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Abstract. In this paper, we provide a general introduction to the so-
called multi-objective evolutionary algorithms, which are metaheuristic
search techniques inspired on natural evolution that are able to deal with
highly complex optimization problems having two or more objectives. In
the first part of the paper, we provide some basic concepts necessary to
make the paper self-contained, as well as a short review of the most rep-
resentative multi-objective evolutionary algorithms currently available
in the specialized literature. After that, a short review of applications of
these algorithms in pattern recognition is provided. The final part of the
paper presents some possible future research paths in this area as well
as our conclusions.

1 Introduction

Many real-world applications involve the simultaneous optimization of two or
more (usually conflicting) objectives. These are known as multi-objective opti-
mization problems (MOPs), and their solution requires finding not one, but a set
of solutions that represent the best possible trade-offs among the objectives to be
optimized. These trade-off solutions constitute (in decision variable space) the
so-called Pareto optimal set and their corresponding values in objective function
space constitutes the so-called Pareto front.

Although a wide variety of mathematical programming techniques are cur-
rently available to solve MOPs of different types [1], such approaches have a
number of limitations, including the fact that they are normally very susceptible
to the specific features of the problem to be solved (e.g., to the shape or conti-
nuity of the Pareto front of the MOP). Additionally, these approaches tend to
generate a single solution per run, and departing from different starting points
could lead to the same final solution. Metaheuristics1 are an alternative for solv-
1 A metaheuristic is a high level strategy for exploring search spaces by using dif-

ferent methods [2]. Metaheuristics have both a diversification (i.e., exploration of
the search space) and an intensification (i.e., exploitation of the accumulated search
experience) procedure.



ing complex optimization problems, such as nonlinear MOPs, which is the reason
why their use has become so popular in recent years [3].

Evolutionary Algorithms (EAs) are, with no doubt, the most popular bio-
inspired metaheuristic in current use. EAs simulate the evolutionary process
in a computer and use it to solve highly complex problems [4]. EAs are par-
ticularly suitable for solving MOPs, because they operate on a population of
solutions, which makes possible to generate several elements of the Pareto op-
timal set in a single run, instead of only one (as done by most mathematical
programming techniques). Additionally, EAs require less domain-specific infor-
mation (e.g., they don’t require that the objective functions are differentiable)
and are less susceptible to the shape and continuity of the Pareto front than
mathematical programming techniques.

The first actual Multi-Objective Evolutionary Algorithm (MOEA) was pro-
posed by David Schaffer in the mid-1980s [5]. However, it was until 10 years
later that the study and development of MOEAs started to attract some serious
attention from researchers. Today, there is a considerably large volume of pub-
lications on different aspects of MOEAs and their applications, available in the
literature.2

The remainder of this paper is organized as follows. Section 2, provides some
basic multi-objective optimization concepts required to make this paper self-
contained. A very short introduction to evolutionary algorithms is presented in
Section 3, while Section 4 briefly describes the main MOEAs in current use. Af-
ter that, Section 5 provides a short review of the possible application of MOEAs
in three popular pattern recognition tasks (classification, image segmentation
and feature selection). Then, Section 6 describes some potential paths for fu-
ture research in this area. Finally, the conclusions of the paper are provided in
Section 7.

2 Basic Concepts

In this paper, we focus on the solution of problems of the type3:

minimize f(x) := [f1(x), f2(x), . . . , fk(x)] (1)

subject to:

gi(x) ≤ 0 i = 1, 2, . . . ,m (2)

hi(x) = 0 i = 1, 2, . . . , p (3)

where x = [x1, x2, . . . , xn]
T

is the vector of decision variables, fi : IRn → IR,
i = 1, ..., k are the objective functions and gi, hj : IRn → IR, i = 1, ...,m,

2 The author maintains the EMOO repository, which currently contains over 8800
bibliographic references related to evolutionary multi-objective optimization. The
EMOO repository is located at: http://delta.cs.cinvestav.mx/~ccoello/EMOO/.

3 Without loss of generality, we will only assume minimization problems.



j = 1, ..., p are the constraint functions of the problem.

To describe the concept of optimality in which we are interested, we will
introduce next a few definitions.

Definition 1. Given two vectors x,y ∈ IRk, we say that x ≤ y if xi ≤ yi for
i = 1, ..., k, and that x dominates y (denoted by x ≺ y) if x ≤ y and x 6= y.

Definition 2. We say that a vector of decision variables x ∈ X ⊂ IRn is non-
dominated with respect to X , if there does not exist another x′ ∈ X such that
f(x′) ≺ f(x).

Definition 3. We say that a vector of decision variables x∗ ∈ F ⊂ IRn (F is
the feasible region) is Pareto-optimal if it is nondominated with respect to F .

Definition 4. The Pareto Optimal Set P∗ is defined by:

P∗ = {x ∈ F|x is Pareto-optimal}

Definition 5. The Pareto Front PF∗ is defined by:

PF∗ = {f(x) ∈ IRk|x ∈ P∗}

Therefore, our aim is to determine the Pareto optimal set from the set F of
all the decision variable vectors that satisfy (2) and (3). It is worth noticing,
however, that in practice, not all the Pareto optimal set may be desirable (or
even achievable).

3 A Very Short Introduction to Evolutionary Algorithms

Although today it is more common to use the term “evolutionary algorithm”
in a generic sense, in their origins, there were three main types of approaches:
genetic algorithms [6], evolution strategies [7] and evolutionary programming
[8]. Each of them were developed by independent researchers who had different
motivations, and aimed to solve a specific type of problem. However, over the
years, the specific features of each of these three types of EAs were combined in
different ways, eventually leading to a generic type of EA, whose main feature
is that it uses a selection mechanism based on a fitness measure (which provides
a measure of relative performance of solutions with respect to each other) that
is applied on a set (called “population”) of solutions (called “individuals”).

As indicated before, the specific features of EAs have made them a good
choice for solving MOPs, and their use has considerably increased in the last 20
years [3].

Multi-objective Evolutionary Algorithms (MOEAs) differ from traditional
(single-objective) EAs in two main aspects:



– Selection Mechanism: EAs aim to maximize (or minimize) fitness values.
In contrast, MOEAs aim to generate as many different nondominated so-
lutions as possible. Pareto optimality has normally been adopted for this
sake [4, 9, 10], but other mechanisms are also possible (e.g., indicator-based
selection [11]).

– Diversity Maintenance: Since MOEAs aim to produce as many different
elements of the Pareto optimal set as possible, in a single run, they require
a mechanism that avoids convergence to a single solution. The most popular
diversity maintenance mechanisms include: fitness sharing and niching [12,
13], clustering [14, 15], geographically-based schemes [16], and the use of
entropy [17, 18].

An additional component of modern MOEAs is elitism, which refers to retain-
ing the best solutions found at each generation, so that they are not destroyed by
the genetic operators (e.g., crossover and mutation). In MOEAs, the most popu-
lar elitist schemes are external archives [16] (also called secondary populations)
and the use of a “plus” selection scheme in which the population of parents is
combined with the population of offspring, in such a way that the best half of
this union constitutes the population at the following generation [19].

It is worth noticing that the use of an external archive is the most popular eli-
tist mechanism, since such an archive allows to implement diversity maintenance
mechanisms [20], as well as proving convergence, under certain assumptions [21].

4 Multi-Objective Evolutionary Algorithms

Although there is a wide variety of MOEAs available in the specialized literature,
only a handful of them are in wide use. The following are, in the view of the
author, the most representative MOEAs in current use:

1. Nondominated Sorting Genetic Algorithm II (NSGA-II): This is a
revised and considerably improved version of one of the earliest MOEAs,
called Nondominated Sorting Genetic Algorithm (NSGA), which was prop-
soed in the mid 1990s [22]. The NSGA-II uses a Pareto ranking procedure
which is more efficient (computationally speaking) than the one adopted in
the original NSGA. Also, it estimates the density of solutions surrounding
a particular individual in the population by computing the average distance
of two points on either side of this point along each of the objectives of the
problem. This value is called crowding distance and is easy and computa-
tionally efficient to compute, without requiring any user-defined parameter.
During the selection stage, NSGA-II uses a crowded-comparison operator
that takes into consideration both the nondomination rank of an individ-
ual and its crowding distance, in such a way that nondominated solutions
are preferred over dominated solutions, but between two solutions with the
same nondomination rank, the one that resides in the less crowded region is
preferred. Unlike most modern MOEAs, NSGA-II does not use an external
archive to store the solutions found during the evolutionary process. Instead,



it combines the best parents with the best offspring produced at each gener-
ation and keeps the best half of this union. Its clever mechanisms make the
NSGA-II a very efficient algorithm which is also easy to use. Additionally,
its source code is available in the public domain. These reasons have made it
the most popular MOEA in the specialized literature for more than 10 years.

2. Strength Pareto Evolutionary Algorithm (SPEA): This MOEA was
developed in the late 1990s, with the idea of merging the ideas of the sev-
eral MOEAs available at that time. Its distinctive feature is the use of an
external archive (called the external nondominated set), that stores the non-
dominated solutions generated during the search, and that is used (in com-
bination with the main population of the evolutionary algorithm) during
the selection process. SPEA computes a strength value for each individual,
which is proportional to the number of solutions that dominate it. The size
of the external nondominated set can have a significant growth during the
evolutionary process, which dilutes the selection pressure. Because of this,
the authors of SPEA decided to use a clustering technique to prune the
contents of the external nondominated set so that its size does not exceed a
certain (pre-defined) value. In 2001, a revised version of this algorithm called
Strength Pareto Evolutionary Algorithm 2 (SPEA2) was introduced.
SPEA2 has three main differences with respect to its predecessor [23]: (1) it
incorporates a fine-grained fitness assignment strategy which takes into ac-
count, for each individual, the number of individuals that dominate it and the
number of individuals by which it is dominated; (2) it uses a nearest neigh-
bor density estimation technique which guides the search more efficiently,
and (3) it has an enhanced archive truncation method that guarantees the
preservation of boundary solutions.

3. Multiobjective Evolutionary Algorithm Based on Decomposition
(MOEA/D): This approach was introduced in 2007 [24], and it adopts a
scalarization approach. The main idea of MOEA/D is to decompose a MOP
into several scalar optimization sub-problems which are simultaneously opti-
mized. During the optimization of each sub-problem, only information from
the neighboring sub-problems is used, which allows this algorithm to be ef-
fective and efficient. In fact, MOEA/D can be seen as a successful example of
the incorporation of mathematical programming techniques into a MOEA.
The authors of MOEA/D have provided evidence of the good performance
of this MOEA with respect to other approaches such as NSGA-II, and over
the years, a number of variants of this algorithm have been introduced in
the specialized literature (see for example [25–27]).

Many other MOEAs are currently available (see for example [28–30]), but
none of them is widely used in the literature. This, however, has not discouraged
algorithm developers who have now focused their efforts on aspects such as
computational efficiency [31] and scalability [11, 32].



One of the most intriguing and interesting topics currently under research
in algorithmic design is the use of selection mechanisms based on performance
indicators. IBEA [28] was the first algorithm of this sort, but several others have
been proposed over the years (see for example [11, 33, 34]).

5 Some Applications in Pattern Recognition

MOEAs have been widely used in pattern recognition (see for example [35, 36])
and this paper does not intend, by any means, to provide a survey on this sort
of research. For illustrative purposes only, we will describe next three types of
common applications on MOEAs in pattern recognition:

1. Classification: In this task, each input value is placed into a class (from
several available), based on information provided by its descriptors. When
treated as a MOP, classification normally involves objectives such as min-
imizing the complexity of the classifier (e.g., the number of rules that it
contains) while maximizing its accuracy (i.e., minimizing the classification
error). However, it is possible to adopt other objectives such as the generality
of the rules, their understandability or their complexity.
For example, Zheng et al. [37] maximized both precision (a measure of exact-
ness in the classification performed) and recall (a measure of completeness)
in a problem in which the goal was to mine rules for classifying an evacuee
population during a fire using a multi-objective particle swarm optimizer.
The aim of this application was to improve evacuation decisions and save
lives.
In contrast, Suttorp and Igel [38] minimized three objectives: (1) the false
positive rate, (2) the false negative rate and (3) the number of support vectors
in an application related to online pedestrian detection in infrared images
for driver assistance systems. The authors indicated that in this application,
the Pareto front of the first two objectives could be viewed as a ROC curve
in which each point corresponded to a learning machine optimized for a
particular trade-off between sensitivity and specificity. The third objective
(number of support vectors) was aimed to reduce the model complexity,
which was a concern in this application, due to the existence of real-time
constraints.
One of the main advantages of using MOEAs in classification is that they can
overcome problems commonly associated to traditional (i.e., single-objective)
classifiers, such as overfitting/overlearning and disregarding small classes.

2. Image Segmentation: The term “segmentation” refers to the clustering of
the pixels of an image based on certain criteria. The output of a segmenta-
tion process is usually another image with raw pixel data, which constitutes
either the boundary of a region or all the points in the region itself. Image
segmentation is, in general, a very challenging task. When posed as a MOP,
image segmentation can involve several different objectives [39].



For example, in Mukhopadhyay and Maulik [40], two objectives were consid-
ered: (1) minimize fuzzy compactness of the clusters and (2) maximize the
fuzzy separation among the clusters. In this application, a multi-objective
(real-coded) genetic fuzzy clustering scheme was adopted for the segmenta-
tion of multispectral magnetic resonance images (MRI) of the human brain.
The search engine adopted in this case was an approach proposed by the
authors, which was called multiobjective variable string length genetic fuzzy
clustering algorithm (MOVGA), which used NSGA-II [19] as its underlying
multi-objective framework.

In contrast, Bhanu and Lee [41] considered five objectives when applying a
genetic algorithm with a linear aggregating function to an image segmen-
tation problem: (1) edge-border coincidence, (2) boundary consistency, (3)
pixel classification, (4) object overlap, and (5) object contrast.

Nevertheless, and regardless of the objective functions adopted, MOEAs of-
fer the advantage of allowing the generation of several output images, repre-
senting different trade-offs among the objectives. This provides the decision
maker with more alternatives to choose from, as opposed to single-objective
techniques, that produce as an output, a single image.

3. Feature Selection: It refers to the extraction of features for differentiating
one class of objects from another. The output of this process is a vector
of values of the measured features. Feature selection can be done with a
supervised or with an unsupervised approach. In the supervised case, the
existence of a training set of objectives for which the actual class labels are
known, is assumed. In contrast, in the unsupervised case, the existence of
true class labels is not assumed and, therefore, there is no training set. Most
approaches that treat feature selection as a MOP, assume the supervised
case [35]. For example, in Mendes et al. [42], two objectives are considered:
(1) minimize the number of features and (2) maximize the accuracy. The au-
thors used in this case two classifiers: support vector machines and a logistic
function. Both were applied to a database containing financial statements
of 1200 medium-size private French companies, in an application related to
bankruptcy prediction.

Unsupervised cases are relatively rare in multiobjective feature selection ap-
plications. For example, Morita et al. [43] used the NSGA [22] in unsuper-
vised learning applied to handwritten word recognition tasks. In this case,
two objectives were minimized: (1) the number of features and (2) a validity
index that measured the quality of clusters. A standard k-means algorithm
was then applied to form the given number of clusters based on the selected
features and the number of selected clusters.

The above examples illustrate the flexibility that the use of MOEAs can
introduce, in general, when applied to pattern recognition tasks.



6 Potential Areas for Further Research

From the author’s perspective, there are several research paths that are worth
exploring regarding the application of MOEAs in pattern recognition. For ex-
ample:

– Integration: Clearly, the use of MOEAs to develop fully-automated pattern
recognition systems seems a realistic (perhaps long-term) goal. Such systems
could be applied to different types of databases with little (or no) human in-
tervention. It is likely that the development of such systems may require the
hybridization of MOEAs with other techniques such as fuzzy logic and/or
machine learning approaches. Additionally, this task may require the design
of new architectures that allow an efficient and effective integration of dif-
ferent types of approaches during the different stages involved in a pattern
recognition task (see for example [44]). Evidently, MOEAs are a very suit-
able choice for this sort of task, because of their ability to deal with several
conflicting objectives at the same time.

– Efficiency: One of the main criticisms that normally arises when using
MOEAs in real-world problems is that they usually require of a high com-
putational cost for producing reasonably good results, when the objective
functions are computationally expensive. This is of particular relevance in
certain pattern recognition tasks, such as image segmentation. However, it is
possible to reduce the computational cost of MOEAs using techniques such
as: fitness approximation [45], fitness inheritance [46], parallelization [47, 48]
and surrogate methods [49]. Nevertheless, the use of such techniques in this
area is still relatively scarce.

– Use of other Metaheuristics: A variety of other bio-inspired metaheuris-
tics have become popular in the last few years [50], and, in fact, many of
them have already been applied to pattern recognition tasks. The following
is a non-comprehensive list of bio-inspired metaheuristics that, from the au-
thor’s perspective, could be useful in pattern recognition tasks:

• Artificial Immune Systems (AIS): Our natural immune system has
provided a fascinating metaphor for developing a new bio-inspired meta-
heuristic. Indeed, from a computational point of view, our immune sys-
tem can be considered as a highly parallel intelligent system that is able
to learn and retrieve previously acquired knowledge (i.e., it has “mem-
ory”), when solving highly complex recognition and classification tasks.
This motivated the development of the so-called artificial immune sys-
tems (AISs) during the early 1990s [51, 52]. AISs have been already used
for classification and pattern recognition tasks, in general (see for exam-
ple [53]), mainly because of their suitability for these problems (recog-
nizing an antigen that invades our blood system is, after all, a pattern



recognition task that our immune system solves on an daily basis). Nev-
ertheless, the use of multi-objective AISs in pattern recognition tasks is
still relatively rare (see for example [54]).

• Particle Swarm Optimization (PSO): This metaheuristic is inspired
on the movements of a flock of birds seeking food, and it was proposed
in the mid-1990s [55]. In the PSO algorithm, the behavior of each parti-
cle (i.e., individual) is affected by either the best local (within a certain
neighborhood) or the best global (i.e., with respect to the entire swarm,
or population) individual. PSO allows particles to benefit from their past
experiences (a mechanism that doesn’t exist in traditional evolutionary
algorithms) and uses neighborhood structures that can regulate the be-
havior of the algorithm. The use of multi-objective particle swarm op-
timizers in pattern recognition tasks has been more frequent than that
of other bio-inspired metaheuristics (see for example [56, 37]), but the
full potential of multi-objective PSO approaches in this area is still to
be exploited.

• Ant Colony Optimization (ACO): This metaheuristic was inspired
on the behavior observed in colonies of real ants seeking for food. Ants
deposit a chemical substance on the ground, called pheromone [57], which
influences the behavior of the ants: they tend to take those paths in which
there is a larger amount of pheromone. Therefore, pheromone trails can
be seen as an indirect communication mechanism used by the ants (which
can be seen as agents that interact to solve complex tasks). This interest-
ing behavior of ants gave rise to a metaheuristic called ant system, which
was originally applied to the travelling salesperson problem. Nowadays,
the several variations of this algorithm that have been developed over the
years, are collectively denominated ant colony optimization (ACO), and
they have been applied to a wide variety of problems, including some
pattern recognition tasks. However, its use in multi-objective pattern
recognition tasks is still rare (see for example [58]).

7 Conclusions

This paper has attempted to provide a general overview of multi-objective evolu-
tionary algorithms and some of their possible applications in pattern recognition.
The paper included a short introduction to evolutionary computation, as well as
some basic definitions related to multi-objective optimization. Also, some of the
main MOEAs in current use have been briefly described. In the last part of the
paper, some possible paths for future research in this area were briefly discussed.

The main goal of this paper is to motivate experts in pattern recognition to
adopt MOEAs as an additional tool for their research work, mainly because of
their flexibility and the several advantages that they can offer to this field.
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June 2013) 2488–2495 ISBN 978-1-4799-0454-9.

35. Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S., Coello, C.A.C.: A Survey of
Multiobjective Evolutionary Algorithms for Data Mining: Part I. IEEE Transac-
tions on Evolutionary Computation 18(1) (February 2014) 4–19

36. Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S., Coello, C.A.C.: A Survey of
Multiobjective Evolutionary Algorithms for Data Mining: Part II. IEEE Transac-
tions on Evolutionary Computation 18(1) (February 2014) 20–35

37. Zheng, Y.J., Ling, H.F., Xue, J.Y., Chen, S.Y.: Population Classification in
Fire Evacuation: A Multiobjective Particle Swarm Optimization Approach. IEEE
Transactions on Evolutionary Computation 18(1) (February 2014) 70–81

38. Suttorp, T., Igel, C.: Multi-Objective Optimization of Support Vector Machines.
In Jin, Y., ed.: Multi-Objective Machine Learning. Springer. Studies in Computa-
tional Intelligence, Volume 16, Berlin (2006) 199–220

39. Chin-Wei, B., Rajeswari, M.: Multiobjective Optimization Approaches in Image
Segmentation–The Directions and Challenges. International on Advances in Soft
Computing and its Applications 2(1) (March 2010) 40–65

40. Mukhopadhyay, A., Maulik, U.: A multiobjective approach to MR brain image
segmentation. Applied Soft Computing 11(1) (January 2011) 872–880

41. Bhanu, B., Lee, S.: Genetic Learning for Adaptive Image Segmentation. Kluwer
Academic Publishers, Boston (1994)

42. Mendes, F., ao Duarte, J., Vieira, A., Gaspar-Cunha, A.: Feature Selection for
Bankruptcy Prediction: A Multi-Objective Optimization Approach. In Gao, X.Z.,
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