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Abstract. The hypervolume indicator (HV) has been subject of a lot
of research in the last few years, mainly because its maximization yields
near-optimal approximations of the Pareto optimal front of a multi-
objective optimization problem. This feature has been exploited by sev-
eral evolutionary optimizers, in spite of the considerable growth in com-
putational cost that it is involved in the computation of HV as we in-
crease the number of objectives. Some years ago, the Walking Fish Group
(WFG) implemented a new version of the incremental hypervolume al-
gorithm, named IWFG 1.01. This implementation is the fastest reported
to date for determining the solution that contributes the least to the HV
of a non-dominated set. Nevertheless, this new version has gone mostly
unnoticed by the research community. We believe that this is due to an
error in the source code provided by the authors of this algorithm, which
appears when coupling it to a multi-objective evolutionary algorithm.
In this paper, we describe this error, and we propose a solution to fix
it. Moreover, we illustrate the significant gains in performance produced
by IWFG 1.01 in many-objective optimization problems (i.e., problems
having three or more objectives), when integrated into the S -Metric Se-
lection Evolutionary Multi-Objective Algorithm (SMS-EMOA).

Keywords: Hypervolume indicator · multi-objective optimization · se-
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1 Introduction

The hypervolume indicator (HV) [15], also known as the Lebesgue measure or
S -metric, is one of the most preferred quality indicators (QIs) for comparing
multi-objective optimizers. In a single value, HV captures convergence to the
Pareto optimal front as well as spread along the objective space. HV and its
variants are the only unary QIs that are known to be Pareto compliant [16] and
it has been proved that maximizing HV is equivalent to reaching the Pareto op-
timal set [10]. For these reasons, several multi-objective evolutionary algorithms
(MOEAs) have incorporated HV in their survival selection mechanism [9].

Although the computational cost of calculating the exact HV is exponential
with the scaling of the objectives [13], the Walking Fish Group (WFG) (http:
//www.wfg.csse.uwa.edu.au/hypervolume) has proposed clever implementa-
tions where, in practice, the real performance is unrelated to this worst case com-
plexity [5, 14, 13]. Of our particular interest is the Incremental Hypervolume Al-
gorithm (IWFG) [5, 14], designed for determining which point in a set contributes
least to HV. This algorithm uses several ideas to provide a substantial speed up.
The most recent implementation is the IWFG 1.01 [5], which was released in
November 2015. This version reported outstanding performance for even large
fronts, being significantly faster than previous approaches in many-objective op-
timization problems [3]. However, this important version has gone unnoticed
by the research community. Popular frameworks of evolutionary multi-objective
optimization, such as jMetal (http://jmetal.github.io/jMetal) and MOEA
Framework (http://moeaframework.org) do not have this update. We believe
that this omission is because of the occurrence of an error, which is triggered
when integrating IWFG 1.01 into an MOEA.

The main contributions of this paper are the isolation, replication and de-
scription of this error, as well as an easy-to-implement solution to it. Further-
more, we show the potential gains in speed up of IWFG 1.01 when coupled to the
S -Metric Selection Evolutionary Multi-Objective Algorithm (SMS-EMOA) [1]
(a hypervolume-based algorithm) on some test problems of the Deb-Thiele-
Laumanns-Zitzler (DTLZ) test suite [8]. The rest of this paper is organized
as follows. Sect. 2 defines the concepts and notation used in multi-objective
optimization. Sect. 3 outlines the IWFG 1.01 algorithm. Sect. 4 provides our
contribution. Sect. 5 presents the validation of our proposed solution. Sect. 6
contains our conclusions.

2 Background

We are interested in solving Multi-Objective Optimization Problems (MOPs) of
the form:

Minimize f(x) := (f1(x), f2(x), . . . , fm(x)) (1)

subject to x ∈ X, (2)
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where X ⊂ IRn is the feasible region in decision space, and Z ⊂ IRm is in
the objective space. Each decision vector x ∈ X is related to an objective vector
f(x) ∈ Z. Since objectives might be in conflict with one another, it is not possible
to compare two solutions x,y ∈ X in a straightforward manner as in single-
objective optimization. As an alternative, the Pareto dominance relation must
be applied. It is said that x “dominates” y, if it stands:

x ≺ y ⇔ (∀i ∈ {1, . . . ,m} , fi(x) ≤ fi(y))∧
(∃j ∈ {1, . . . ,m} , fj(x) < fj(y)) .

The non-dominated solutions of a set A ⊆ X are defined as:

NDS(A) := {a ∈ A : ∄a′ ∈ A,a′ ≺ a}. (3)

The solution to an MOP consists of finding the optimal set of non-dominated
decision vectors in all X, which cannot be improved in any objective without
worsening at least another objective. This set is known as the Pareto Optimal
Set, and its image is named the Pareto Optimal Front.

The hypervolume indicator [15] determines the size of the portion of the
objective space that is dominated by a set A of non-dominated solutions, collec-
tively and bounded by a reference point z ∈ IRm, defined as:

HV (A; z) = Λ

(⋃
a∈A

{x | a ≺ x ≺ z}

)
, (4)

where Λ denotes the Lebesgue measure in Rm, and z should be dominated by
all members of A.

Another concept is the inclusive hypervolume of a solution p which is used to
denote the size of the part of the objective space dominated by p alone, that is:

IncHV (p; z) := HV ({p}; z). (5)

The hypervolume contribution or exclusive hypervolume of a solution p rela-
tive to a set A (denoted as ExcHV (p, A; z)) is the size of the part of the objective
space that is dominated by p but is not dominated by any element of A. Hence,
ExcHV (p, A; z) < IncHV (p; z). The exclusive hypervolume is defined as:

ExcHV (p, A; z) := HV (A ∪ {p}; z)−HV (A; z). (6)

In this work, we focus on SMS-EMOA since it is one of the most important
HV-based MOEAs [9]. SMS-EMOA is a steady-state MOEA that employs the
Pareto dominance relation as its main selection criterion and a density estimator
based on the exclusive hypervolume. At each iteration, a single solution is cre-
ated and added to a temporary population which is divided into layers, using the
non-dominated sorting algorithm [7]. If the last layer (the worst one according to
the Pareto dominance) has more than one solution, the one having the minimum
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Algorithm 1 Naive method to determine the solution with the lowest exclusive
hypervolume.

Input: A ⊂ Z set of solutions, reference point z
Output: Solution s that contributes the least to HV (A; z)
1: t← HV (A; z)
2: m←∞
3: for all a ∈ A do
4: c← t−HV (A \ {a}; z)
5: if c < m then
6: m← c
7: s← a
8: end if
9: end for
10: return s

exclusive hypervolume is deleted. The identification of the minimum exclusive
hypervolume value is the core idea behind SMS-EMOA. Software frameworks
for evolutionary multi-objective optimization, such as jMetal and MOEA frame-
work implement this step using a näıve approach that iteratively calculates the
hypervolume indicator of |P | − 1 individuals, as shown in Algorithm 1.

3 IWFG 1.01 Algorithm

In Algorithm 2, we reproduce the pseudocode of IWFG 1.01 [5]. This improved
version of Algorithm 1 consists of two phases: the slicing process (lines 1 to 8),
and the full computation of the exclusive hypervolume of the least-contributing
solution (lines 9 to 14). Here, head and tail are list functions.3 In the first phase,
Rank heuristic imposes the order in which objectives will be processed (in a
worsening sequence). The overall HV is then processed in “slices“ made by cuts
along the corresponding objective. Those slices related to a solution a are stored
in the list S[a] (line 3). The elements of this list are assumed to be ordered by size
from the largest to the smallest. In lines 4 and 5, the biggest slice of a solution a is
successively divided by making k− 1 cuts along the remaining objectives. These
sub-slices are reinserted into the list S[a]. In line 7, for each solution, the partial
exclusive hypervolume relative to the biggest slice is determined. In the second
phase, a greedy approach is adopted, named “best-first” queuing mechanism.
The idea is to process at each iteration the solution s with the smallest partial
HV until its list of slices has been completely processed. Moreover, instead of
using the expression (6) for calculating the exclusive hypervolume, IWFG 1.01
uses a more efficient mechanism [2]:

ExcHV (p, A; z) := HV ({p}; z)−HV (NDS(B); z), (7)

where
B := {limit(p,a) | a ∈ A}, (8)

3 For instance, head([a, b, c, d]) := a and tail([a, b, c, d]) := [b, c, d].
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Algorithm 2 Incremental Hypervolume IWFG 1.01

Input: A ⊂ Z set of solutions, reference point z, depth k ∈ IN
Output: Solution s that contributes the least to HV (A; z)
1: for all a in A do
2: Sort the objectives of a according to Rank heuristic, using the binary search
3: S[a]← the slices for a at the top level m
4: for d = 1 to k − 1 do
5: S[a]← slice(head(S[a]),m− d) ∪ tail(S[a])
6: end for
7: p[a]← ExcHV (a, head(S[a]); z)
8: end for
9: s← argmina∈A p[a]
10: while S[s] ̸= [ ] do
11: p[s]← p[s] + ExcHV (s, head(S[s]); z)
12: S[s]← tail(S[s])
13: s← argmina∈A p[a]
14: end while
15: return s

limit(< p1, . . . , pm >,< a1, . . . , am >)

:=< worse(p1, a1), . . . ,worse(pm, am) > .

In Figure 1, we illustrate the two different ways to compute the exclusive hy-
pervolume. In this case, expression (7) calculates the HV of only two solutions,
whereas expression (6) considers six solutions. This computational effort reduc-
tion is because of the filtering of non-dominated solutions. With these ideas, the
IWFG 1.01 algorithm determines the exclusive hypervolume in a fraction of the
time needed to process the total HV [5].

4 Contribution

In Figure 2(a), we reproduce a common error of Algorithm IWFG 1.01 using data
produced by an MOEA. The program receives as input the file “sample.dat”,
which contains one front delimited by #, and a reference point with five objec-
tives. As can be noticed, the component throws a fatal error causing an abnormal
termination. In this case, the segmentation fault is raised by hardware, which
has memory protection, notifying the operating system that the program iwfg

attempts to access a memory location that is not allowed.
In order to track the source of this error, we relied on the debugging tools

Valgrind (http://valgrind.org) and gdb (https://www.gnu.org/software/
gdb). We found that the problem lies in the binarySearch function of Fig-
ure 3 since it does not contemplate the situation of identical solutions, as it is
the case for the objective vector (0.51, 0.46, 0.73, 0.00, 0.00) from our example
in Figure 2(a). In evolutionary multi-objective optimization, these copies are
known as indifferent solutions [4, p. 244], and are occasionally present in a pop-
ulation when variation operators are not applied, so the offspring become clones
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Fig. 1. Steps for the calculation of the exclusive hypervolume of a solution p us-
ing the naive way HV (A ∪ {p}; z) − HV (A; z) and the efficient way IncHV (p; z) −
HV (NDS(B); z), where A = {a1,a2,a3,a4,a5,a6} and B = {b1,b2,b3,b4,b5,b6}.

(a)

> cat sample . dat
#
0.00 0 .00 0 .00 0 .00 1 .00
0 .51 0 .46 0 .73 0 .00 0 .00
0 .47 0 .43 0 .46 0 .45 0 .42
0 .00 0 .47 0 .54 0 .70 0 .00
0 .51 0 .46 0 .73 0 .00 0 .00
0 .00 0 .81 0 .00 0 .58 0 .00
0 .93 0 .00 0 .36 0 .00 0 .00
#
> . / iwfg sample . dat 1 .1 1 .1

1 .1 1 .1 1 .1
Segmentation f a u l t ( core

dumped)

(b)

> . / iwfg sample . dat 1 .1 1 .1
1 .1 1 .1 1 .1

mehv (1) = 0.00
Smal l e s t : 0 .51 0 .46 0 .73 0 .00

0 .00
Total time = 0.00 ( s )

Fig. 2. Output of the IWFG 1.01 component using the functions (a) BinarySearch and
(b) ourBinarySearch.

of the parents. According to expression (3), indifferent solutions are considered
non-dominated to each other, so the requirement of the IWFG 1.0 to accept
only fronts with non-dominated solutions is still fulfilled. The purpose of the
function int binarySearch(POINT p,int d) is to locate the index i at which
the solution p resides in the array of memory addresses fsorted[d].points[i],
assuming that elements are already sorted by the given objective d from the high-
est to the lowest value. The ordering relation is achieved by the function int
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1 int binarySearch (POINT p , int d) {
2 int min = 0 ;
3 int max = f s o r t e d [ d ] . nPoints =1;
4 gorder = torde r [ d ] ;
5
6 while (min <= max) {
7 int mid = (max+min) /2 ;
8 i f (p . o b j e c t i v e s ==
9 f s o r t e d [ d ] . po in t s [ mid ] . o b j e c t i v e s )

10 return mid ;
11 else i f ( g r e a t e r o rd e r (&p ,
12 &f s o r t e d [ d ] . po in t s [ mid ] ) ===1)
13 max = mid = 1 ;
14 else
15 min = mid + 1 ;
16 }
17 return =1;
18 }

Fig. 3. Source code (in ANSI C) of the original binarySearch function.

greaterorder(&p,&q), which numerically compares two solutions. This func-
tion returns -1 if the dth objective of p is greater than the dth objective of q. In
the opposite case, it returns 1, and if they have the same value, the remainder
objectives are inspected in the same way using the order imposed by the Rank
heuristic. In the case of indifferent solutions, greaterorder returns 0.

During the search, the error originates when the first occurrence of a repeated
solution does not match with the memory address of p. Thus, the binary search
focuses on the upper half of the array in lieu of examining adjacent elements.
So, if the solution is not found in this half, the function returns -1, which is
an invalid index. It is important to mention that the error happens only from
three objectives onwards since for two objectives the exclusive hypervolume is
computed. The binarySearch function is invoked by the Rank heuristic, which
stores the returned misinformation. The slicing process accesses the indices, at
which point the fault occurs.

One possible solution to this issue is to include the case when greaterorder

recognizes two identical solutions. In Figure 4, we present the source code of
our proposed correction, named ourBinarySearch. Once a duplicated objective
vector is found, in lines 17 to 32, adjacent memory locations are inspected until
there is a match with the address of p. In Figure 2(b), we show the right output
of our previous example using the proposed function. It is worth noticing that
one of the duplicated solutions is suggested for removal.

The computational complexity of binarySearch is O(m lg |P |), where m
represents the number of objectives and |P | is the number of non-dominated
solutions in the front. For ourBinarySearch is O(m(lg |P |+k)), where k denotes
the number of indifferent solutions. Here, the worst case occurs when all elements
are repeated, so the computational complexity is O(m|P |). However, this is very
unlikely, and in the average case k << |P |. Thus, the complexity of our proposed
function remains the same as the original one.
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1 int ourBinarySearch (POINT p , int d) {
2 int i , r ;
3 int min = 0 ;
4 int max = f s o r t e d [ d ] . nPoints =1;
5 gorder = torde r [ d ] ;
6
7 while (min <= max) {
8 int mid = (max+min) /2 ;
9

10 i f (p . o b j e c t i v e s ==
11 f s o r t e d [ d ] . po in t s [ mid ] . o b j e c t i v e s )
12 return mid ;
13 else i f ( ( r = g r ea t e r o rd e r (&p , &f s o r t e d [ d ] . po in t s [ mid ] ) ) == =1)
14 max = mid=1;
15 else i f ( r == 1)
16 min = mid+1;
17 else { /* ( r = 0) dup l i ca ted so lu t i ons */
18 /* check so lu t i ons on the l e f t o f mid */
19 i = mid = 1 ;
20 while ( i >= min && gr ea t e r o rd e r (&p , &f s o r t e d [ d ] . po in t s [ i ] ) == 0) {
21 i f (p . o b j e c t i v e s == f s o r t e d [ d ] . po in t s [ i ] . o b j e c t i v e s )
22 return i ;
23 i==;
24 }
25 /* check so lu t i ons on the r i g h t of mid */
26 i = mid + 1 ;
27 while ( i <= max && grea t e r o rd e r (&p , &f s o r t e d [ d ] . po in t s [ i ] ) == 0) {
28 i f (p . o b j e c t i v e s == f s o r t e d [ d ] . po in t s [ i ] . o b j e c t i v e s )
29 return i ;
30 i++;
31 }
32 }
33 }
34 return =1;
35 }

Fig. 4. Source code (in ANSI C) of our proposed binarySearch function.

The source code of the IWFG 1.0 algorithm, as well as other algorithms, is
available at http://computacion.cs.cinvestav.mx/~rhernandez, being the
IWFG modules thread-safe. EMO Project runs on Unix-based systems, and
it is implemented in ANSI C, MPI (Message Passing Interface) and Gnuplot
(http:/www.gnuplot.info). As shown in Figure 5, EMO Project is constituted
by three main parts: the applications, the EMO library, and the parallelization
layer. In addition, there are two special actors: the common user and the de-
veloper. The former can invoke predefined applications, while the second can
define new problems, implement algorithms and create more applications. The
applications consist of a set of command-line programs, which start with the pre-
fix “emo ”, and their purpose is to perform essential operations in evolutionary
multi-objective optimization. The EMO library is composed of a set of built-in
functions and structured data types, whereas the parallelization layer allows,
among other functionalities, the simultaneous execution of different MOEA calls
over a set of available processors using a Round-robin scheme. Interested readers
are referred to [11] for further details.
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Fig. 5. Architecture of the Evolutionary Multi-objective Optimization Project (EMO
Project).

5 Experimental Study

We compared the performance of IWFG 1.01 versus the variant that calculates
the HV using the method described in [13], and determines the contributions
with Algorithm 1. This latter version, commonly applied in most frameworks, is
denoted here as IWFG 1.00. Both versions were coupled to SMS-EMOA. Addi-
tionally, we considered in our experiments NSGA-III [6], which was designed to
deal with many-objective optimization problems. In the survival selection mech-
anism of this optimizer, the non-dominated sorting procedure [7] is combined
with a niching strategy that requires a set of well-spread reference points in such
a way that the population is normalized and associated with the lines passing
through the reference points and the origin. Those individuals having the closest
perpendicular distance to isolated lines are chosen for the next generation.

As test problems, we adopted the DTLZ1, DTLZ2, and DTLZ7 instances [8]
with the number of decision variables of m+4, m+9, and m+19, respectively.
The variation operators were Polynomial-based mutation and Simulated Binary
Crossover (SBX). For the mutation operator, its probability and distribution
index were set to 1/n and 20, respectively. For the crossover operator, these
parameters varied according to the number of objectives: for two objectives we
adopted 0.9 and 20, whereas for higher dimensionality we adopted 1.0 and 30.
In all cases, the population size was set to 100 individuals. The set of reference
points for NSGA-III was generated using the Uniform Design method [12] having
the same cardinality as the population. The maximum number of evaluations
(1× 103) was set to 40, 60, 70, 80, 80, 90 for 2 to 7 objectives, respectively.

For the performance assessment, we relied on the hypervolume indicator us-
ing the reference point (2, 2, . . .) for DTLZ1,2 and (2, 2, . . . , 2m+1) for DTLZ7.
In all experiments, we performed ten independent runs. Besides, we applied two
Wilcoxon rank sum tests to the mean hypervolume indicator values in order to
determine: A) if the distributions of both variants of SMS-EMOA were identi-
cal or different (two-tailed test), and B) if SMS-EMOA IWFG 1.01 performed
better than NSGA-III (one-tailed test). Both statistical tests were contemplated
at the confidence interval of 99%. Finally, executions have been done over the
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Fig. 6. Average execution time of the MOEAs on some instances of the DTLZ bench-
mark.

GNU/Linux Xiuhcoatl Cluster of 72 nodes with 252 GB of RAM and InfiniBand
interconnection network. Each node is a 32-core AMD Opteron(TM) Processor
6274 1.36 GHz. Algorithms were implemented in the C language, compiled with
gcc 4.4.7 -O3 and parallelized with Open MPI version 3.0.0 using the command
emo task [11].

In Figure 6, we show the average execution time of all optimizers. As ex-
pected, the fastest algorithm was NSGA-III since its computational complexity
of O(|P |2m+m3) is much lower than that of HV-based MOEAs. In the second
place was SMS-EMOA IWFG 1.01, which spent much less computational time
than SMS-EMOA IWFG 1.00. Here, it is worth mentioning that time reduc-
tion becomes more significant as the number of objectives increases. Regarding
the quality of the solutions in terms of the hypervolume indicator (see Table 1)
both versions of SMS-EMOA produced slightly different Pareto-front approx-
imations even though we used the same random seeds. This occurs because,
during the survival selection process, several individuals may have the same HV
contribution. Thus, the choice of the methods depends on the way in which the
population is sorted. In spite of this, there is no significant difference in quality.

Although SMS-EMOA IWFG 1.01 is not the fastest state-of-the-art algo-
rithm, it achieved results which are significantly better than those generated by
NSGA-III, in all cases (see Table 1). The only exception is DTLZ7 with four
objectives in which there was a tie.
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Table 1. Median and standard deviation of the hypervolume indicator. If the p-value
of test A is greater than 0.01, then it means that the two samples of SMS-EMOA are
equivalent (denoted by =). If the p-value of test B is less or equal than 0.01, then
it means that SMS-EMOA IWFG 1.01 performs significantly better than NSGA-III
(indicated by ↑).

m
SMS-EMOA SMS-EMOA

NSGA-III
p-value

IWFG 1.00 IWFG 1.01 test A test B

DTLZ1

2 3.873652e+0 1.8e-4 3.873610e+0 1.5e-4 3.865911e+0 3.2e-4 9.1e-1 = 9.1e-5 ↑
3 7.974010e+0 4.8e-5 7.974043e+0 8.3e-5 7.937169e+0 1.0e-3 7.1e-1 = 9.1e-5 ↑
4 1.599436e+1 3.1e-5 1.599437e+1 1.2e-5 1.590821e+1 2.9e-3 2.4e-1 = 8.0e-5 ↑
5 3.199857e+1 6.1e-5 3.199859e+1 5.1e-5 3.184074e+1 8.5e-3 4.9e-1 = 9.0e-5 ↑
6 6.399957e+1 2.1e-5 6.399956e+1 2.5e-5 6.368232e+1 4.4e-2 5.2e-1 = 9.0e-5 ↑
7 1.279999e+2 4.2e-5 1.279999e+2 4.8e-5 1.273449e+2 7.5e-2 6.5e-1 = 6.4e-5 ↑

DTLZ2

2 3.211015e+0 1.9e-5 3.211003e+0 2.6e-5 3.200341e+0 2.4e-4 6.5e-1 = 9.1e-5 ↑
3 7.427029e+0 5.4e-5 7.427018e+0 5.8e-5 7.317104e+0 5.8e-3 8.5e-1 = 9.1e-5 ↑
4 1.558050e+1 7.7e-5 1.558050e+1 7.7e-5 1.518218e+1 1.8e-2 1.0e+0 = 9.0e-5 ↑
5 3.168567e+1 7.6e-5 3.168567e+1 7.6e-5 3.067499e+1 3.5e-2 1.0e+0 = 9.0e-5 ↑
6 6.375871e+1 1.1e-4 6.375871e+1 1.1e-4 6.145779e+1 9.7e-2 1.0e+0 = 9.1e-5 ↑
7 1.278103e+2 1.4e-4 1.278103e+2 1.4e-4 1.215988e+2 9.0e-1 1.0e+0 = 8.4e-5 ↑

DTLZ7

2 4.418220e+0 6.5e-6 4.418217e+0 4.4e-6 4.403340e+0 2.6e-3 1.9e-1 = 8.9e-5 ↑
3 1.357868e+1 1.4e-4 1.357868e+1 1.4e-4 1.312882e+1 6.2e-2 5.2e-1 = 9.1e-5 ↑
4 3.014482e+1 4.2e+0 3.014535e+1 4.2e+0 3.194008e+1 1.4e+0 6.9e-1 = 2.9e-1

5 7.769183e+1 5.8e+0 7.769183e+1 5.8e+0 6.765668e+1 2.2e+0 5.2e-1 = 9.1e-5 ↑
6 2.057445e+2 1.0e+1 1.867199e+2 1.0e+1 1.374160e+2 6.3e+0 2.7e-1 = 9.1e-5 ↑
7 4.257511e+2 3.3e+1 4.264531e+2 2.7e+1 2.601411e+2 1.6e+1 7.2e-1 = 9.1e-5 ↑

6 Conclusions

Recently, an optimized version of the incremental hypervolume algorithm of the
Walking Fish Group (IWFG) was proposed. This algorithm determines the so-
lution that contributes the least to the HV of a non-dominated set. However, its
use has been limited due to a bug in its implementation. We observed that this
error occurs during the slicing process, specifically in the function binarySearch,
where duplicated solutions are not considered for problems with more than two
objectives. In this paper, we have proposed a corrected version of such function,
which has an average-case complexity of O(m lg |P |), where m denotes the num-
ber of objectives and |P | the population size. Clearly, there are other possible
solutions to this issue, such as to remove duplicated solutions before calculating
the incremental hypervolume. However, we have presented the one that we be-
lieve is the easiest to update in the component while keeping a low computational
cost. The potential performance of the IWFG component should be exploited
by the many-objective community since it can achieve high-quality solutions at
an affordable computational cost.
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