairwise fashion, the Wilcoxon rank
sum test (one-tailed) with the Bonferroni correction [15] was
applied to the hypervolume indicator values.

Experimental results appear in Table 3 and some exam-
ples of the approximation sets, corresponding to the median
values, are depicted in Figures 3 and 4. For comparison
purposes in the ZDT benchmark, the approximation sets
are plotted with a vertical shift.

With seven and five objectives, the best algorithm was
MOVAP, obtaining the highest hypervolume values and sig-
nificantly outperforming the other algorithms: HypE, NSGA-
III, NSGA-II and SPEA2. Only in WFG2 (a problem with
disconnected geometry) for seven objectives MOVAP was
second, without being significantly surpassed by NSGA-II.
The second best optimizer was NSGA-III, which was able
to get very close to the Pareto optimal fronts. However,
it produced very poor diversity. On the other hand, HypE
encouraged spread over distribution, being unable to cover
the complete Pareto front. NSGA-II and SPEA2, in general,
experimented some stagnation during the search, being in-
capable of reaching the optimal solution.

In three and two objectives, MOVAP ranked second, pro-
ducing similar results to HypE (which ranked first) and sig-
nificantly outperforming SPEA2, NSGA-II and NSGA-III in
almost all cases. This behavior was expected, since HypE is
using the exact hypervolume in its search mechanism and we
are using the same performance indicator for comparing re-
sults. Nonetheless, we found that HypE focused more on the
spread than on the distribution of solutions, while MOVAP
favored distribution over spread. For example, in ZDT2,
which has a concave Pareto front, MOVAP was able to find
good representatives near the extreme points (see Figure 3).
Moreover in WFG8, a non-separable and biased problem,
for three objectives, MOVAP outperformed HypE. Only in
WFG2 MOVAP could not perform significantly better than
the other algorithms. With respect to NSGA-III, it pro-
duced a more uniform distribution than SPEA2 and NSGA-
II, obtaining the best results in WFG9 (a multi-modal, de-
ceptive, non-separable and biased problem) for three objec-
tives. Finally, SPEA2 obtained slightly better results than
NSGA-II, standing out by the diversity of its solutions.

In summary, we observed that MOVAP produced much
better solutions near the Pareto optimal front than NSGA-
II and SPEA2 in low and high dimensionality. With respect
to NSGA-III it had better diversity and in comparison with
HypE, MOVAP was competitive in low dimensionality and
produced much better results for five and seven objectives.
For this reason, we believe that our proposed approach is
a promising alternative for solving MOPs, in both low and
high dimensionality.

7The hypervolume is equal to the sum of all the rectangular
areas of a non-dominated set (A), bounded by some refe-
rence point.



Table 3: Median and standard deviation of the hypervolume indicator for 2, 3, 5 and 7 objectives. In each
case, the outperformance relation among algorithms is shown, using a significance level of α = 0.5 (for example,
SPEA2 performs significantly better than HypE on WFG1). The two best values are shown in gray scale,
where a darker tone corresponds to the best value.

m Problem SPEA2 (1) NSGA-II (2) NSGA-III (3) HypE (4) MOVAP (5)

7

WFG1
6.18e+05(7.97e+3) 6.49e+05(9.21e+3) 6.71e+05(1.33e+4) 5.32e+05(1.96e+4) 8.36e+05(1.64e+4)

4 1,4 1,2,4 − 1,2,3,4

WFG2
7.88e+05(7.98e+3) 8.11e+05(5.74e+3) 7.96e+05(4.65e+4) 7.24e+05(6.64e+4) 8.09e+05(6.77e+3)

4 1,3,4 4 − 1,3,4

WFG3
1.06e+06(8.32e+4) 1.32e+06(1.87e+4) 1.05e+06(3.21e+4) 1.13e+06(3.48e+4) 1.42e+06(6.50e+3)

− 1,3,4 − 1,3 1,2,3,4

WFG4
4.65e+05(1.89e+4) 3.15e+05(1.69e+4) 5.72e+05(8.12e+3) 2.76e+05(1.59e+4) 6.52e+05(5.12e+3)

2,4 4 1,2,4 − 1,2,3,4

WFG5
4.31e+05(1.79e+4) 3.25e+05(1.85e+4) 5.52e+05(5.52e+3) 2.94e+05(1.60e+4) 6.14e+05(3.70e+3)

2,4 4 1,2,4 − 1,2,3,4

WFG6
4.24e+05(2.17e+4) 3.34e+05(2.26e+4) 5.64e+05(1.58e+4) 2.68e+05(2.64e+4) 5.99e+05(1.40e+4)

2,4 4 1,2,4 − 1,2,3,4

WFG7
3.68e+05(2.36e+4) 3.25e+05(1.91e+4) 5.99e+05(8.52e+3) 2.94e+05(1.63e+4) 6.65e+05(4.40e+3)

2,4 4 1,2,4 − 1,2,3,4

WFG8
3.42e+05(2.34e+4) 3.23e+05(1.48e+4) 4.69e+05(4.10e+4) 2.42e+05(1.72e+4) 5.05e+05(4.43e+3)

2,4 4 1,2,4 − 1,2,3,4

WFG9
4.14e+05(1.87e+4) 2.78e+05(1.78e+4) 4.71e+05(2.52e+4) 2.32e+05(1.74e+4) 4.82e+05(1.81e+4)

2,4 4 1,2,4 − 1,2,4

5

WFG1
3.60e+03(8.17e+1) 3.71e+03(7.79e+1) 3.67e+03(4.94e+1) 2.82e+03(1.17e+2) 4.57e+03(1.07e+2)

4 1,3,4 1,4 − 1,2,3,4

WFG2
4.61e+03(2.56e+2) 4.63e+03(2.19e+2) 4.61e+03(2.26e+2) 4.24e+03(3.00e+2) 4.64e+03(3.78e+2)

4 4 4 − 4

WFG3
6.19e+03(1.65e+2) 6.93e+03(1.11e+2) 6.33e+03(1.02e+2) 5.55e+03(1.55e+2) 7.34e+03(5.36e+1)

4 1,3,4 4 − 1,2,3,4

WFG4
2.72e+03(6.26e+1) 2.34e+03(8.39e+1) 3.11e+03(4.16e+1) 1.69e+03(9.10e+1) 3.38e+03(2.12e+1)

2,4 4 1,2,4 − 1,2,3,4

WFG5
2.63e+03(5.72e+1) 2.39e+03(7.30e+1) 2.94e+03(2.33e+1) 1.96e+03(1.33e+2) 3.19e+03(1.31e+1)

2,4 4 1,2,4 − 1,2,3,4

WFG6
2.55e+03(5.85e+1) 2.21e+03(8.35e+1) 2.97e+03(5.63e+1) 1.80e+03(1.36e+2) 3.21e+03(4.93e+1)

2,4 4 1,2,4 − 1,2,3,4

WFG7
2.44e+03(6.60e+1) 2.19e+03(1.34e+2) 3.22e+03(2.94e+1) 1.82e+03(1.10e+2) 3.45e+03(1.62e+1)

2,4 4 1,2,4 − 1,2,3,4

WFG8
2.03e+03(7.13e+1) 1.88e+03(4.94e+1) 2.39e+03(4.80e+1) 1.48e+03(1.24e+2) 2.66e+03(2.56e+1)

2,4 4 1,2,4 − 1,2,3,4

WFG9
2.47e+03(8.43e+1) 2.09e+03(1.17e+2) 2.63e+03(1.21e+2) 1.75e+03(1.68e+2) 2.75e+03(5.47e+1)

2,4 4 1,2,4 − 1,2,3,4

3

WFG1
4.75e+01(2.65e+0) 4.41e+01(2.12e+0) 4.22e+01(2.93e+0) 5.66e+01(1.62e+0) 5.25e+01(2.32e+0)

3 3 − 1,2,3,5 1,2,3

WFG2
5.20e+01(3.62e+0) 5.15e+01(3.73e+0) 5.14e+01(4.02e+0) 5.34e+01(4.21e+0) 4.43e+01(4.13e+0)

2,3 − − 1,2,3,5 −

WFG3
7.28e+01(3.22e-1) 7.45e+01(3.61e-1) 7.28e+01(3.81e-1) 7.59e+01(2.19e-1) 7.51e+01(3.71e-1)

− 1,3 − 1,2,3,5 1,2,3

WFG4
2.67e+01(2.41e-1) 2.51e+01(4.26e-1) 2.78e+01(1.09e-1) 2.97e+01(4.66e-2) 2.88e+01(1.13e-1)

2 − 1,2 1,2,3,5 1,2,3

WFG5
2.54e+01(2.03e-1) 2.42e+01(2.93e-1) 2.59e+01(1.09e-1) 2.74e+01(9.65e-1) 2.68e+01(1.25e-1)

2 − 1,2 1,2,3,5 1,2,3

WFG6
2.51e+01(3.69e-1) 2.39e+01(4.60e-1) 2.59e+01(3.08e-1) 2.77e+01(2.68e-1) 2.71e+01(3.16e-1)

2 − 1,2 1,2,3,5 1,2,3

WFG7
2.74e+01(2.53e-1) 2.62e+01(3.61e-1) 2.84e+01(7.93e-2) 2.98e+01(2.01e-2) 2.92e+01(3.78e-2)

2 − 1,2 1,2,3,5 1,2,3

WFG8
2.21e+01(2.03e-1) 2.11e+01(2.94e-1) 2.30e+01(1.60e-1) 2.34e+01(2.81e-1) 2.40e+01(1.22e-1)

2 − 1,2 1,2,3 1,2,3,4

WFG9
2.36e+01(1.02e+0) 2.25e+01(8.25e-1) 2.58e+01(1.33e+0) 2.17e+01(1.75e+0) 2.40e+01(1.44e+0)

2,4 4 2,4 − 2,4

2

ZDT1
8.71e-01(3.10e-4) 8.70e-01(5.70e-4) 8.71e-01(3.36e-5) 8.72e-01(2.79e-5) 8.72e-01(8.58e-5)

2 − 1,2 1,2,3,5 1,2,3

ZDT2
5.38e-01(5.40e-4) 5.37e-01(4.66e-4) 5.38e-01(5.15e-5) 5.39e-01(2.59e-5) 5.38e-01(3.69e-5)

2 − 1,2 1,2,3,5 1,2,3

ZDT3
1.33e+00(9.72e-4) 1.33e+00(1.18e-3) 1.33e+00(4.01e-4) 1.33e+00(1.52e-2) 1.33e+00(3.39e-2)

3 3 − 1,2,3,5 1,2,3

ZDT4
8.68e-01(1.94e-3) 8.68e-01(1.35e-3) 8.69e-01(1.64e-3) 8.71e-01(5.63e-4) 8.70e-01(2.03e-3)

− − − 1,2,3,5 −

ZDT6
4.99e-01(1.14e-3) 4.99e-01(1.14e-3) 4.97e-01(1.59e-3) 5.03e-01(3.01e-4) 5.03e-01(3.12e-4)

3 3 − 1,2,3,5 1,2,3
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Figure 3: Pareto fronts produced by MOEAs on some problems of the ZDT test suite (top) and the corres-
ponding digital images generated by MOVAP (bottom).
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Figure 4: Approximation sets of MOEAs in WFG1, WFG3, WFG4 and WFG9 (from top to bottom).



5. CONCLUSIONS AND FUTURE WORK
This paper presents a new algorithm, called MOVAP (Mul-

ti-objective Optimizer based on Value Path), which uses
image analysis concepts in its selection mechanism. The
basic idea consists in discretizing the Parallel Coordinates
graph and assigning a fitness value to each individual based
on the density of its polylines. Experimental results indi-
cate that the proposed approach significantly outperforms
HypE, NSGA-III, NSGA-II and SPEA2 in more than 35%
of the test instances, producing much better diversity of so-
lutions, and exploring more regions of the search space in
high-dimensionality than the MOEAs with respect to which
it was compared. Whereas in low dimensionality, our pro-
posed approach was competitive, producing very similar re-
sults to those generated by HypE. Moreover, the complexity
of MOVAP is quadratic with respect to the number of ob-
jectives and the population size. Based on these preliminary
results, we believe that our proposed approach is a suitable
alternative for solving many-objective problems. As part of
our future work, we are interested in studying the scalabi-
lity of MOVAP beyond seven objectives and studying the
properties of the proposed density estimator. Finally, al-
though MOVAP does not require a set of reference points as
NSGA-III, or a large number of sampling points as HypE,
it is worth indicating that it needs a resolution parameter
which, however, could be tuned during execution time.
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