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Abstract. In this paper, we describe a novel model selection approach
for a SVM. Each model can be composed by a feature selection method
and a pre-processing method besides the classifier. Our approach is based
on a multi-objective evolutionary algorithm and on the bias-variance
definition. This strategy allows us to explore the hyperparameters space
and to select the solutions with the best bias-variance trade-off. The
proposed method is evaluated using a number of benchmark data sets
for classification tasks. Experimental results show that it is possible to
obtain models with an acceptable generalization performance using the
proposed approach.
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1 Introduction

Support vector machines (SVMs) are supervised learning algorithms able to build
a classification model from a labeled data set. Due to their high performance and
scalability, SVMs have gained popularity in regression and classification tasks.
Nevertheless, as many other learning algorithms, SVMs have some parameters
whose fine-tuning can affect their performance. These tunable parameters are
called hyperparameters and determining their appropriate values is a key is-
sue when using SVMs; this problem is known as model selection. Additionally,
other components that could improve SVMs’ performance are the set of training
features and the type of preprocessing applied to the data. Therefore, a clas-
sification model can be seen as a combination of those components with their
corresponding hyperparameters values.

The final goal of the model selection task is that the selected model has
the highest possible generalization ability. Since generalization is the key, this
implies that the model should predict new samples with the lowest possible error.
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It is well known that error can be decomposed into two components: bias and
variance. However, computing bias and variance is not straightforward, due to
the fact that the target model and the probability density function that generated
the data are usually unknown. Nevertheless, approximate values of them can be
obtained from a data set with a finite number of samples.

Bias and variance are closely related to the model accuracy and complexity.
In general, bias describes the extent to which the systematic error of the learning
algorithm contributes to the error, while variance describes the extent to which
variations in the training data or a random behavior of the learning algorithm
contributes to the error [11]. Therefore, both components should be as minimum
as possible in order to get a better generalization performance. Nonetheless,
they are conflicting components and the best model is the one which has the
best bias-variance trade-off. So, in this sense, model selection can be seen as a
multi-objective optimization problem.

Previous studies have faced the SVM model selection task as a multi-objective
optimization problem, and some of them try to minimize the number of features
and an estimation of the generalization error [9], looking to construct diverse
models for being considered into an ensemble; others try to reduce the error
rate between the positive and negative classes which are defined as the objec-
tives [2, 3, 12], looking to mitigate the effect of the majority class in the model
selection task for unbalanced datasets. Other works have considered the accu-
racy and the number of support vectors as the objectives to be optimized [1,15],
under the assumption that the number of support vectors is directly associated
to the model complexity, but this assumption does not apply for full model se-
lection3. To the best of our knowledge, estimated values of bias and variance
have not been previously used in a multi-objective approach for model selection.
In this paper, we propose a multi-objective evolutionary algorithm for model
selection, optimizing bias and variance estimates, which are approximated from
a finite data set. We used the NSGA-II [5] as our search algorithm because of its
efficiency and because it can provide a diverse set of solutions along the Pareto
front. We evaluate our proposal using a series of benchmark data sets for classifi-
cation. Our experimental results show that our proposed approach selects highly
effective classification models, when compared with respect to single-objective
formulations, and a related method for model selection.

2 Multi-Objective Optimization

A multi-objective optimization problem (MOOP) is defined as follows:
minimize f (x) = [f1 (x) , . . . , fl (x)]

subject to gi (x) ≤ 0 i = 1, . . . , p
hj (x) = 0 j = 1, . . . , q

3 The full model selection problem consist of choosing a combination of pre-processing,
features selection methods, and learning algorithm together with their hyperparam-
eters
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where x = [x1, . . . , xn] ∈ Rn is a decision variables vector, l is the number of
objectives, and p + q is the number of constraints.

The notion of optimum in MOOP refers to obtaining a good trade-off between
the objectives. In order to establish this trade-off, the most accepted notion of
optimum in MOOP is the so-called Pareto optimality.

Most modern multi-objective optimization algorithms (MOEAs) use the con-
cept of Pareto dominance to determine if a solution is better than another.
We say that a solution x(1) dominates a solution x(2) (x(1) � x(2)) if and only
if x(1) is better than x(2) at least in one objective and it is not worse in the rest.

The notion of Pareto optimality says that a solution x∗ is a Pareto optimal
if it is not possible to improve one objective without worsening another. This def-
inition does not produce a single solution, but a set of trade-off solutions among
the different objectives. The set of trade-off solutions (in decision variable space)
is known as Pareto optimal set. The objective function values corresponding
to the elements of the Pareto optimal set constitute the so-called Pareto front.
The use of MOEAs presents some advantages, because evolutionary algorithms
are less susceptible than mathematical programming techniques to the shape
and the continuity of the Pareto front. Additionally, MOEAs require less prob-
lem domain information to operate than mathematical programming techniques.

3 Bias-Variance Trade-Off

From a statistical point of view, the expected error over a sample can be decom-
posed into two components: the squared bias and the variance. In a general sense,
square bias is a measure of the contribution to the error of the central tendency
(i.e. the class with the most votes across the multiple predictions) when a model
is trained with different data sets. The variance is a measure of the deviations
to the central tendency when a model is trained with different data sets [16].

In order to obtain a better generalization error, both components should be
minimized. However, reducing one of them causes an increment in the other
one. This is known as the bias-variance dilemma [8]. In general, it is said that
a model with low bias is too flexible and has a low training error rate, but its
generalization capability is poor; this is known as the overfitting problem. In
contrast, a model with low variance is too simple, has low complexity and does
not have the ability to learn the training set and its generalization performance
is also poor; this is known as the underfitting problem. Therefore, a good model
is the one which provides a good trade-off between these two components. So,
we face the model selection task as a multi-objective optimization problem. We
used as objectives estimates of bias and variance, trying to select the model with
the best trade-off between both components.

In classification tasks, different ways to estimate the bias and the variance
have been proposed [8,10,11,16]. Notwithstanding the different definitions, all of
them are able to give insights of the bias and variance contribution to the model
error. In our study we adopted the Webb’s definition [10], because it is close to
the bias/variance decomposition formulated for regression tasks. This definiton
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is based on the idea of training N models with different partitions of a data set.
Then, the N models are tested using the samples that were not used during the
training phase. The predictions are recorded and finally an estimation of bias
and variance is computed based on a given definition.

4 SVM Multi-Objective Model Selection

The main goal of our study is to select a classification model that has the best
bias-variance trade-off. To tackle this task, evolutionary algorithms (EAs) are
particularly well-suited for solving multi-objective problems, because they can
obtain several elements of the Pareto optimal set in a single run [4] and be-
cause they are less susceptible than mathematical programming techniques to
the shape and continuity of the Pareto front. A comprehensive review of these
methods can be found in [4]. In this work, we adopt NSGA-II [5], which is one
of the most popular MOEAs. We refer to [5] for details about the NSGA-II.

4.1 Model Selection Approach

The proposed approach to model selection adopts a multi-objective optimization
technique for exploring the hyperparameters space, searching which one of them
gives the best bias-variance trade-off. Figure 1 shows our model selection process.
We have to highlight that besides optimizing the hyperparameters of the SVM,
we also optimize the feature selection and pre-processing hyperparameters.

First, given a labeled data set for model training, we divide it into two dif-
ferent sets called learning set and validation set. The learning set is used to fit
the parameters of the model during the hyperparameters space exploration. The
NSGA-II is used for the exploration task. Once the search process is completed,
a set of trade-off solutions is obtained (i.e., the Pareto optimal set). Each solu-
tion in the Pareto optimal set corresponds to a model that satisfies a trade-off
between the two objectives considered: bias and variance. The next step is to
choose one solution from that set. In order to avoid the selection of an underfit-
ted or overfitted (see Figure 2) solution, the validation set is used to test each
model in the Pareto optimal set. We select the solution with the lowest balanced
error rate in the validation set. Finally, the model is trained using both, the
learning set and the validation set. The selected model is tested over a new data
set to evaluate its performance.

We used the Challenge Learning Object Package (CLOP) [14]. This Matlab
toolbox has available several methods for pre-processing (such as standardize,
normalize, shift and scale, and PCA) and feature selection (such as s2n, relief,
zfilter, aucfs), as well as learning algorithms (such as SVM).

4.2 Representation Scheme

Under the adopted approach, we need to represent each potential model as an
individual for NSGA-II. Therefore, each model is encoded in a 12-dimensional
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Fig. 2: Models with high bias or vari-
ance in Pareto front.

vector as follows: x(i) = [x1, . . . , x12], where x1 represents the type of model,
i.e., if the model is just a SVM classifier, or if it is composed by a pre-processing
method and/or a feature selection method, as well as the order in which they
are applied. x2 represents a feature selection method and, x3 is a pre-processing
method. x4, x5 and x6 are the hyperparameters for the feature selection method,
while x7 and x8 are the hyperparameters for the pre-processing method. Finally,
x9, x10, x11 and x12 are the hyperparameters for the SVM classifier (kernel, and
its parameters). We emphasize that we used a real codification for the hyperpa-
rameters in order to achieve as precision as possible.

4.3 Fitness Function

The fitness function determines how good a solution is with respect to others.
In our model, the selection task is treated as a multi-objective optimization
problem, where the bias and variance are the objectives to be minimized. It is
important to note that we just have a limited number of samples, and, therefore
the estimations are approximations of expected values for those components. We
used Webb’s definition [16] of bias and variance, because it is one of the most
widely used, but other definitions can be applied as well. In our case, bias and
variance are estimated in the following way:

bias2 = P(X,Y ),D (fD (x) 6= f (x) ∧ fD (x) = Cf,D (x))

var = P(X,Y ),D (fD (x) 6= f (x) ∧ fD (x) 6= Cf,D (x))

where fD (x) is the predicted output with the model trained with data set D,
f (x) is the desired output and Cf,D is the central tendency.

Under this definition, N models should be trained and tested. We used k-
fold cross validation repeated n times, because it has the advantage that every
sample is used for training and testing, and each of them is evaluated n times.
We fixed the values of k to 3 and n to 10, as employed by Webb [16]. Note that
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Table 1: Data sets used in our experiments.

ID Data set Feat. Training Testing ID Data Set Feat. Training Testing

1 Banana 2 400 4900 8 Ringnorm 20 400 7000
2 BC 9 200 77 9 Splice 60 1000 2175
3 Diabetes 8 468 300 10 Thyroid 5 140 75
4 FS 9 666 400 11 Titanic 3 150 2051
5 German 20 700 300 12 Twonorm 20 400 7000
6 Heart 13 170 100 13 Waveform 21 400 4600
7 Image 20 1300 1010

a model should be trained 30 times in order to assign it a merit, thus resulting
in a high computational cost of this task.

5 Experiments and Results

For our experiments, we used a suite of thirteen binary classification benchmark
data sets [13]. These data sets are described in Table 1 and they have been used
in related works [7, 13]. For each data set, we randomly selected 10 partitions,
which were used to evaluate the performance of our multi-objective SVM model
selection (MOSVMMS) approach. For each partition, we performed the model
selection procedure independently, and thus, the proposed method was applied
a total of 130 times.

In Figure 3, we show the Pareto front obtained in a particular trial of some
data sets. These Pareto fronts show the trade-off solutions between bias and
variance. We can observe that both objectives are in conflict, as indicates the
behavior depicted in Figures 3a and 3b. Therefore, each point in the Pareto
front corresponds to different trade-offs between the objectives, when a model
is trained with a particular set of hyperparameters. From these plots, we can
also observe that several solutions are distributed along the Pareto front. One
of these is chosen based on its error in a validation set. That solution is tested
with the test set and the performance model is evaluated.

Table 2 shows the error rates and the standard deviation of 10 replications
for each data set. For illustrative purposes, in Table 2 we show the obtained
results when either bias and variance is minimized. This table also shows the
obtained results by the standard SVM, without performing hyperparameters se-
lection, and those obtained by PSMS [7]. PSMS is a full model selection method
reported in the literature, which has obtained good performance over data sets
from different domains, including those adopted here. PSMS uses particle swarm
optimization (PSO) for selecting a combination of the feature selection method,
a preprocessing method, a learning algorithm and their associated hyperparame-
ters. In these experiments, we fixed the learning algorithm to SVM, and we used
the same 10 partitions for both approaches in order to allow a fair comparison.
Note that in both tables, the standard deviation represents the variability from
both the partitions for the training set and from the model selection method.
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Fig. 3: Pareto fronts for each data set. The point in the Pareto front represents a trade-
off between the bias and the variance.

From Table 2 we can observe that our proposal obtains in average a better
performance than the other ones. Wilcoxon Signed Rank test was recommended
by Demšar [6] for comparing two methods over different data sets. This statis-
tical test is applied with 95% of confidence, and showed that our proposal out-
performed significantly to the single-objective formulations, as it was expected.
MOSVMMS also outperformed SVM, showing a statistical difference in datasets
1, 7, 8, 9, 10, 12, and 13. With respect to PSMS, the statistical test indicated
that there exists a significant difference on datasets 3, 4, 5, 8, 9, 11, and 13. We
should highlight that for datasets where MOSVMMS obtained the worst results,
the difference is not significant, according to the test. This provides an empir-
ical evidence of the advantages of treating model selection as a multi-objective
problem, minimizing the bias and variance components.

6 Conclusions and Future Work

We introduced a novel approach for SVM model selection, where the model
can be composed by a combination of the feature selection and pre-processing
methods. We adopted a multi-objective approach, choosing models with the best
bias-variance trade-off. The estimation of the bias and variance is computed us-
ing Webb’s definition. This definition has the advantage that can be applied
to full model selection formulation. We tested our method in a benchmark of
classification data sets from different domains. Our results indicated that our
proposed approach had a good performance. A statistical test showed that our
approach significantly improved the results of PSMS, which is the closest ap-
proach to our proposal. This improvement gives evidence of the suitability of
treating model selection as a multi-objective optimization problem. Because of
the intensive search done to explore the hyperparameters space, this scheme is
computationally expensive. However, our current work is focused on tackling this
drawback and produce another approach that is more computationally efficient.
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Table 2: Comparison of the multi-objective SVM model selection (MOSVMMS), the
standard SVM and PSMS. We report the error rates obtained over ten trials for each
method. The best result for each data set is shown in boldface.

ID Bias Variance SVM PSMS MOSVMMS

1 10.51± 0.44 43.24 ± 2.01 46.05 ± 2.37 10.66 ± 0.62 10.56 ± 0.43
2 30.13 ± 10.65 24.94± 3.91 26.37 ± 4.15 27.40 ± 4.17 27.40 ± 4.48
3 25.00 ± 1.89 30.00 ± 4.17 22.87± 1.10 27.97 ± 3.61 24.20 ± 0.95
4 38.30 ± 4.04 40.88 ± 6.65 33.18± 1.29 35.88 ± 1.82 33.53 ± 1.58
5 27.03 ± 4.31 28.47 ± 2.39 24.53± 1.68 27.63 ± 2.28 24.87 ± 2.94
6 20.60 ± 5.91 28.20 ± 8.85 17.00 ± 2.11 16.20 ± 1.75 15.80± 1.75
7 4.69 ± 1.88 29.20 ± 5.44 15.57 ± 0.92 3.32 ± 0.56 2.63± 0.53
8 1.74 ± 0.25 29.01 ± 18.65 25.17 ± 0.74 3.86 ± 6.72 1.62± 0.13
9 43.56 ± 1.90 24.59 ± 8.49 16.61 ± 0.79 8.32 ± 2.22 6.34± 0.67
10 4.13 ± 1.72 6.40 ± 6.59 11.47 ± 3.88 4.00± 1.89 4.53 ± 2.28
11 29.44 ± 14.18 25.22 ± 4.48 22.52 ± 0.35 22.67 ± 0.56 21.72± 0.27
12 2.95 ± 0.49 21.82 ± 22.43 3.64 ± 0.62 2.12± 1.59 2.55 ± 0.19
13 10.58 ± 1.30 27.83 ± 6.86 13.44 ± 0.65 11.19 ± 1.34 10.35± 0.99
Ave. 19.13 ± 3.77 27.68 ± 7.76 21.42 ± 1.59 15.48 ± 2.24 14.32± 1.27

Future research directions include the study of the feasibility of the proposed
approach for full model selection. We are also interested in studying the selec-
tion of members in an ensemble and in studying the effect of the population size,
the number of iterations as well as the used search strategy in the model selec-
tion context. Finally, we are interested in extending our method to multi-class
classification problems.
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