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Abstract. The design of selection mechanisms based on quality assessment in-
dicators has become one of the main research topics in the development of Multi-
Objective Evolutionary Algorithms (MOEAs). Currently, most indicator-based
MOEAs have employed the hypervolume indicator as their selection mechanism
in the search process. However, hypervolume-based MOEAs become inefficient
(and eventually, unaffordable) as the number of objectives increases. In this pa-
per, we study the construction of a reference set from a family of curves. Such
reference set is used together with a performance indicator (namely ∆p) to assess
the quality of solutions in the evolutionary process of an MOEA. We show that
our proposed approach is able to deal (in an efficient way) with problems having
many objectives (up to ten objective functions). Our preliminary results indicate
that our proposed approach is highly competitive with respect to two state-of-the-
art MOEAs over the set of test problems that were adopted in our comparative
study.

1 Introduction

In spite of the success of Multi-Objective Evolutionary Algorithms (MOEAs) for solv-
ing engineering and scientific problems, their application in problems with many ob-
jectives continues to be a hot research topic. In the last decade, several indicator-based
MOEAs have been proposed [1, 15, 19]. The main motivation for using indicator-based
MOEAs is that Pareto optimality quickly degrades its performance as we increase the
number of objectives. One of the most popular indicator-based MOEAs of today is the
S Metric Selection Evolutionary Multi-Objective Algorithm (SMS-EMOA) [1], which is
based on the use of the hypervolume. However, SMS-EMOA has an important disad-
vantage: computing the hypervolume in high dimensionality (i.e., for problems with 4
or more objectives) is very expensive (computationally speaking) and quickly becomes
unaffordable.

This has led to the use of other quality indicators such as: R2 [11] and ∆p [16].
For these two indicators, it is possible to use a reference set in order to compute such
metrics.1 In fact, it is absolutely necessary the definition of a reference set for the

1 The version of R2 using a reference set is called R2R in [11].



∆p indicator. In the specialized literature, most authors working with indicator-based
MOEAs, have preferred the use of R2 (see e.g., [2, 7, 12, 17]), while the use of ∆p has
been scarcely explored (see e.g. [10, 15, 8]). This is, perhaps, because it is easier to for-
mulate a set of cost functions (another form of using R2) than to define a reference set
(this requires an appropriate discretization of the real Pareto front). Since the features
of the real Pareto front of a multi-objective optimization problem (MOP) are unknown,
the construction of an appropriate reference set becomes a real challenge for the design
of MOEAs based on reference sets. Some authors have defined the reference set by
constructing segments of the possible Pareto front employing information of the non-
dominated solutions found along the search process, see e.g. [15, 8]. Nonetheless, the
construction of a generalized structure (a generalized reference set) constitutes a field
still unexplored. In this paper, we propose the Reference Indicator-Based Evolution-
ary Multi-Objective Algorithm (RIB-EMOA), which is based on ∆p [16] and builds a
reference set by using a family of curves. Our proposed approach is compared with re-
spect to two other MOEAs using standard test problems having between three and ten
objectives.

The remainder of this paper is organized as follows. In Section 2, we present the
basic concepts required to understand this paper. In Section 3, we explain the general
framework of our proposed approach. The detailed description of the construction of
the reference set is presented in Section 4. In Section 5, we present the validation of our
proposed approach. Finally, the conclusions and some possible paths for future research
are drawn in Section 6.

2 Basic Concepts

2.1 Multi-objective Optimization

Assuming minimization, a continuous MOP can be formulated as:

min
x∈Ω

F(x) (1)

where Ω ⊂ Rn defines the decision space and F : Ω → Rk is defined as the vector
of continuous functions, such that each f j : Ω → R ( j = 1, . . . , k) represents the
function to be minimized. In this paper, we consider the box-constrained case, i.e.,
Ω =

∏n
i=1[a j, b j]. Therefore, each variable vector x = (x1, . . . , xn)T ∈ Ω is such that

ai ≤ xi ≤ bi for all i ∈ {1, . . . , n}.

Definition 1. a) Let x, y ∈ Ω. Then the vector x “dominates” y (denoted by x ≺ y)
with respect to the problem (1), if and only if: i) fi(x) ≤ fi(y) for all i ∈ {1, . . . , k};
and ii) f j(x) < f j(y) for at least one j ∈ {1, . . . , k}.

b) Let x? ∈ Ω, we say that x? is a “Pareto optimal” solution, if there is no other
solution y ∈ Ω such that y ≺ x?.

c) The Pareto set (PS) of problem (1) is defined by: PS = {x ∈ Ω : x is a Pareto
optimal solution} and the Pareto front (PF) is defined by: PF = {F(x) : x ∈ PS }.



2.2 ∆p indicator

The ∆p indicator [16], can be viewed as the Hausdorff distance between an approxima-
tion set and the real PF of a MOP. This indicator is defined by a slight modification
from the well-known quality indicators: Generational Distance (GD) [18] and Inverted
Generational Distance (IGD) [3]. Formally, the ∆p indicator can be defined as follows.

Definition 2. Let P = {x1, . . . , x|P|} an approximation and R = {r1, . . . , r|R|} be a dis-
cretization of the real PF of a MOP. The “∆p indicator” is defined as:

∆p(P,R) = max{IGDp (P,R), IIGDp (P,R)} (2)

where IGDp and IIGDp are a slight modification from GD and IGD, respectively. They are

defined as: IGDp (P,R) =
(

1
|P|

∑|P|
i=1 dp

i

) 1
p and IIGDp (P,R) =

(
1
|R|

∑|R|
j=1 d̂p

j

) 1
p , where di and

d̂ j are: the Euclidean distance from xi to its closest member r ∈ R, and the Euclidean
distance from r j to its closest member x ∈ P, respectively.

Therefore, a low ∆p value means that the set P has a better approximation to the real
PF. More details of the ∆p indicator and its properties can be found in [16].

3 The Reference Indicator-Based EMOA

3.1 General framework

RIB-EMOA initializes a population Pt (t = 0) of N randomly generated individuals.
A new individual q is generated by choosing (in a random way) two different parents
from P. The parents are recombined by means of Simulated Binary Crossover (SBX)
and the resulting children are mutated using Polynomial-Based Mutation (PBM) [5].2

The new individual q (defined by any child) becomes a member of the next population
Pt+1, if replacing another individual leads to a higher quality of the population in terms
of the ∆p indicator. The general framework of RIB-EMOA is presented in Algorithm 1.
In the following sections, we will explain the reduction procedure (in Algorithm 1) and
the proposed reference set construction procedure.

3.2 Reduction procedure

The procedure “reduce” (in Algorithm 1) selects the N best individuals from Q =

Pt ∪ {q} using the ∆p indicator and a discretization of the real PF (denoted as R). In
the following description, let us consider P? and d(y,Q) as the set of nondominated
solutions in Q and the number of points from Q that dominate solution y ∈ Q, respec-
tively. More formally, d(y,Q) = |{x ∈ Q : x ≺ y, x , y}|. Since the cardinality of Q is
N+1, one solution from Q needs to be discarded. The following definition is introduced.

Definition 3. Let R be a discretization of the real PF of a MOP. The exclusive contri-
bution of a solution y ∈ Q to the ∆p indicator is defined as:

Ψ (y,Q,R) = ∆p(Q \ {y},R) (3)

2 However, the use of any other evolutionary operators is also possible.



Input:
a stopping criterion;
N: the population size;
Output:
Pt : the final approximation to the PF.

1 t = 0;
/* Initialize a population of N individuals */

2 Pt = {x1, . . . , xN };
3 while stopping criterion is not satisfied do

/* Generate a trial solution */
4 q = generate(Pt);

/* Select the N best individuals */
5 Pt+1 = reduce(Pt ∪ {q});
6 t = t + 1;
7 end

Algorithm 1: RIB-EMOA

Input:
Q: the population to be reduced;
Output:
Q?: the reduced population.

1 P? = nondominated solutions(Q);
2 if P? , Q then
3 s = arg maxy∈Q d(y,Q);
4 else
5 s = arg maxy∈Q Ψ (y,Q,R);
6 end
7 Q? = Q \ {s};
8 return (Q?)

Algorithm 2: reduce(Q)

Clearly, if P? = Q, then all solutions in Q are nondominated and all of them are equally
efficient in terms of Pareto optimality. In this case, we discard the solution s ∈ Q such
that it maximizes the contribution to the ∆p indicator, that is: s = arg maxy∈Q Ψ (y,Q,R).
On the other hand, if P? , Q then there exist solutions in Q dominated by any solution
in P?. In this case, we discard the solution with the highest d(y,Q) value instead of
using the ∆p indicator. With that, the computation of ∆p is avoided, thus reducing the
computational cost of RIB-EMOA. Algorithm 2 shows the general reduce procedure.

Since we do not have any information related to the real PF of the MOP, the dis-
cretization of the reference set (R) is carried out by generating an artificial surface which
should be a proper representation to the real PF. The next section will explain (in detail)
the construction of such reference surface.

4 Reference set construction

4.1 Pareto front families

In real-world applications, there exist several problems for which the features of the
real PF of a MOP are unknown. However, such PF could describe a convex or concave
curve in objective space; otherwise, the PF could draw a linear surface where there is
neither concavity nor convexity. Without loss of generality, we will assume that the PF
of a MOP is normalized in the range [0, 1], i.e., 0 ≤ f j ≤ 1, for each j ∈ {1, . . . , k}.
Then, we associate such PF to a curve of the following family:{

(y1)α + . . . + (yk)α = 1 : y j ∈ [0, 1], α ∈ (0,∞)
}

(4)

This family of curves possesses the following properties: 1) if α > 1, the curve is
concave; 2) if α < 1, the curve is convex; and 3) if α = 1, a linear surface is defined.
Clearly, if α = 1, then each vector yi = (yi

1, . . . , y
i
k)T in the surface satisfies

∑k
j=1 yi

j = 1
and yi

j ≥ 0, for each i ∈ {1, . . . , µ}. In other words, if α = 1, the surface will describe a
set of weight vectors, which could be much easier to be discretized.

Remark 1. Let C = {c1, . . . , cµ} be a set of µ weight vectors in Rk, i.e., each ci =

(ci
1, . . . , c

i
k)T satisfies

∑k
j=1 ci

j = 1 and ci
j ≥ 0, for each i ∈ {1, . . . , µ}. Then, the vector:

yi = (ci
1/||c

i||α, . . . , ci
k/||c

i||α)T (5)



0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0
0.2

0.4
0.6

0.8
1 0

0.2
0.4

0.6
0.8

1
0

0.2

0.4

0.6

0.8

1

Fig. 1. Reference curves for α = 1
2 ,

7
10 , 1,

8
5 ,

5
2 in MOPs with two and three objective functions.

satisfies equation (4), where || · ||α denotes the α-norm function.

The above remark motivates the construction of a set of weight vectors. Moreover,
if the weight vectors are properly distributed in Rk, a proper representation of the refer-
ence curve could be reached. Therefore, the weight set shall be the starting point for the
construction of different curves by using equation (4). In Figure 1, we show different
curves for different α values in problems with two and three objectives, respectively.

4.2 Weights set

In the specialized literature, there are several strategies for generating weight vectors
in an Euclidean space. Among these techniques, the Uniform Design (UD) method [9]
has shown to be an effective technique in the design of weight vectors properly scat-
tered. However, this technique becomes inefficient when the dimensionality (k) and the
cardinality (µ) of the weights set increase; it has a computational complexity of O

(
µ
k

)
.

Since we use the reference surface (constructed from the weights set) to compute the
∆p indicator, for a better quality of measurement, the number of elements in the dis-
cretized reference surface should be greater than the approximation to the PF given by
the MOEA. Here, we generate the weights set by using a low discrepancy sequence
based on lattices, whose complexity is given by O(µ × k), which is far lower than the
one given by the UD method.

Let d be the dimension of each vector in the low discrepancy sequence. Then, the
ith vector in the sequence (for i = 1, . . . , µ) is defined by:

(i/k, {i × ρ1}, . . . , {i × ρd−1}) (6)

where ρ1, . . . , ρd−1 are d − 1 distinct irrational numbers and {·} denotes the fractional
part of the real value (modulo-one arithmetic). A technique for choosing the d − 1
parameters is using the roots of irreducible polynomials [14]. However, here, each ρl

is defined by the transcendental number ϕ =
√

5+1
2 (the golden section), i.e., ρl = ϕ for

each l ∈ {1, . . . , d − 1}.
Let Bk−1 = [0, 1]k−1 be the (k − 1)-dimensional design space in a unit cube. Let

B? = {b1, . . . ,bµ} be the lattice-based low discrepancy sequence on Bk−1 generated by
equation (6). Each weight vector ci = (ci

1, . . . , c
i
k)T ∈ C = {c1, . . . , cµ} is achieved by



employing each bi = (bi
1, . . . , b

i
k−1)T ∈ B? according to the following equation:

ci
j =


(
1 − (bi

j)
1

k− j

)
j−1∏
l=1

(bl
i)

1
k−l , if j ∈ {1, . . . , k − 1}

k−1∏
l=1

(bi
l)

1
k−l , if j = k

(7)

The above transformation, satisfies
∑k

j=1 ci
j = 1, ci

j ≥ 0, for each i ∈ {1, . . . , µ} [9].

4.3 Reference surface construction

After obtaining the weights set (C), the reference surface is constructed by finding the
α value that will transform the set C in an appropriate curve for a determined MOP. The
following definition is relevant.

Definition 4. Let x?j be the respective global minimizers of f j(x), j = 1, . . . , k over
x ∈ Ω. Let F?

j = F(x?j ), j = 1, . . . , k. Let Φ be the k × k matrix whose jth column
is F?

j − F?. Then, the set of points in Rk that are convex combinations of F?
j , i.e.,

H = {Φβ : β ∈ Rk,
∑k

j=1 β j = 1, β j ≥ 0} is referred to as the Convex Hull of Individual
Minima (CHIM) [4].

In the above definition, F? = ( f ?1 , . . . , f ?k )T denotes the utopian vector defined by
the global minima values of each objective function f j.

Let us consider Q = Pt ∪ {q} as the current approximation to the real PF achieved
by RIB-EMOA. Then, we state the extremes (individual minima) of the PF (denoted
by ξi’s, for each i ∈ {1, . . . , k}) according to the following achievement function.

ξi = arg minx∈Q
k

max
j=1

(
( f j(x) − f ?j )/ei

j

)
(8)

where ei = (ei
1, . . . , e

i
k)T is the canonical basis in Rk (i.e., ei denotes the vector with a 1

in the ith coordinate and 0 elsewhere). Each f ?j is stated by the minimum value of the
jth objective function found along the search process. For ei

j = 0, we use ei
j = 1 × 10−6.

Let us consider Hb = (zb,nb) as the hyper box formed by the extreme vectors
{ξ1, . . . , ξk}. More precisely, the hyper box Hb is defined by the vectors zb = (z1, . . . , zk)T

and nb = (n1, . . . , nk)T , such that: z j = mink
i=1 ξ

i
j and n j = maxk

i=1 ξ
i
j, for each j ∈

{1, . . . , k}. Then, the computation of α for the creation of the reference surface takes
place according to the following description.

Let A = {x1, . . . , x|A|} be the set of nondominated solutions from Q such that each
solution vector F(xi) = ( f1(xi), . . . , fk(xi))T is contained in the hyper box Hb. We con-
sider that each solution vector F(xi) is normalized in [0, 1], and it will be denoted as
F̂(xi) = ( f̂1(xi), . . . , f̂k(xi))T , for each i ∈ {1, . . . , |A|}. Then, the convex hull H in the
normalized space corresponds to be a set of weight vectors and we denote to this as Ĥ .

The α value is stated by finding the solution vector F̂(xb) which describes the max-
imum bulge (sometimes called “knee”) formed by the convex hull Ĥ and the solution
vectors F̂(xi)’s. We state this solution (xb) such that it minimizes a Tchebycheff prob-
lem. To be more precise: xb = arg minx∈A max1≤ j≤k{λ j| f̂ j(x) − f ?j |} with the weight
vector (λ1 = 1

k , . . . , λk = 1
k )T , where k denotes the number of objective functions.



In order to ensure that the reference curve will touch the maximum bulge, it is
initially defined by finding the α value which satisfies equation (4) for the solution
vector F̂(xb). In other words:3 α = arg minα̂∈(0,∞) f̂1(xb)α̂ + · · · + f̂k(xb)α̂ − 1.

Let us consider the weights set C as an appropriate discretization of Ĥ . Then, the
construction of the reference surface R = {y1, . . . , yµ} is carried out by transforming
each weight vector ci ∈ C according to equation (5), for each i ∈ {1, . . . , µ}. This
transformation does not guarantee that all the elements in R dominate to all solution
vectors F̂(xi), for each xi ∈ A. However, since the surface (R) intersects the maximum
bulge (i.e., it passes through the point F̂(xb)) and all solutions in A are nondominated,
most solutions in A should be dominated by R. Nevertheless, the reference surface is
fixed to dominate all the solutions in A.

For each solution vector F̂(xi) there exists a vector hi = (hi
j, . . . , h

i
k)T with direction

F̂(xi) (from the origin) such that hi is a weight vector, i.e., hi ∈ Ĥ . Such weight vector
can be reached by hi

j = f̂ j(xi)/
∑k

j=1 f̂ j(xi), for each i ∈ {1, . . . , |A|} and j ∈ {1, . . . , k}.
Then, before computing the transformation of the whole weights set, we verify if hi

under the transformation of α in equation (5) (denoted by hi
α) is dominated by F̂(xi). In

such case (i.e., if F̂(xi) ≺ hi
α), a new search of α needs to be conducted, but using the

solution vector F̂(xi) instead of F(xb). Finally, the normalized surface R is translated
to the utopian vector F? and scaled to the individual minima ξ’s, i.e., in the original
objective space.

5 Experimental Study

In order to assess the performance of our proposed approach, we compared its results
with respect to those obtained by SMS-EMOA and a version of SMS-EMOA that uses
Monte Carlo simulations to approximate the S metric (we called it HyPE-EMOA). We
adopted the seven unconstrained MOPs from the well-known DTLZ test suite [6]. Due
to space limitations and the known geometrical shapes of each DTLZ problem, we
compare herein, the performance of each algorithm by using only the Generational
Distance (GD) [18]. The GD for DTLZ1 was computed as GD = 1

|P|
∑

x∈P ||F(x)||1 − 0.5
since its PF is a hyperplane that intersects each axis in 0.5. For DTLZ2-DTLZ4 we
used GD = 1

|P|
∑

x∈P ||F(x)||2 − 1 since the PF for theses problems describes a sphere of
radius 1. For DTLZ5-DTLZ7, we used the value of each auxiliary function g(x) defined
for each problem (for details see [6]). The PF of DTLZ5 and DTLZ6 is achieved when
g(x) = 0, while the PF of DTLZ7 is reached when g(x) = 1. Thus, we used each
g function to compute a variant of GD, defined by GDg = 1

|P|
∑

x∈P g(x) (for DTLZ5
and DTLZ6) and GDg = 1

|P|
∑

x∈P g(x) − 1 (for DTLZ7), where P denotes the final
approximation achieved by each MOEA. Therefore, a value GD = 0 indicates that the
approximation P is in the real PF. For each algorithm, we used ηc = 15, ηm = 20, pc =

0.9 and pm = 1/n for the indexes and ratios in the crossover and mutation operators,
respectively. For each MOP, 30 independent runs were performed with each algorithm.
We employed a population size N = 200 and the search was restricted to 40,000 fitness

3 In order to find the α value, we employed the golden search method [13] within the interval
(0.05, 20).
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Fig. 2. Average time (axis y) over 30 independent runs for each MOEA when performing 40,000
functions evaluations for each DTLZ test problem (from 3 to 10 objectives functions (axis x)).

function evaluations for each problem. The cardinality of the reference set was set as
µ = ρ × N (here, we used ρ = 3). The results obtained are summarized in Table 1. This
table displays both the average and the standard deviation (σ) for the GD performance
measure for each MOP. For an easier interpretation, the best results are presented in
boldface.

In our study, we tested the abilities of RIB-EMOA using our proposed reference set
construction when solving MOPs with many objectives (between three and ten objective
functions). From Table 1, we can see that RIB-EMOA obtained better approximations
to the real PF than HyPE-EMOA in most of the test problems. Nevertheless, SMS-
EMOA obtained better results than RIB-EMOA for DTLZ1, DTLZ3 and DTLZ6 test
problems. The poor performance of RIB-EMOA in these problems could be due to the
high multi-modality (in the case of DTLZ1 and DTLZ3) and the degeneration (in the
case of DTLZ6) that these problems have in their PFs. Although DTLZ5 also has a de-
generate PF, it is much more difficult to approximate solutions to the real PF of DTLZ6
than to the real PF of DTLZ5 (for details of these problems see [6]). In fact, RIB-
EMOA relies on the proper construction of the reference set which is constructed from
the individual minima of each problem. Thus, given the features of these MOPs, the
achievement function (in equation (8)) which establishes the individual minima could
be not the best in order to construct a proper surface for them. Nonetheless, an improve-
ment mechanism for our proposed reference set construction, is indeed, a possible path
for future research. On the other hand, according to Fig. 2, we can see that SMS-EMOA
achieved good results for DTLZ1, DTLZ3 and DTLZ6 (see Table 1) but consuming a
higher computational time than RIB-EMOA. However, the computational time required
by our RIB-EMOA was lower than that of SMS-EMOA and HyPE-EMOA even when
solving MOPs with 10 objective functions. Moreover, the time consumption for SMS-
EMOA was so high that we could only test it with MOPs having up to 5 objectives.
Based on the previous discussion, we consider that our proposed approach is a good
choice in order to deal with MOPs with a high number of objectives.

6 Conclusions and Future Work

In this paper, we have presented a first attempt to generalize a reference set for a given
MOP. For this sake, we have considered the fact that the PF of a MOP could be de-
scribed as a linear, convex, or concave manifold in the objective function space. In such



Table 1. Comparison of results with respect to GD for the DTLZ test problems.

objectives Algorithm
DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7

GD GD GD GD GD GD GD
(σ) (σ) (σ) (σ) (σ) (σ) (σ)

3

RIB-EMOA 0.004213 0.000041 17.487000 0.000029 0.000001 3.877700 0.001201
(0.005947) (0.000048) (7.263660) (0.000045) (0.000003) (0.173200) (0.000394)

SMS-EMOA 0.001780 0.000065 12.160000 0.000043 0.000003 2.617500 0.001615
(0.001996) (0.000011) (4.633868) (0.000016) (0.000001) (0.067991) (0.000177)

HyPE-EMOA 0.029672 0.000458 12.147000 0.000363 0.000040 4.459300 0.016254
(0.023956) (0.000071) (5.979108) (0.000165) (0.000011) (0.138107) (0.001617)

4

RIB-EMOA 0.037965 0.000155 18.517000 0.000107 0.000004 8.367200 0.036396
(0.049938) (0.000085) (7.833201) (0.000197) (0.000007) (0.841955) (0.016740)

SMS-EMOA 0.001861 0.000201 17.132000 0.000115 0.571280 3.306000 0.007434
(0.001276) (0.000025) (8.927643) (0.000047) (0.023577) (0.092850) (0.000678)

HyPE-EMOA 0.977570 0.001886 64.291000 0.001209 0.296780 9.936200 0.122510
(1.153816) (0.000293) (18.986294) (0.000301) (0.045810) (0.358386) (0.025145)

5

RIB-EMOA 0.029738 0.000316 13.776000 0.000536 0.004092 10.489000 0.157760
(0.027467) (0.000147) (7.468234) (0.000226) (0.009992) (0.639423) (0.045098)

SMS-EMOA 0.002510 0.000415 9.849800 0.000656 0.787580 3.374800 0.014730
(0.001591) (0.000056) (2.726240) (0.000036) (0.053845) (0.082385) (0.001261)

HyPE-EMOA 1.929400 0.005508 83.570000 0.003014 0.330560 11.866000 0.307590
(1.138770) (0.000839) (16.132044) (0.000682) (0.043337) (0.346546) (0.059810)

6
RIB-EMOA 0.097693 0.000809 20.824000 0.000887 0.041967 12.185000 0.128210

(0.144339) (0.000255) (11.602267) (0.000321) (0.057430) (0.569374) (0.080949)

HyPE-EMOA 2.018500 0.011268 98.789000 0.005243 0.348890 13.047000 0.477420
(1.313371) (0.001611) (21.181272) (0.001365) (0.026693) (0.322326) (0.115235)

7
RIB-EMOA 0.374010 0.001308 26.081000 0.001996 0.065241 13.460000 0.122180

(0.525594) (0.000443) (14.997568) (0.000985) (0.103754) (0.480379) (0.041164)

HyPE-EMOA 2.409300 0.017296 99.057000 0.009122 0.362480 13.732000 0.670290
(1.449388) (0.002415) (19.874297) (0.002152) (0.032717) (0.309724) (0.119358)

8
RIB-EMOA 0.493850 0.001746 26.249000 0.006156 0.082622 14.323000 0.187260

(0.739671) (0.000450) (14.347574) (0.002254) (0.071311) (0.283957) (0.066961)

HyPE-EMOA 2.451000 0.023798 105.050000 0.017033 0.380640 14.494000 1.020500
(1.522215) (0.003426) (23.295721) (0.004348) (0.036984) (0.247828) (0.090525)

9
RIB-EMOA 0.459380 0.004350 26.887000 0.012242 0.093066 14.655000 0.267120

(0.491440) (0.002952) (16.594691) (0.003688) (0.080599) (0.384037) (0.077010)

HyPE-EMOA 2.142300 0.031247 105.460000 0.026099 0.376190 14.657000 1.458500
(1.183025) (0.006355) (24.807379) (0.004833) (0.029685) (0.233302) (0.086545)

10
RIB-EMOA 0.312500 0.008835 30.731000 0.018094 0.118400 15.062000 0.446840

(0.366907) (0.004312) (16.845582) (0.006016) (0.097462) (0.371148) (0.126770)

HyPE-EMOA 2.574600 0.034142 109.580000 0.039354 0.398900 15.090000 1.962400
(1.366155) (0.005567) (19.801898) (0.010316) (0.026573) (0.297923) (0.086160)

cases, the PFs present geometries which can be associated to a curve of the family de-
scribed in equation (4). The proposed reference set construction was found to be appro-
priate, since it yields a suitable surface in order to approximate solutions to the real PF
by using the ∆p indicator (however, it could also be used with other MOEAs that adopt
a reference set). According to our results, we showed the potential of our proposed ap-
proach for attracting solutions towards the real PF along the search process. It is indeed
desirable to compare our proposed approach against more state-of-the-art MOEAs and
this will be part of our future work. It is worth noting that our RIB-EMOA produced
competitive results even with respect to problems having non-well-defined PFs (e.g.,
in DTLZ5-DTL7 (these MOPs have discontinuities and degenerations in their PFs)),
which could be a useful feature when dealing with real-world MOPs.

As part of our future research, we intend to focus on designing another strategy in
order to improve the construction of the reference set. It is also desirable to introduce
the use of preferences to our proposed approach. Finally, we also aim to extend our
proposed approach to deal with constrained MOPs having many objectives, which is an
area that has remained practically unexplored so far, to the authors’ best knowledge.



References

1. N. Beume, B. Naujoks, and M. Emmerich. SMS-EMOA: Multiobjective selection based on
dominated hypervolume. EJOR, 181(3):1653–1669, 2007.

2. D. Brockhoff, T. Wagner, and H. Trautmann. On the properties of the R2 indicator. In
GECCO’2012, pages 465–472. ACM, 2012.

3. C. A. Coello Coello and N. Cruz Cortés. Solving Multiobjective Optimization Problems us-
ing an Artificial Immune System. Genetic Programming and Evolvable Machines, 6(2):163–
190, June 2005.

4. I. Das. Nonlinear Multicriteria Optimization and Robust Optimality. PhD thesis, Rice Uni-
versity, Houston, Texas, 1997.

5. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A Fast and Elitist Multiobjective Genetic
Algorithm: NSGA-II. IEEE TEVC, 6(2):182–197, 2002.

6. K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable Test Problems for Evolutionary
Multiobjective Optimization. In A. Ajith et al., editors, Evolutionary Multiobjective Opti-
mization. Theoretical Advances and Applications, pages 105–145. Springer, USA, 2005.

7. A. Diaz-Manriquez, G. Toscano-Pulido, C. A. C. Coello, and R. Landa-Becerra. A ranking
method based on the R2 indicator for many-objective optimization. In CEC’2013, pages
1523–1530. IEEE, 2013.

8. C. Dominguez-Medina, G. Rudolph, O. Schutze, and H. Trautmann. Evenly spaced pareto
fronts of quad-objective problems using psa partitioning technique. In CEC’2013, pages
3190–3197. IEEE, 2013.

9. K. T. Fang. The Uniform Design: Application of Number-Theoretic Methods in Experimen-
tal Design. Acta Math. Appl. Sinica, 3:363–372, 1980.

10. K. Gerstl, G. Rudolph, O. Schutze, and H. Trautmann. Finding evenly spaced fronts for
multiobjective control via averaging hausdorff-measure. In CCE’2011, pages 1–6. IEEE,
2011.

11. M. P. Hansen and A. Jaszkiewicz. Evaluating the quality of approximations to the non-
dominated set. Technical Report IMM-REP-1998-7, Institute of Mathematical Modeling,
Technical University of Denmark, 1998.

12. R. Hernandez Gomez and C. Coello Coello. MOMBI: A new metaheuristic for many-
objective optimization based on the R2 indicator. In CEC’2013, pages 2488–2495. IEEE,
2013.

13. J. Kiefer. Sequential minimax search for a maximum. Proceedings of the American Mathe-
matical Society, 4(3):502–506, 1953.

14. J. Matousek. Geometric Discrepancy (An Illustrated Guide). Springer, 1999.
15. C. A. Rodrı́guez Villalobos and C. A. Coello Coello. A new multi-objective evolutionary

algorithm based on a performance assessment indicator. In GECCO’2012, pages 505–512.
ACM, 2012.

16. O. Schütze, X. Esquivel, A. Lara, and C. A. C. Coello. Using the averaged Hausdorff dis-
tance as a performance measure in evolutionary multi-objective optimization. IEEE TEVC,
16(4):504–522, 2012.

17. H. Trautmann, T. Wagner, D. Brockhoff, et al. R2-EMOA: Focused Multiobjective Search
Using R2-Indicator-Based Selection. In LION 7, 2013.

18. D. A. V. Veldhuizen. Multiobjective Evolutionary Algorithms: Classifications, Analyses, and
New Innovations. PhD thesis, Department of Electrical and Computer Engineering. Graduate
School of Engineering. Air Force Institute of Technology, Wright-Patterson AFB, Ohio, May
1999.

19. E. Zitzler and S. Künzli. Indicator-based selection in multiobjective search. In PPSN VIII,
pages 832–842. Springer, 2004.


