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Abstract—Ensembles have been used in the evolutionary com-
putation literature to evolve several populations in an indepen-
dent manner, using different search approaches. Moreover, each
population’s parents compete with their offspring and the other
population’s offspring to improve diversity. It has been shown
that ensemble algorithms improve the performance of the tech-
niques embedded within them, when considered independently.
Furthermore, scalarizing functions have been successfully used
in decomposition-based and some indicator-based Multi-objective
Evolutionary Algorithms (MOEAs). However, it has been shown
that the performance of scalarizing function tends to be tied to the
geometrical shape of the Pareto front. In this work, we propose
a new ensemble algorithm that adopts different scalarizing func-
tions and weight vectors using Hungarian Differential Evolution
as the baseline multi-objective optimizer. Our experimental study
shows that our proposed approach outperforms the original HDE,
and it is competitive with respect to modern MOEAs.

Index Terms—ensemble, scalarizing functions, weight vectors,
multi-objective optimization

I. INTRODUCTION

The famous No Free Lunch Theorem (NFL) for search [1]
has taught us that no single search algorithm can outperform
all the others in all classes of problems. This has shifted the
research focus within metaheuristics to either try to tailor our
algorithms to specific problems (or classes of problems) or
to design schemes that allow the combination of different
(ideally complementary) mechanisms that can generalize the
search scope of a particular approach. Ensemble algorithms
belong to the second type of approaches, since they contain
several populations that evolve simultaneously different types
of techniques. Within each population, parents compete with
their offspring and with the offspring of other populations with
the aim of improving diversity [2].

On the other hand, scalarizing functions have been widely
used to transform a multi-objective optimization problem
into single-objective problems using weight vectors. Although
scalarizing functions have been popularized by decomposition-
based multi-objective evolutionary algorithms (MOEAs), other
types of MOEAs also rely on them. One example is the
so-called Hungarian Differential Evolution (HDE) algorithm,
which was introduced in [3] and improved in [4].

The main idea of HDE is to transform a multi-objective
problem into a Linear Assignment Problem, using a scalarizing
function and a set of weight vectors. HDE was found to be
a competitive MOEA which was able to deal with many-
objective problems [3], [4].

Although some researchers have shred evidence about the
benefits of adopting several scalarizing functions simultane-
ously within a MOEA (see for example [5], [6]), this sort of
mechanism had not been explored so far for HDE and this is
indeed the aim of this paper.

In this work, we analyze the influence of scalarizing func-
tions and weight vectors in the behavior of HDE. With this
information, we propose an ensemble of scalarizing functions
and weight vectors with the obvious aim of providing a more
powerful multi-objective optimizer. Our preliminary experi-
mental results show that our proposed approach is able to
improve the performance of the original HDE algorithm, and
it is competitive with respect to state-of-the-art MOEAs.

The remainder of this paper is organized as follows. In
Sections II and III, we present some basic background. In
Section IV, we introduce the HDE algorithm and, in Section V,
we analyze its performance with different scalarizing functions
and weight vectors. After that, in Section VI, we present
our proposed approach. Section VII shows the experimental
validation of our proposed approach. Finally, we present our
conclusions and some possible paths for future research in
Section VIII.

II. MULTI-OBJECTIVE OPTIMIZATION

In a multi-objective optimization problem (MOP) we aim
to simultaneously optimize two or more (often conflicting)
objectives. Its formal definition is the following:

minimize f(x) := [f1(x), f2(x), ..., fm(x)] (1)
subject to: gi(x) ≤ 0 i = 1, 2, . . . , p (2)

hi(x) = 0 i = 1, 2, . . . , q (3)

where x = [x1, x2, ..., xn]T is the vector of decision variables,
fi : IRn → IR, i = 1, ...,m are the objective functions and



gi, hj : IRn → IR, i = 1, ..., p, j = 1, ..., q are the constraint
functions of the problem. We denote X as the decision space
and F as the feasible region.

Rather than finding a single optimum solution, when solving
MOPs we aim to obtain the best possible trade-offs among the
objectives. For this sake, we adopt Pareto dominance, which is
defined as follows. A vector x ∈ X is said to dominate y ∈ X
(denoted as x ≺ y ), if fi(x) ≤ fi(y) for all i = 1, ...,m
and fj(x) < fj(y) in at least one j. On the other hand, if
fi(x) ≤ fi(y) for all i = 1, ...,m, then x is said to weakly
dominate y (denoted as x � y).

Furthermore, a vector x ∈ X is Pareto optimal if there does
not exist another vector y ∈ X , such that y ≺ x. Therefore, in
multi-objective optimization, we want to find the set of Pareto
optimal solutions (called Pareto Optimal Set). The image (i.e.,
the corresponding objective function values) of the Pareto
Optimal Set is called the Pareto Optimal Front.

III. SCALARIZING FUNCTIONS AND WEIGHT VECTORS

A scalarizing function transforms a multi-objective opti-
mization problem into a single-objective problem using a
weight vector. In many cases and under certain assumptions,
minimizing a scalarizing function can lead to a Pareto optimal
solution.

Let f ′(x) = f(x) − z where z := (z1, ..., zm)T is the
ideal point, i.e. zi := min{fi(x)|x ∈ X}. Also, let w :=
(w1, ..., wm) be a weight vector where wi ≥ 0 and

∑
i wi = 1.

In the following, we will introduce some scalarizing functions
that we will use later on:

i) Tchebycheff function (TCH) [7]. The search ability of this
function is equivalent to the use of Pareto-based methods.
Moreover, it can produce at least weakly Pareto optimal
solutions. Its definition is as follows:

uTCH(f ′,w) := max
i
{wi|f ′i |}). (4)

ii) Augmented Tchebycheff (ATCH) [7]. This function is the
same as TCH, but it adds a term to avoid weakly Pareto
optimal solutions. It is defined as:

uATCH(f ′,w) := max
i
{wi|f ′i |}) + α

∑
i

|f ′i |. (5)

The behavior of ATCH depends on the value of α.
For example, large values may produce unreachable
non-dominated points. It is recommended that α ∈
[0.001, 0.01].

iii) Achievement Scalarizing Function (ASF) [7]. This func-
tion is defined in the following way:

uASF (f ′,w) := max

{
f ′i
wi

}
. (6)

The ASF can produce weakly Pareto optimal solutions.
iv) Augmented Achievement Scalarizing Function (AASF) [7].

This function adds a term to the ASF to avoid weakly
Pareto optimal solutions. It is defined as:

uASF (f ′,w) := max

{
f ′i
wi

}
+ α

∑
i

f ′i
wi
. (7)

A value of α ≈ 10−4 is recommended.
v) Penalty Boundary Intersection (PBI) [7]. This function is

given by

uPBI(f ′,w) := d1 + θd2 (8)

where d1 :=
∣∣∣f ′ · w

||w||

∣∣∣ and d2 :=
∥∥∥f ′ − d1

w
||w||

∥∥∥. The
PBI function tries to balance convergence and diversity
using θ. Hence, its behavior depends on the value of this
parameter.

vi) Artificially Generated Scalarizing Functions (AGSF1 and
AGSF2) [8]. These functions were generated using genetic
programming and have been scarcely studied. In the study
reported in [8], AGSF2 outperformed ASF in most of the
test problems adopted. Thus, we decided to adopt AGSF2
in this work. AGSF2 is defined as follows:

uAGSF2(f ′,w) := max
i

{∣∣∣∣wi − f ′i
wi
− f ′i

∣∣∣∣} (9)

With the aid of scalarizing functions, we can produce a
good approximation of the Pareto optimal set using evenly
distributed weight vectors. One of the most widely used
approaches to generate these vectors is the Simplex-Lattice-
Design (SLD) [9]. The SLD generates weight vectors in a unit
simplex with a uniform spacing of δ = 1/H . The H parameter
determines the number of divisions in each objective. There-
fore, SLD generates N = CH+m−1

m−1 weight vectors. One of
the drawbacks of this method is that N considerably grows
when the number of objectives (m) increases. Furthermore,
SLD produces many vectors at the boundary of the domain.

A method that avoids some of the drawbacks of the SLD
is Uniform Design with the Hammersley method (UDH) [3].
This method generates a set of weight vectors with low
discrepancy (a numerical measure of scattering). UDH can
produce any number of weight vectors without any special
consideration.

IV. HUNGARIAN DIFFERENTIAL EVOLUTION

Hungarian Differential Evolution (HDE) is a MOEA that
adopts scalarizing functions [3]. Its core idea is to transform
a multi-objective problem into a Linear Assignment Problem
(LAP). In a LAP, there are n agents that must be assigned to
m tasks. Assigning an agent to a task implies a cost. Thus,
the goal is to perform all the tasks by minimizing the total
assignment cost. The most common approach to solve a LAP
is to use the Kuhn-Munkres algorithm (also known as the
Hungarian algorithm) which has an algorithmic complexity
O(n3) [3]. The formal definition of a LAP is the following:

Let A = {a1, ..., an} be a set of agents and T = {t1, ..., tm}
be a set of tasks, where m = n. Let Φ : A→ T be the set of
all possible bijections between A and T , and C : A×T → IR
be the cost function. Then, a LAP can be stated as:

min
φ∈Φ

∑
a∈A

C(a, φ(a)) (10)

where the cost function can be represented as a square matrix
C with Ci,j = C(ai, tj).



Analogously, HDE has 2n individuals (parents and their
offspring) and n weight vectors representing the Pareto front
regions. The cost of assigning an individual to a weight vector
denotes how well an individual represents a region. Therefore,
the goal is to select the individuals that better approximate the
Pareto front by minimizing the overall assignment cost.

HDE constructs the cost matrix C of the LAP by first
normalizing the objective vectors and then computing each
component Ci,j using the following expression:

Ci,j :=

{
u(f̂(xi),wj) for j = 1, ..., n, i = 1, ..., 2n

0 for j = n+ 1, ..., 2n, i = 1, ..., 2n

(11)

where u is a scalarizing function and f̂(xi) is the normalized
objective vector of individual i.

In summary, HDE works in the following way. First, the
algorithm initializes the population randomly and evaluates
it. After that, it generates the weight vectors using the UDH
method. During a predefined number of generations, the
algorithm creates the offspring using DE/rand/1/bin and
evaluates the resulting individuals. Then, it merges the parents
with their offspring and normalizes their objective values.
With the resulting information, the algorithm constructs the
cost matrix using (11) given a scalarizing function and a
weight vectors set. The algorithm solves the LAP using the
Hungarian method, and the resulting assignment determines
which individual proceeds to the next generation. Algorithm 1
summarizes the above process.

Algorithm 1 Hungarian Differential Evolution (HDE)
Require: Multi-objective problem, population size (n), max-

imum number of generations (gmax), parameters Cr and
F for DE/rand/1/bin

Ensure: Pgmax
1: Generate initial population P1 randomly
2: Evaluate each individual in P1

3: W ← Generate n weight vectors using UDH
4: for g = 1 to gmax do
5: P ∗g ← Generate offspring from Pg using

DE/rand/1/bin.
6: Evaluate each individual in P ∗g
7: Qg ← Pg ∪ P ∗g .
8: NQg ←Normalize objectives of each individual in Qg
9: C ← Construct a cost matrix using (11) with NQg , a

scalarizing function and W .
10: I ←Obtain the best assignment in C using the Hun-

garian method
11: Pg+1 ← {xi|i ∈ I,xi ∈ Qg}
12: end for

V. INFLUENCE OF THE SCALARIZING FUNCTIONS IN THE
HUNGARIAN DIFFERENTIAL EVOLUTION

Initially, the HDE was implemented with the TCH scalariz-
ing function [3], and later on, it was found that the use of the

ASF function was able to improve its performance [4]. Hence,
it is evident that the type of scalarizing function adopted in
HDE has an impact on its performance. Furthermore, only the
UDH method has been tested in HDE, and we do not know if
other methods could improve its performance. In this section,
we present an experimental study that analyzes the behavior of
HDE using different scalarizing functions and weight vectors.

A. Experimental Setup

We tested the HDE algorithm using the scalarizing functions
presented in Section III: TCH, ATCH, ASF, AASF, PBI, and
AGSF2. We selected θ = 5 for PBI, α = 10−4 for AASF and
α = 0.005 for ATCH. Besides the scalarizing functions, we
tested the UDH and the SLD methods. For the case of the SLD
vectors we adopted H = 14. We performed 30 independent
runs of each scalarizing function with each weight vector set.

The parameters adopted for HDE in all cases were: F = 1.0,
Cr = 0.4, gmax = 300 and popsize of 120. We tested the
DTLZ1 - DTLZ7 problems from the Deb-Thiele-Laumanns-
Zitzler (DTLZ) test suite [10], the WFG1 - WFG9 problems
from Walking-Fish-Group (WFG) test suite [11], and the
Minus-DTLZ and Minus-WFG test problems from [12]. All
of these problems were adopted with three objectives. The
number of variables in DTLZ is defined by n = 3 + k − 1
where k = 5 for DTLZ1, k = 10 for DTLZ2-DTLZ6 and
k = 20 for DTLZ7. The same was applied to Minus-DTLZ.
Regarding the WFG and Minus-WFG, we set the position
parameters to k = 4 and the distance parameters to l = 20.
In this case, we focus on which scalarizing function has
the best convergence; therefore, we used the hypervolume
indicator [13] for assessing the performance. This indicator
measures the size of the objective space covered by the
solution set. A larger value implies a better approximation.

B. Experimental Results and Discussion

The average and standard deviation of the 30 independent
runs are shown in Tables I and II. The two best values of each
problem are highlighted in gray, where the darker tone corre-
sponds to the best value. In addition, the “*” symbol means
that the result is statistically significant using Wilcoxon’s rank-
sum test with a significance level of 5%.

In 81.25% of the conventional test problems (WFG and
DTLZ), the best performance scalarizing functions were the
ones that adopted the SLD method. However, in the minus
problems (WFG-Minus and DTLZ-Minus), the UDH method’s
functions had the best performance in 93.75% of the problems.

The function with the best performance in the conventional
problems was AGSF2, which won in 56.25% of the problems.
It was followed by the AASF which won in 25% of the
problems. Regarding the minus problems, AGSF2 had the best
performance with 62.5%, followed by AASF with 18.75%.

From these experimental results, we can conclude that the
performance of HDE depends on the reference set adopted.
Moreover, the suggested scalarizing functions are AGSF2 and
AASF.



TABLE I
AVERAGE AND STANDARD DEVIATION OF HYPERVOLUME VALUES OF HDE USING DIFFERENT SCALARIZING FUNCTIONS AND WEIGHT VECTORS IN

CONVENTIONAL PROBLEMS. THE TWO BEST VALUES ARE HIGHLIGHTED IN GRAY (DARK GRAY IS THE BEST, AND LIGHT GRAY IS THE SECOND BEST).
THE “*” REPRESENTS THAT THE RESULT IS STATISTICALLY SIGNIFICANT.

SLD UDH
AASF AGSF2 ASF ATCH PBI TCH AASF AGSF2 ASF ATCH PBI TCH

dtlz1
1.331e+00
(4.44e-16)

1.326e+00
(1.27e-03)

1.331e+00
(4.44e-16)

1.331e+00
(4.44e-16)

1.331e+00
(4.44e-16)

1.331e+00
(3.59e-07)

1.331e+00
(1.58e-06)

1.327e+00
(1.31e-03)

1.331e+00
(1.98e-06)

1.331e+00
(5.47e-07)

1.331e+00
(3.24e-06)

1.331e+00
(7.48e-07)

dtlz2
9.647e-01
(1.54e-04)

9.659e-01
(1.59e-04)*

9.648e-01
(1.52e-04)

9.513e-01
(5.14e-04)

9.182e-01
(7.18e-03)

9.440e-01
(1.46e-03)

9.620e-01
(4.47e-04)

9.629e-01
(4.51e-04)

9.619e-01
(3.70e-04)

9.573e-01
(6.29e-04)

9.188e-01
(4.93e-03)

9.546e-01
(9.39e-04)

dtlz3
1.331e+00
(2.40e-06)

1.326e+00
(1.10e-02)

1.331e+00
(2.64e-05)

1.330e+00
(3.57e-03)

1.331e+00
(2.01e-03)

1.331e+00
(6.06e-06)

1.331e+00
(7.11e-05)

1.331e+00
(1.33e-03)

1.330e+00
(3.47e-03)

1.330e+00
(3.50e-03)

1.331e+00
(1.63e-05)

1.331e+00
(3.04e-06)

dtlz4
9.174e-01
(1.47e-03)

9.171e-01
(7.86e-03)*

9.170e-01
(3.65e-03)

9.025e-01
(1.33e-03)

8.691e-01
(5.69e-03)

8.956e-01
(1.92e-03)

9.117e-01
(8.20e-03)

9.111e-01
(1.26e-02)

9.130e-01
(4.94e-03)

9.059e-01
(1.22e-02)

8.651e-01
(6.66e-03)

9.015e-01
(1.75e-02)

dtlz5
1.097e+00
(4.94e-06)

1.097e+00
(8.55e-06)

1.097e+00
(6.08e-06)

1.098e+00
(4.01e-06)

1.097e+00
(4.74e-04)

1.098e+00
(3.35e-06)

1.094e+00
(3.46e-03)

1.090e+00
(6.88e-04)

1.093e+00
(1.55e-03)

1.099e+00
(5.66e-06)

1.096e+00
(5.43e-04)

1.100e+00
(9.91e-06)*

dtlz6
1.094e+00
(3.22e-06)

1.095e+00
(2.10e-05)

1.094e+00
(1.32e-05)

1.096e+00
(1.97e-06)

1.095e+00
(3.82e-04)

1.096e+00
(1.65e-05)

1.089e+00
(1.17e-04)

1.087e+00
(5.21e-04)

1.089e+00
(1.45e-04)

1.097e+00
(2.21e-06)*

1.096e+00
(4.07e-04)

1.097e+00
(9.37e-05)

dtlz7
6.342e-01
(1.37e-04)

6.346e-01
(2.16e-04)*

6.339e-01
(1.74e-04)

6.098e-01
(2.88e-03)

6.236e-01
(9.32e-04)

6.153e-01
(2.62e-04)

6.339e-01
(1.09e-03)

6.328e-01
(1.11e-03)

6.340e-01
(1.05e-03)

6.250e-01
(1.35e-03)

6.068e-01
(1.49e-03)

6.269e-01
(9.68e-04)

wfg1
1.217e+00
(9.38e-03)

1.218e+00
(1.13e-02)

1.218e+00
(1.24e-02)

1.192e+00
(9.09e-03)

1.148e+00
(7.83e-03)

1.187e+00
(1.08e-02)

1.183e+00
(9.21e-03)

1.185e+00
(8.15e-03)

1.182e+00
(8.58e-03)

1.186e+00
(8.92e-03)

1.123e+00
(7.81e-03)

1.189e+00
(1.27e-02)

wfg2
1.215e+00
(1.23e-02)

1.219e+00
(1.29e-02)

1.217e+00
(1.30e-02)

1.211e+00
(1.25e-02)

1.110e+00
(1.71e-02)

1.209e+00
(1.50e-02)

1.211e+00
(1.37e-02)

1.216e+00
(1.24e-02)

1.214e+00
(1.59e-02)

1.211e+00
(1.08e-02)

1.059e+00
(2.43e-02)

1.208e+00
(1.08e-02)

wfg3
9.486e-01
(6.71e-03)*

9.441e-01
(6.77e-03)

9.444e-01
(7.25e-03)

9.288e-01
(8.92e-03)

8.754e-01
(9.90e-03)

9.244e-01
(7.82e-03)

9.388e-01
(7.37e-03)

9.366e-01
(7.44e-03)

9.374e-01
(6.30e-03)

9.337e-01
(8.37e-03)

8.568e-01
(1.13e-02)

9.283e-01
(9.85e-03)

wfg4
9.172e-01
(5.80e-03)

9.191e-01
(7.12e-03)

9.178e-01
(6.07e-03)

9.098e-01
(4.56e-03)

8.095e-01
(9.18e-03)

9.030e-01
(4.55e-03)

9.054e-01
(4.87e-03)

9.086e-01
(4.19e-03)

9.071e-01
(4.80e-03)

9.109e-01
(3.91e-03)

7.507e-01
(1.11e-02)

9.045e-01
(5.59e-03)

wfg5
7.583e-01
(4.74e-03)

7.569e-01
(4.04e-03)

7.577e-01
(4.51e-03)

7.564e-01
(1.92e-03)

7.711e-01
(3.24e-03)*

7.409e-01
(2.35e-03)

7.627e-01
(3.58e-03)

7.613e-01
(2.99e-03)

7.611e-01
(3.30e-03)

7.593e-01
(3.00e-03)

7.448e-01
(3.23e-03)

7.509e-01
(3.83e-03)

wfg6
8.058e-01
(9.24e-05)

8.077e-01
(5.57e-05)*

8.058e-01
(8.36e-05)

7.855e-01
(3.75e-04)

8.037e-01
(7.75e-04)

7.725e-01
(1.08e-03)

7.996e-01
(9.84e-04)

8.003e-01
(1.09e-03)

7.990e-01
(9.38e-04)

7.934e-01
(9.73e-04)

7.851e-01
(1.76e-03)

7.859e-01
(1.43e-03)

wfg7
9.557e-01
(4.04e-03)

9.562e-01
(4.20e-03)

9.555e-01
(4.62e-03)

9.488e-01
(4.64e-03)

7.693e-01
(8.52e-03)

9.406e-01
(4.61e-03)

9.353e-01
(5.35e-03)

9.350e-01
(4.80e-03)

9.349e-01
(5.29e-03)

9.460e-01
(4.62e-03)

7.039e-01
(1.64e-02)

9.357e-01
(5.19e-03)

wfg8
8.824e-01
(5.58e-03)

8.824e-01
(8.23e-03)

8.808e-01
(5.45e-03)

8.744e-01
(7.55e-03)

7.580e-01
(1.07e-02)

8.681e-01
(6.55e-03)

8.793e-01
(6.20e-03)

8.802e-01
(6.34e-03)

8.809e-01
(5.64e-03)

8.805e-01
(5.86e-03)

7.123e-01
(1.28e-02)

8.743e-01
(6.50e-03)

wfg9
8.734e-01
(2.90e-03)

8.735e-01
(2.20e-03)

8.731e-01
(2.94e-03)

8.670e-01
(1.88e-03)

8.747e-01
(2.26e-03)

8.672e-01
(2.01e-03)

8.765e-01
(1.41e-03)

8.765e-01
(1.59e-03)

8.765e-01
(2.22e-03)

8.730e-01
(1.73e-03)

8.589e-01
(3.81e-03)

8.717e-01
(2.31e-03)

TABLE II
AVERAGE AND STANDARD DEVIATION OF HYPERVOLUME VALUES OF HDE USING DIFFERENT SCALARIZING FUNCTIONS AND WEIGHT VECTORS IN

MINUS PROBLEMS. THE TWO BEST VALUES ARE HIGHLIGHTED IN GRAY (DARK GRAY IS THE BEST, AND LIGHT GRAY IS THE SECOND BEST). THE “*”
REPRESENTS THAT THE RESULT IS STATISTICALLY SIGNIFICANT.

SLD UDH
AASF AGSF2 ASF ATCH PBI TCH AASF AGSF2 ASF ATCH PBI TCH

dtlz1−1
2.742e-01
(6.22e-05)

2.798e-01
(5.60e-04)

2.741e-01
(8.29e-05)

2.842e-01
(4.18e-04)

2.763e-01
(8.08e-04)

2.843e-01
(3.75e-04)

2.857e-01
(4.07e-04)

2.891e-01
(3.91e-04)*

2.855e-01
(4.36e-04)

2.812e-01
(4.07e-04)

2.778e-01
(1.49e-03)

2.812e-01
(4.90e-04)

dtlz2−1
9.046e-01
(5.70e-04)

9.015e-01
(5.31e-04)

9.043e-01
(6.22e-04)

9.246e-01
(1.64e-04)

9.261e-01
(3.49e-04)

9.234e-01
(1.70e-04)

9.300e-01
(5.53e-04)

9.290e-01
(2.32e-04)

9.299e-01
(5.20e-04)

9.279e-01
(2.24e-04)

9.169e-01
(1.24e-03)

9.267e-01
(1.44e-04)

dtlz3−1
6.360e-01
(1.26e-02)

6.331e-01
(1.03e-02)

6.397e-01
(9.25e-03)

6.382e-01
(9.12e-03)

6.114e-01
(8.08e-03)

6.350e-01
(1.07e-02)

6.449e-01
(9.66e-03)

6.400e-01
(9.03e-03)

6.412e-01
(9.54e-03)

6.337e-01
(8.98e-03)

5.924e-01
(1.03e-02)

6.310e-01
(1.01e-02)

dtlz4−1
9.066e-01
(9.68e-04)

9.020e-01
(1.17e-03)

9.047e-01
(1.10e-03)

9.265e-01
(1.79e-04)

9.252e-01
(1.22e-03)

9.233e-01
(5.19e-04)

9.313e-01
(7.71e-04)*

9.292e-01
(6.59e-04)

9.296e-01
(6.78e-04)

9.264e-01
(3.13e-04)

9.173e-01
(1.40e-03)

9.263e-01
(7.53e-04)

dtlz5−1
8.033e-01
(6.44e-04)

8.010e-01
(5.27e-04)

8.032e-01
(5.91e-04)

8.221e-01
(1.53e-04)

8.210e-01
(8.40e-04)

8.215e-01
(1.34e-04)

8.263e-01
(3.18e-04)

8.268e-01
(3.05e-04)*

8.263e-01
(2.37e-04)

8.215e-01
(3.20e-04)

8.112e-01
(1.93e-03)

8.206e-01
(3.72e-04)

dtlz6−1
7.234e-01
(5.20e-04)

7.211e-01
(6.82e-04)

7.235e-01
(6.16e-04)

7.396e-01
(2.30e-04)

7.428e-01
(5.11e-04)

7.388e-01
(1.64e-04)

7.480e-01
(2.41e-04)

7.500e-01
(2.19e-04)*

7.479e-01
(2.23e-04)

7.385e-01
(3.33e-04)

7.415e-01
(9.53e-04)

7.369e-01
(3.14e-04)

dtlz7−1
1.200e+00
(4.82e-04)

1.201e+00
(2.37e-04)

1.201e+00
(2.80e-04)

1.201e+00
(2.23e-04)

1.200e+00
(3.73e-04)

1.201e+00
(3.49e-03)

1.200e+00
(1.60e-03)

1.201e+00
(3.91e-04)

1.200e+00
(8.59e-04)

1.201e+00
(2.82e-04)

1.197e+00
(9.36e-04)

1.202e+00
(1.84e-04)*

wfg1−1
1.355e-01
(4.72e-03)

1.368e-01
(5.50e-03)

1.379e-01
(4.73e-03)

1.378e-01
(3.88e-03)

1.401e-01
(3.49e-03)

1.402e-01
(3.75e-03)

1.414e-01
(4.67e-03)

1.422e-01
(4.25e-03)

1.412e-01
(4.24e-03)

1.375e-01
(4.25e-03)

1.390e-01
(3.79e-03)

1.397e-01
(3.82e-03)

wfg2−1
5.435e-01
(1.25e-02)

5.430e-01
(1.15e-02)

5.426e-01
(1.06e-02)

5.416e-01
(1.11e-02)

4.977e-01
(9.91e-03)

5.377e-01
(1.26e-02)

5.454e-01
(1.19e-02)

5.481e-01
(8.62e-03)

5.479e-01
(1.01e-02)

5.414e-01
(1.10e-02)

4.892e-01
(9.58e-03)

5.387e-01
(1.03e-02)

wfg3−1
3.240e-01
(1.10e-02)

3.232e-01
(1.02e-02)

3.229e-01
(1.04e-02)

3.194e-01
(1.04e-02)

3.144e-01
(1.26e-02)

3.186e-01
(9.95e-03)

3.206e-01
(1.05e-02)

3.209e-01
(9.08e-03)

3.203e-01
(9.55e-03)

3.137e-01
(8.62e-03)

3.017e-01
(1.53e-02)

3.141e-01
(9.91e-03)

wfg4−1
6.901e-01
(5.80e-04)

6.878e-01
(5.94e-04)

6.899e-01
(4.97e-04)

7.046e-01
(3.79e-04)

7.105e-01
(3.83e-04)

7.028e-01
(3.36e-04)

7.151e-01
(9.12e-04)

7.169e-01
(7.93e-04)*

7.148e-01
(9.56e-04)

7.032e-01
(5.77e-04)

7.091e-01
(1.49e-03)

7.013e-01
(6.14e-04)

wfg5−1
7.037e-01
(5.71e-03)

7.036e-01
(6.24e-03)

7.038e-01
(6.38e-03)

7.216e-01
(5.99e-03)

6.895e-01
(7.45e-03)

7.176e-01
(4.64e-03)

7.203e-01
(5.84e-03)

7.206e-01
(4.00e-03)

7.211e-01
(4.69e-03)

7.221e-01
(4.38e-03)

6.453e-01
(8.60e-03)

7.161e-01
(5.12e-03)

wfg6−1
7.243e-01
(1.71e-03)

7.205e-01
(2.51e-03)

7.240e-01
(2.38e-03)

7.368e-01
(2.03e-03)

7.312e-01
(3.92e-03)

7.347e-01
(1.85e-03)

7.401e-01
(2.48e-03)

7.410e-01
(1.90e-03)

7.398e-01
(2.59e-03)

7.348e-01
(2.40e-03)

7.213e-01
(3.63e-03)

7.323e-01
(1.72e-03)

wfg7−1
6.919e-01
(4.72e-04)

6.897e-01
(4.85e-04)

6.919e-01
(4.27e-04)

7.059e-01
(4.82e-04)

7.128e-01
(4.57e-04)

7.042e-01
(2.88e-04)

7.157e-01
(4.54e-04)

7.182e-01
(5.39e-04)*

7.158e-01
(4.16e-04)

7.044e-01
(5.95e-04)

7.126e-01
(8.50e-04)

7.027e-01
(4.09e-04)

wfg8−1
7.021e-01
(6.55e-04)

6.997e-01
(5.55e-04)

7.018e-01
(5.16e-04)

7.173e-01
(6.02e-04)

7.219e-01
(9.67e-04)

7.148e-01
(3.23e-04)

7.268e-01
(6.44e-04)

7.286e-01
(7.37e-04)*

7.264e-01
(6.22e-04)

7.159e-01
(7.60e-04)

7.196e-01
(2.29e-03)

7.134e-01
(5.39e-04)

wfg9−1
6.965e-01
(3.25e-03)

6.940e-01
(2.27e-03)

6.978e-01
(2.69e-03)

7.119e-01
(3.51e-03)

7.032e-01
(4.17e-03)

7.092e-01
(2.27e-03)

7.152e-01
(2.82e-03)

7.167e-01
(2.35e-03)*

7.153e-01
(2.37e-03)

7.112e-01
(2.56e-03)

6.935e-01
(3.86e-03)

7.098e-01
(2.74e-03)

VI. OUR PROPOSED APPROACH

We saw in the previous section that the performance of
HDE depends on the scalarizing function and weight vectors
adopted. For example, the SLD weight vectors had the best
performance in conventional problems, while in the minus
problems, the UDH weight vectors had the best performance.
Therefore, we hypothesized that if we could design an ensem-
ble of different scalarizing functions and weight vectors, we
can improve the overall performance of HDE, turning it into
a more general multi-objective optimizer.

Based on our previous discussion, we propose here an
Ensemble of Scalarizing functions and Weight vectors (ESW).
Our proposed approach consists of four different pairs of
scalarizing functions and weight vectors. Particularly, we se-
lected AGSF2 with SLD, AASF with UDH, ASF with SLD,
and AASF with UDH since they had the best performance
in our previous experiment. However, it is evident that other
pairs can also be adopted.

Each pair has a population that generates offspring inde-
pendently using DE/rand/1/bin. Moreover, every population



will use its corresponding pair to compute the LAP assignment
cost and to select its individuals using the Hungarian algorithm
(as in the original HDE). Nevertheless, it will be considered
the parent, its offspring, and the other parents’ offspring in
all the selection processes. Therefore, the parents can be
replaced by the offspring of other populations. We argue that
this information exchange can improve the diversity of the
populations and allows populations to help each other.

The solutions’ distribution and convergence speed between
subpopulations may differ because each has a different scalar-
izing function and weight vectors. Therefore, we include
an external archive that stores the non-dominated solutions
for merging the information collected by the subpopulations.
If the archive exceeds a predefined size, the solution with
the worst contribution of s-energy [14] is deleted. The s-
energy is a performance indicator that measures the uniform
distribution of a set in a d-dimensional manifold. Furthermore,
its minimization leads to a uniform distribution. Therefore,
we use the s-energy as a density estimator.

The s-energy is defined as [14]:

Es(A) :=
∑
i 6=j

||ai − aj ||−s, (12)

where A = {a1,a2, ...,a|A|}, a ∈ Rm, and s ≥ 0. Thus, the
s-energy contribution of a solution a ∈ A is defined by

∆Es(a, A) :=
1

2
[Es(A)− Es(A \ {a})]. (13)

Algorithm 2 displays the pseudocode of ESW, and its
flowchart is presented in Figure 1.

VII. EXPERIMENTAL STUDY

In this section, we validate the performance of ESW using
two experiments. The first experiment compares ESW with
HDE using the pairs (scalarizing function + weight vectors)
separately. We present this experiment in subsection VII-A.
The second experiment compares ESW with state-of-the-art
algorithms, and it is presented in subsection VII-B. In both
cases, we use the hypervolume and the s-energy indicator for
performance assessment. The s-energy indicator measures the
solutions’ distribution of a set, and a lower value is preferred.
Also, in all the tables, the two best values of each problem
are highlighted in gray, where the darker tone indicates the
best value. In addition, the “*” symbol means that the result
is statistically significant using Wilcoxon’s rank-sum test with
a significance level of 5%.

A. Comparison with stand-alone pairs

For this comparison, we performed 30 independent runs
of ESW and HDE with the following separate pairs: AGSF2
with SLD, AGSF2 with UDH, AASF with SLD, and AASF
with UDH. We adopted the benchmark problems (including
their configuration), the scalarizing functions’ parameters and
the weight vectors’ parameters from Section V. Furthermore,
Table III displays the parameters of the algorithms used in this
experiment.

Initialize populations✞✝ ☎✆POP1

✞✝ ☎✆POP2

✞✝ ☎✆POP3

✞✝ ☎✆POP4

Evaluate populations

Initialize the external archive with
the non-dominated solutions in the populations.

Is the stopping
condition
fulfilled?

Stop

Generate offspring OFFi from POPi

using DE/rand/1/bin, ∀i ∈ {1, ..., 4}✞✝ ☎✆OFF1

✞✝ ☎✆OFF2

✞✝ ☎✆OFF3

✞✝ ☎✆OFF4

Evaluate offspring

Insert offspring into
the external archive

using Pareto dominance and
s-energy indicator.

Merge POPi with offspring,
∀i ∈ {1, ..., 4}

POP1

OFF1

OFF2

OFF3

OFF4

POP2

OFF1

OFF2

OFF3

OFF4

POP3

OFF1

OFF2

OFF3

OFF4

POP4

OFF1

OFF2

OFF3

OFF4

POP1 POP2 POP3 POP4

No

Yes

AGSF2
+ SLD

AGSF2
+ UDH

AASF
+ SLD

AASF
+ UDH

Select new population using
LAP transformation

Fig. 1. General flowchart of ESW

TABLE III
PARAMETERS OF THE ALGORITHMS USED IN EXPERIMENT 1

Algorithms Parameters settings
HDE (in all versions) F = 1.0, Cr = 0.4, gmax = 1100, n =

120
ESW F = 1.0, Cr = 0.4, max function evalua-

tions = 132000, n = 55, max archive size
= 120



Algorithm 2 Ensemble of Scalarizing functions and Weight
vectors (ESW)
Require: Multi-objective problem, max archive size, stopping

condition, subpopulation size (n), parameters Cr and F
for DE/rand/1/bin

Ensure: A (External Archive)
1: wSLD ← Generate weight vectors of size n using SLD
2: wUDH ← Generate weight vectors of size n using UDH
3: W = {wSLD, wUDH, wSLD, wUDH}
4: SF = {AGSF2,AGSF2,AASF,AASF}
5: Generate initial population POPi randomly, ∀i =
{1, ..., 4}

6: Evaluate populations
7: A ←Obtain the non-dominated solutions in the popula-

tions
8: while the stopping condition is not fulfilled do
9: for i← 1 to 4 do

10: OFFi ← Generate offspring from POPi using
DE/rand/1/bin.

11: end for
12: Evaluate offspring
13: Insert offspring into A using Pareto dominance. If the

max archive size is exceeded, the individual with the worst
s-energy contribution is deleted from A.

14: for i← 1 to 4 do
15: Qi ←

4⋃
j=1

OFFj ∪ POPi

16: NQi ←Normalize objectives of Qi
17: C ← Construct a cost matrix using (11) with NQi,

SFi and Wi.
18: Ii ← Obtain the best assignment in Ci using the

Hungarian method
19: POPi ← {xj |j ∈ I,xj ∈ Qi}
20: end for
21: end while

We present the results of the experiment in Tables VII
and VIII. Regarding the hypervolume indicator, our proposed
approach outperforms the other algorithms in 84% of the
problems. Regarding the s-energy indicator, our approach has
the best performance in 93% of the problems. Therefore, we
can conclude that ESW outperforms HDE in almost all the
test problems adopted.

B. Comparison with respect to state-of-the-art algorithms

We selected three well-known algorithms for our ex-
perimental study at the second stage: NSGA-III [15],
MOEA/DD [16], and SMS-EMOA [17]. In this case, we tested
many-objective problems. For this sake, we adopted a version
of SMS-EMOA that uses the algorithm of HYPE [18] to
approximate the hypervolume contributions when dealing with
problems having more than three objectives.

We used the DTLZ1-DTLZ4 and DTLZ7 problems from the
DTLZ test suite. Moreover, we adopted the minus versions of
the same problems. We set the number of objectives (m) to: 3,

TABLE IV
NUMBER OF SLD PARTITIONS USED BY NSGA-III AND MOEA/DD

Objectives (m) 3 5 7 10
Number of partitions (H) 14 6 5 2,3

TABLE V
NUMBER OF SLD PARTITIONS AND SUBPOPULATION SIZES USED BY ESW

Objectives (m) 3 5 7 10
Number of partitions (H) 9 4 3 2,3
Subpopulation sizes (n) 55 70 84 275

5, 7, and 10. The number of variables was set to n = k+m−1,
where k takes the same values as indicated in Section V.

We selected the SLD method to generate the weight vectors
of MOEA/DD and NSGA-III. For problems having ten objec-
tives, we used the two-layer approach proposed in [15] to gen-
erate the weight vectors. Table IV displays the corresponding
H values for each objective. In the case of EFW, Table V
displays the subpopulation sizes given the H values. We
also used the two-layer approach for ten objectives. Table VI
shows the population size (or maximum archive size) and the
maximum number of function evaluations that the algorithms
used.

The parameters of SBX and polynomial-based mutation
were set to pc = 1.0, pm = 1/n, ηc = 30 and ηm = 20.
We set the parameters of the DE operator to F = 1.0 and
Cr = 0.4. MOEA/DD also used a neighborhood size T = 20,
a neighborhood selection probability δ = 0.9, and the PBI
scalarizing function with θ = 5.

Table IX shows the average and standard deviation of
the hypervolume values. Regarding the DTLZ problems, the
MOEA/DD had the best performance since it is ranked first
place in 10 of 20 instances. The algorithm with the second-best
performance was the SMS-EMOA with nine instances, and the
third-best algorithm was the ESW with seven instances. In the
case of Minus-DTLZ problems, the best algorithm is the SMS-
EMOA that obtained first place in 13 of 20 instances. The
second-best was the ESW, with seven instances. The NSGA-
III and the MOEA/DD did not obtain first places in this case.
We can observe from these results that the performance of the
SMS-EMOA and the ESW does not depend on the Pareto front
shape since both can obtain first places in all test suites. This
is not the case of MOEA/DD that had the best performance in
almost all the DTLZ test suite problems. However, it can not
obtain first place in the remaining problems. In general, the
best algorithm regarding the hypervolume indicator was the
SMS-EMOA with 22 of 40 instances in the first place. The
second best algorithm was our proposed ESW, which obtained

TABLE VI
GENERAL PARAMETERS USED IN EXPERIMENT 2

Number of objectives (m) 3 5 7 10
Population size (or archive size) 120 210 210 276

Max function evaluations 132000 231000 231000 303600



14 of 40 instances.
On the other hand, Table X shows the average and standard

deviation of the s-energy values. For the DTLZ problems, the
ESW had the best performance, with 13 of 20 instances in
the first place. MOEA/DD had the second-best performance
since it obtained 7 of 20 instances. In Minus-DTLZ problems,
the ESW also outperforms the other algorithms with 18 of 20
instances in the first place, followed by the MOEA/DD with
two instances. We can see that ESW outperforms the other
algorithms in almost all the problem instances regarding the
s-energy indicator.

In summary, we can conclude that ESW is a competitive
approach with respect to state-of-the-art algorithms.

VIII. CONCLUSIONS

In this paper, we first analyzed the performance of HDE
using different scalarizing functions and weight vector gen-
erators. We found that the SLD method was preferred for
the conventional test suites (WFG and DTLZ), and that the
UDH method was better for the minus test suites (Minus-WFG
and Minus-DTLZ). Moreover, we concluded that AGSF2 and
AASF were the top recommended scalarizing functions to be
adopted in HDE.

We proposed with this information an Ensemble of Scalar-
izing functions and Weight vectors (ESW) that merges the best
tested pairs of scalarizing functions and weight vectors. Our
experimental results show that ESW outperforms HDE with
the alone pairs. Moreover, we showed that ESW is competitive
with respect to state of the art algorithms.

As part of our future work, we would like to test other
weight vector generators since the SLD does not allow any
size set. We also want to analyze the minimum subpopulation
size that produces a good ESW performance since this would
allow us to decrease the total number of function evaluations
performed.
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TABLE VII
AVERAGE AND STANDARD DEVIATION OF HYPERVOLUME VALUES OF THE COMPARISON OF STAND-ALONE PAIRS. THE TWO BEST VALUES ARE

HIGHLIGHTED IN GRAY (DARK GRAY IS THE BEST, AND LIGHT GRAY IS THE SECOND BEST). THE “*” INDICATES THAT THE RESULT IS STATISTICALLY
SIGNIFICANT.

SLD UDH
ESW AASF AGSF2 AASF AGSF2

dtlz1 1.331e+00 (5.62e-07) 1.331e+00 (3.59e-07) 1.322e+00 (3.23e-03) 1.331e+00 (6.00e-06) 1.324e+00 (1.74e-03)
dtlz2 7.562e-01 (2.87e-04) 7.544e-01 (5.43e-05) 7.565e-01 (3.28e-05)* 7.465e-01 (7.80e-04) 7.468e-01 (1.10e-03)
dtlz3 1.331e+00 (1.85e-04) 1.331e+00 (2.04e-06) 1.330e+00 (1.89e-03) 1.331e+00 (6.22e-06) 1.330e+00 (4.31e-03)
dtlz4 7.515e-01 (2.10e-02) 7.538e-01 (9.13e-05) 7.531e-01 (1.48e-02)* 7.434e-01 (9.28e-03) 7.432e-01 (6.00e-03)
dtlz5 2.671e-01 (2.63e-05)* 2.571e-01 (7.82e-06) 2.591e-01 (3.63e-06) 2.649e-01 (3.88e-06) 2.649e-01 (3.02e-05)
dtlz6 2.671e-01 (2.40e-05)* 2.571e-01 (9.78e-06) 2.591e-01 (8.01e-07) 2.649e-01 (1.32e-05) 2.648e-01 (4.79e-05)
dtlz7 6.186e-01 (6.30e-04)* 6.102e-01 (1.01e-04) 6.108e-01 (8.84e-05) 6.090e-01 (9.65e-04) 6.078e-01 (7.19e-04)
wfg1 1.168e+00 (1.98e-02) 1.190e+00 (1.46e-02) 1.194e+00 (1.70e-02) 1.120e+00 (1.86e-02) 1.122e+00 (1.55e-02)
wfg2 1.248e+00 (1.54e-03)* 1.235e+00 (3.70e-03) 1.238e+00 (5.33e-03) 1.235e+00 (2.24e-03) 1.235e+00 (2.71e-03)
wfg3 8.828e-01 (2.06e-03)* 8.700e-01 (2.37e-03) 8.703e-01 (2.26e-03) 8.626e-01 (2.52e-03) 8.566e-01 (2.59e-03)
wfg4 7.589e-01 (5.84e-03)* 7.397e-01 (6.32e-03) 7.403e-01 (8.02e-03) 7.240e-01 (2.76e-03) 7.252e-01 (3.50e-03)
wfg5 7.444e-01 (3.53e-03)* 7.250e-01 (3.24e-03) 7.248e-01 (2.34e-03) 7.283e-01 (2.94e-03) 7.257e-01 (2.98e-03)
wfg6 7.557e-01 (2.40e-04)* 7.532e-01 (4.64e-05) 7.553e-01 (2.31e-05) 7.441e-01 (8.33e-04) 7.431e-01 (1.04e-03)
wfg7 7.662e-01 (9.00e-04)* 7.507e-01 (3.75e-03) 7.503e-01 (3.22e-03) 7.385e-01 (1.88e-03) 7.381e-01 (1.74e-03)
wfg8 7.520e-01 (3.55e-03)* 7.271e-01 (5.53e-03) 7.269e-01 (4.52e-03) 7.179e-01 (4.55e-03) 7.202e-01 (4.79e-03)
wfg9 8.380e-01 (1.07e-03)* 8.218e-01 (2.44e-03) 8.227e-01 (2.76e-03) 8.280e-01 (1.94e-03) 8.285e-01 (1.30e-03)

dtlz1−1 3.050e-01 (1.69e-04)* 2.741e-01 (5.31e-05) 2.807e-01 (2.29e-04) 2.865e-01 (1.79e-04) 2.901e-01 (1.21e-04)

dtlz2−1 9.388e-01 (2.62e-04)* 9.041e-01 (2.74e-04) 9.014e-01 (3.21e-04) 9.298e-01 (2.39e-04) 9.289e-01 (2.60e-04)

dtlz3−1 7.194e-01 (9.72e-04)* 6.903e-01 (7.52e-04) 6.881e-01 (5.39e-04) 7.105e-01 (1.13e-03) 7.119e-01 (1.31e-03)

dtlz4−1 9.387e-01 (2.81e-04)* 9.058e-01 (3.82e-04) 9.017e-01 (6.27e-04) 9.316e-01 (3.21e-04) 9.290e-01 (4.70e-04)

dtlz5−1 9.647e-01 (2.14e-04)* 9.320e-01 (2.20e-04) 9.289e-01 (2.23e-04) 9.562e-01 (4.65e-04) 9.557e-01 (6.91e-04)

dtlz6−1 8.122e-01 (2.87e-04)* 7.776e-01 (1.75e-04) 7.745e-01 (2.64e-04) 8.042e-01 (1.76e-04) 8.054e-01 (2.04e-04)

dtlz7−1 1.156e+00 (1.02e-04)* 1.152e+00 (6.53e-04) 1.154e+00 (3.21e-04) 1.151e+00 (2.43e-03) 1.154e+00 (6.05e-04)

wfg1−1 1.504e-01 (3.89e-03)* 1.334e-01 (4.69e-03) 1.380e-01 (3.83e-03) 1.400e-01 (3.86e-03) 1.431e-01 (2.57e-03)

wfg2−1 4.082e-01 (9.21e-04)* 4.002e-01 (2.61e-04) 4.004e-01 (3.12e-04) 4.004e-01 (6.79e-04) 4.001e-01 (7.57e-04)

wfg3−1 3.116e-01 (7.05e-04)* 2.814e-01 (5.12e-04) 2.874e-01 (3.84e-04) 2.914e-01 (2.17e-03) 2.940e-01 (1.53e-03)

wfg4−1 7.214e-01 (4.59e-04)* 6.894e-01 (2.12e-04) 6.874e-01 (3.09e-04) 7.151e-01 (7.41e-04) 7.172e-01 (8.55e-04)

wfg5−1 7.317e-01 (1.79e-03)* 6.970e-01 (1.60e-03) 6.951e-01 (1.28e-03) 7.017e-01 (2.12e-03) 7.006e-01 (2.14e-03)

wfg6−1 7.485e-01 (2.07e-03)* 7.167e-01 (1.31e-03) 7.139e-01 (1.38e-03) 7.284e-01 (2.16e-03) 7.297e-01 (2.50e-03)

wfg7−1 7.227e-01 (3.95e-04)* 6.904e-01 (2.22e-04) 6.886e-01 (2.34e-04) 7.151e-01 (4.71e-04) 7.174e-01 (3.63e-04)

wfg8−1 7.228e-01 (4.00e-04)* 6.908e-01 (2.91e-04) 6.887e-01 (3.01e-04) 7.155e-01 (7.06e-04) 7.177e-01 (7.35e-04)

wfg9−1 7.222e-01 (4.69e-03)* 6.952e-01 (3.18e-03) 6.933e-01 (3.64e-03) 7.122e-01 (3.11e-03) 7.126e-01 (3.11e-03)

TABLE VIII
AVERAGE AND STANDARD DEVIATION OF S-ENERGY VALUES OF THE COMPARISON OF STAND-ALONE PAIRS. THE TWO BEST VALUES ARE HIGHLIGHTED
IN GRAY (DARK GRAY IS THE BEST, AND LIGHT GRAY IS THE SECOND BEST). THE “*” REPRESENTS THAT THE RESULT IS STATISTICALLY SIGNIFICANT.

SLD UDH
ESW AASF AGSF2 AASF AGSF2

dtlz1 9.978e+08 (1.59e+08) 1.093e+09 (5.54e+04) 8.506e+07 (3.98e+08) 1.337e+09 (3.16e+06) 1.151e+07 (2.13e+07)
dtlz2 8.475e+04 (7.18e+01)* 8.948e+04 (8.53e+01) 8.628e+04 (4.68e+01) 1.002e+05 (7.06e+02) 9.865e+04 (4.27e+02)
dtlz3 5.650e+08 (9.79e+08) 3.940e+11 (1.05e+12) 1.627e+11 (8.30e+11)* 1.047e+12 (2.29e+12) 6.824e+08 (1.82e+08)
dtlz4 9.058e+04 (2.88e+04)* 9.006e+04 (3.27e+02) 4.427e+08 (2.38e+09) 1.321e+05 (1.21e+05) 1.792e+05 (4.31e+05)
dtlz5 1.494e+06 (4.36e+03) 7.951e+12 (8.84e+12) 1.590e+11 (1.47e+11) 6.285e+08 (2.00e+09) 1.265e+08 (9.90e+07)
dtlz6 1.493e+06 (3.50e+03)* 8.742e+12 (7.93e+12) 1.725e+11 (1.99e+11) 3.374e+08 (3.38e+08) 5.618e+08 (9.96e+08)
dtlz7 1.527e+05 (2.54e+03)* 2.208e+12 (4.68e+12) 5.290e+09 (4.89e+09) 1.398e+12 (3.44e+12) 2.897e+11 (1.56e+12)
wfg1 2.254e+05 (1.40e+04)* 4.779e+11 (1.28e+12) 3.468e+11 (6.17e+11) 3.394e+10 (1.81e+11) 5.183e+08 (2.23e+09)
wfg2 1.453e+05 (4.82e+03)* 2.990e+11 (8.05e+11) 3.350e+11 (7.79e+11) 8.551e+08 (2.30e+09) 1.432e+10 (6.11e+10)
wfg3 3.618e+05 (1.00e+04)* 1.081e+12 (1.01e+12) 1.066e+12 (1.22e+12) 5.437e+08 (1.63e+09) 4.583e+08 (1.99e+09)
wfg4 8.874e+04 (4.32e+02)* 1.198e+11 (3.98e+11) 4.513e+10 (1.83e+11) 1.222e+09 (3.50e+09) 3.446e+09 (1.71e+10)
wfg5 8.810e+04 (9.77e+02)* 3.449e+07 (3.68e+07) 1.490e+08 (4.21e+08) 4.975e+05 (1.66e+06) 4.962e+06 (1.87e+07)
wfg6 8.463e+04 (6.55e+01)* 8.928e+04 (7.44e+01) 8.610e+04 (3.57e+01) 1.004e+05 (4.60e+02) 9.936e+04 (3.04e+02)
wfg7 8.608e+04 (1.17e+02)* 7.882e+11 (1.01e+12) 2.369e+11 (3.11e+11) 4.671e+08 (1.63e+09) 9.104e+08 (3.16e+09)
wfg8 9.903e+04 (9.84e+02)* 8.889e+11 (1.20e+12) 6.502e+11 (1.06e+12) 2.166e+10 (5.75e+10) 2.228e+10 (6.45e+10)
wfg9 1.043e+05 (5.23e+02)* 2.343e+11 (5.49e+11) 5.213e+11 (8.09e+11) 2.619e+06 (6.14e+06) 3.630e+07 (1.63e+08)

dtlz1−1 1.412e+05 (1.92e+02)* 4.218e+12 (2.81e+12) 1.338e+10 (2.49e+10) 6.819e+10 (3.59e+11) 5.942e+05 (1.35e+05)

dtlz2−1 1.401e+05 (1.51e+02)* 1.810e+09 (4.84e+09) 1.186e+07 (4.12e+06) 9.128e+07 (4.69e+08) 6.670e+10 (3.59e+11)

dtlz3−1 8.550e+04 (2.92e+02)* 5.656e+12 (3.58e+12) 4.574e+12 (2.72e+12) 1.188e+10 (2.54e+10) 1.154e+10 (3.18e+10)

dtlz4−1 1.402e+05 (1.49e+02)* 1.748e+11 (3.48e+11) 3.238e+07 (5.52e+07) 1.219e+09 (4.85e+09) 1.028e+06 (5.13e+05)

dtlz5−1 1.853e+05 (2.09e+02)* 2.140e+10 (8.13e+10) 3.591e+08 (1.34e+08) 1.451e+06 (1.86e+06) 1.939e+08 (5.99e+08)

dtlz6−1 1.097e+05 (1.02e+02)* 5.409e+09 (2.03e+10) 5.080e+07 (6.82e+07) 8.816e+05 (1.17e+06) 8.136e+06 (2.43e+07)

dtlz7−1 5.292e+05 (1.52e+04)* 9.253e+12 (2.21e+13) 8.558e+10 (4.48e+11) 9.083e+12 (2.62e+13) 8.051e+11 (2.49e+12)

wfg1−1 2.357e+05 (3.69e+04)* 2.053e+10 (5.92e+10) 1.534e+12 (1.43e+12) 5.005e+10 (2.18e+11) 3.581e+11 (1.18e+12)

wfg2−1 8.977e+04 (1.93e+02)* 2.771e+13 (3.02e+13) 2.315e+13 (1.93e+13) 2.184e+10 (6.10e+10) 8.469e+10 (2.52e+11)

wfg3−1 1.427e+05 (2.62e+02)* 2.050e+13 (2.48e+13) 3.406e+13 (2.68e+13) 2.404e+10 (6.81e+10) 4.770e+09 (1.73e+10)

wfg4−1 8.478e+04 (1.00e+02)* 2.148e+11 (8.31e+11) 2.131e+08 (7.62e+08) 9.581e+06 (4.67e+07) 2.261e+07 (1.15e+08)

wfg5−1 9.645e+04 (1.34e+03)* 1.548e+11 (3.90e+11) 1.174e+11 (2.58e+11) 1.383e+08 (4.71e+08) 5.313e+07 (1.24e+08)

wfg6−1 9.037e+04 (4.82e+02)* 9.099e+11 (1.04e+12) 7.835e+11 (1.05e+12) 1.728e+08 (3.95e+08) 1.506e+08 (3.38e+08)

wfg7−1 8.485e+04 (9.93e+01)* 6.028e+11 (1.24e+12) 1.636e+11 (7.27e+11) 1.059e+11 (3.73e+11) 1.731e+10 (8.97e+10)

wfg8−1 8.490e+04 (8.99e+01)* 1.371e+11 (4.99e+11) 4.776e+09 (2.56e+10) 4.763e+09 (2.56e+10) 8.681e+06 (4.07e+07)

wfg9−1 9.902e+04 (8.49e+02)* 1.042e+10 (2.23e+10) 1.781e+10 (6.09e+10) 1.129e+06 (3.23e+06) 3.112e+05 (3.49e+05)



TABLE IX
AVERAGE AND STANDARD DEVIATION OF HYPERVOLUME VALUES OF THE COMPARISON WITH STATE-OF-THE-ART ALGORITHMS. THE TWO BEST

VALUES ARE HIGHLIGHTED IN GRAY (DARK GRAY IS THE BEST, AND LIGHT GRAY IS THE SECOND BEST). THE “*” REPRESENTS THAT THE RESULT IS
STATISTICALLY SIGNIFICANT.

m ESW NSGA-III MOEA/DD
SMS-EMOA(m = 3) /

SMS-EMOAHype (m = 5,7,10)

dtlz1

3 1.2974e+0 (3.5e-2) 1.3062e+0 (4.3e-5) 1.3066e+0 (2.1e-5) *1.3067e+0 (9.7e-6)
5 1.6103e+0 (8.2e-7) 1.6103e+0 (4.5e-5) 1.6103e+0 (1.1e-6) 1.6099e+0 (1.6e-4)
7 1.9478e+0 (2.2e-5) 1.9474e+0 (1.8e-3) *1.9479e+0 (3.7e-6) 1.9472e+0 (2.6e-4)

10 2.5937e+0 (8.9e-16) 2.5937e+0 (3.6e-7) 2.5937e+0 (3.6e-7) 2.5937e+0 (8.9e-16)

dtlz2

3 7.6057e-1 (2.8e-4) 7.5514e-1 (1.5e-4) 7.5890e-1 (1.1e-6) *7.6811e-1 (4.7e-5)
5 *1.3508e+0 (7.0e-4) 1.3468e+0 (5.3e-4) 1.3478e+0 (4.8e-6) 1.3474e+0 (1.5e-3)
7 1.8399e+0 (1.1e-3) 1.8434e+0 (3.5e-4) *1.8446e+0 (4.7e-6) 1.8378e+0 (1.2e-3)

10 2.5936e+0 (2.5e-4) 2.5842e+0 (1.7e-2) *2.5937e+0 (4.4e-16) 2.5936e+0 (5.9e-5)

dtlz3

3 1.3226e+0 (3.3e-2) 1.3308e+0 (1.4e-5) 1.3308e+0 (3.7e-7) *1.3308e+0 (3.7e-7)
5 1.6105e+0 (4.6e-5) 1.6105e+0 (2.2e-16) 1.6105e+0 (2.2e-16) 1.6105e+0 (2.2e-16)
7 1.9487e+0 (4.4e-16) 1.9487e+0 (4.4e-16) 1.9487e+0 (4.4e-16) 1.9487e+0 (4.4e-16)

10 2.5937e+0 (8.9e-16) 2.5937e+0 (6.0e-7) 2.5937e+0 (8.9e-16) 2.5937e+0 (8.9e-16)

dtlz4

3 7.849e-1 (2.e-2) 7.6273e-1 (1.1e-1) 7.8725e-1 (1.4e-6) *7.1642e-1 (1.3e-1)
5 1.3351e+0 (1.3e-3) 1.3311e+0 (2.5e-4) 1.3314e+0 (4.2e-6) *1.3365e+0 (1.3e-3)
7 1.8510e+0 (1.4e-3) 1.8190e+0 (7.5e-2) *1.8533e+0 (1.8e-6) 1.8529e+0 (9.4e-4)

10 2.5937e+0 (7.e-5) 2.5937e+0 (6.0e-5) *2.5937e+0 (8.9e-16) 2.5937e+0 (3.1e-6)

dtlz7

3 1.2285e+0 (9.2e-5) 1.2222e+0 (3.7e-3) 1.2233e+0 (1.3e-4) *1.228e+0 (5.6e-3)
5 *1.4522e+0 (5.9e-4) 1.439e+0 (2.0e-3) 1.3898e+0 (4.e-2) 1.2622e+0 (1.1e-1)
7 *1.6759e+0 (1.5e-2) 1.5796e+0 (5.2e-2) 4.5235e-1 (7.6e-2) 8.2143e-1 (5.1e-1)

10 1.9117e+0 (2.2e-1) 1.9058e+0 (8.7e-2) 2.4389e-1 (3.9e-2) 1.9654e+0 (3.8e-1)

dtlz1−1

3 *3.0505e-1 (1.7e-4) 2.8573e-1 (1.3e-3) 2.6546e-1 (6.1e-4) 1.9195e-1 (1.2e-2)
5 1.9193e-2 (1.5e-4) 1.2290e-2 (1.1e-3) 1.0192e-2 (1.6e-4) 1.8941e-2 (1.1e-3)
7 4.4404e-4 (6.3e-6) 3.3421e-4 (2.8e-5) 2.0216e-4 (6.9e-6) *4.8428e-4 (3.7e-5)

10 7.8126e-7 (3.7e-8) 1.0556e-6 (1.4e-7) 1.3846e-7 (1.6e-8) *1.2840e-6 (1.2e-7)

dtlz2−1

3 9.3876e-1 (2.6e-4) 9.2134e-1 (1.8e-3) 9.1874e-1 (6.6e-4) *9.4007e-1 (1.8e-4)
5 *4.7853e-1 (1.8e-3) 4.2668e-1 (4.4e-3) 3.5354e-1 (1.5e-3) 4.3612e-1 (7.4e-3)
7 1.3525e-1 (8.7e-4) 1.1411e-1 (4.4e-3) 8.4628e-2 (1.6e-3) *1.4347e-1 (3.7e-3)

10 1.4428e-2 (2.4e-4) 1.3372e-2 (8.5e-4) 6.8312e-3 (3.1e-4) *2.0770e-2 (5.4e-4)

dtlz3−1

3 *7.1942e-1 (9.7e-4) 7.0608e-1 (2.7e-3) 7.0371e-1 (6.5e-4) 5.0008e-1 (1.9e-2)
5 1.6358e-1 (2.1e-3) 1.2602e-1 (6.3e-3) 8.2782e-2 (2.7e-3) *1.9704e-1 (5.8e-3)
7 9.7422e-3 (1.1e-3) 9.0438e-3 (1.4e-3) 8.5155e-3 (4.5e-4) *3.5046e-2 (1.3e-3)

10 7.6167e-5 (1.5e-5) 4.1322e-4 (1.0e-4) 5.7394e-4 (8.1e-5) *3.8553e-3 (3.4e-4)

dtlz4−1

3 9.3872e-1 (2.8e-4) 9.2217e-1 (1.9e-3) 9.1861e-1 (4.1e-4) *9.4017e-1 (1.8e-4)
5 *4.7745e-1 (8.e-3) 4.264e-1 (4.7e-3) 3.4831e-1 (2.2e-3) 4.4191e-1 (6.4e-3)
7 1.3462e-1 (8.2e-4) 1.0158e-1 (5.5e-3) 8.2317e-2 (7.e-4) *1.4507e-1 (2.8e-3)

10 8.429e-3 (1.6e-3) 1.0796e-2 (1.e-3) 6.9314e-3 (4.6e-4) *2.1365e-2 (5.8e-4)

dtlz7−1

3 1.3116e+0 (1.1e-5) 1.3105e+0 (5.9e-4) 1.3111e+0 (4.4e-5) *1.3117e+0 (1.4e-6)
5 1.5785e+0 (3.5e-4) 1.5649e+0 (3.0e-3) 1.5462e+0 (6.3e-2) 1.5728e+0 (1.1e-2)
7 *1.8984e+0 (6.7e-4) 1.8419e+0 (8.2e-3) 1.1554e+0 (3.1e-2) 1.8642e+0 (1.4e-2)

10 2.3558e+0 (3.5e-2) 2.3513e+0 (1.3e-2) 1.2544e+0 (3.5e-2) *2.4844e+0 (4.1e-2)

TABLE X
AVERAGE AND STANDARD DEVIATION OF S-ENERGY VALUES OF THE COMPARISON WITH STATE-OF-THE-ART ALGORITHMS. THE TWO BEST VALUES ARE
HIGHLIGHTED IN GRAY (DARK GRAY IS THE BEST, AND LIGHT GRAY IS THE SECOND BEST). THE “*” REPRESENTS THAT THE RESULT IS STATISTICALLY

SIGNIFICANT.

m ESW NSGA-III MOEA/DD
SMS-EMOA(m = 3) /

SMS-EMOAHype (m = 5,7,10)

dtlz1

3 *5.4852e+5 (8.8e+4) 6.7586e+5 (1.9e+3) 6.0073e+5 (3.5e+2) 6.1437e+5 (1.5e+3)
5 *5.8482e+8 (9.9e+7) 4.8462e+15 (2.6e+16) 1.7714e+9 (1.1e+6) 1.9274e+11 (5.4e+11)
7 *2.7427e+7 (2.6e+6) 2.0833e+33 (1.1e+34) 2.8939e+7 (7.1e+4) 1.6979e+30 (9.1e+30)

10 *1.0902e+30 (4.e+30) 1.5708e+54 (1.9e+54) 3.1455e+29 (1.1e+28) 1.2687e+54 (2.2e+54)

dtlz2

3 *8.5177e+4 (7.2e+1) 1.1143e+5 (3.6e+3) 8.9408e+4 (1.3e+0) 1.1827e+5 (1.8e+3)
5 *2.9926e+5 (9.6e+2) 3.5488e+5 (4.6e+2) 3.5543e+5 (2.1e+1) 2.6909e+10 (1.3e+11)
7 *2.8434e+5 (6.e+3) 4.6017e+5 (1.5e+3) 4.6397e+5 (8.8e+1) 3.333e+20 (1.8e+21)

10 *6.8291e+8 (2.9e+9) 3.4296e+48 (1.8e+49) 6.9118e+9 (3.2e+8) 1.0096e+29 (4.5e+29)

dtlz3

3 *1.5886e+7 (3.6e+7) 2.782e+7 (6.6e+6) 2.0173e+7 (3.2e+4) 2.3244e+7 (3.7e+5)
5 *1.7255e+13 (2.1e+13) 4.0516e+13 (1.3e+14) 1.6377e+13 (6.3e+10) 1.5793e+25 (2.1e+25)
7 *1.0611e+20 (5.1e+20) 2.6420e+34 (1.4e+35) 9.6665e+18 (7.9e+16) 2.0949e+36 (2.2e+36)

10 *3.3870e+48 (1.8e+49) 1.6999e+55 (1.3e+55) 5.5979e+34 (1.3e+34) 4.3020e+55 (7.7e+55)

dtlz4

3 *9.4209e+4 (3.e+4) 1.1207e+5 (2.3e+4) 9.2487e+4 (1.3e+0) 8.8115e+5 (1.3e+6)
5 *2.8891e+5 (4.8e+3) 3.3831e+5 (4.9e+2) 3.3869e+5 (1.4e+1) 7.9963e+11 (4.2e+12)
7 *3.2145e+5 (5.9e+3) 5.6666e+29 (3.1e+30) 4.8228e+5 (6.3e+1) 3.9256e+16 (2.1e+17)

10 *2.6341e+16 (1.4e+17) 9.3176e+46 (5.0e+47) 2.5528e+11 (3.e+10) 3.6538e+33 (2.e+34)

dtlz7

3 3.4745e+5 (8.5e+3) 6.7388e+7 (1.3e+8) *5.1791e+5 (7.e+5) 7.6398e+5 (2.6e+5)
5 *1.0179e+13 (5.5e+13) 1.3371e+15 (6.8e+15) 4.2344e+10 (1.3e+11) 3.9672e+19 (2.1e+20)
7 *9.4473e+4 (3.1e+3) 1.913e+19 (6.7e+19) 9.2988e+10 (1.6e+10) 7.9183e+23 (4.2e+24)

10 *2.3439e+3 (1.3e+2) 1.5425e+34 (8.3e+34) 7.8423e+12 (3.4e+13) 1.9316e+34 (7.1e+34)

dtlz1−1

3 *1.4117e+5 (1.9e+2) 2.4779e+11 (9.2e+11) 7.8507e+5 (2.2e+6) 2.0554e+6 (6.6e+5)
5 *1.3196e+6 (1.2e+4) 6.6751e+22 (3.6e+23) 2.7882e+9 (3.5e+9) 6.4933e+11 (3.4e+12)
7 *2.5558e+6 (1.9e+4) 1.5617e+25 (8.2e+25) 1.2222e+17 (6.5e+17) 2.5159e+16 (1.0e+17)

10 *1.6882e+8 (3.4e+7) 1.9274e+32 (8.4e+32) 9.5644e+23 (4.7e+24) 4.3405e+23 (2.3e+24)

dtlz2−1

3 *1.4005e+5 (1.5e+2) 2.3182e+9 (1.2e+10) 1.8862e+5 (5.2e+4) 2.0916e+5 (1.7e+3)
5 *7.5610e+5 (1.3e+4) 1.6784e+20 (9.e+20) 7.4462e+9 (3.5e+10) 1.9575e+10 (9.2e+10)
7 *8.7556e+5 (6.8e+3) 5.2344e+19 (2.7e+20) 3.5629e+13 (7.7e+13) 4.1913e+14 (1.5e+15)

10 *2.9202e+6 (6.4e+4) 1.7751e+29 (6.9e+29) 2.3295e+21 (1.0e+22) 1.4417e+20 (6.3e+20)

dtlz3−1

3 *8.5503e+4 (2.9e+2) 2.2985e+7 (7.6e+7) 1.1212e+5 (4.1e+4) 5.6999e+6 (1.6e+6)
5 *2.8263e+5 (2.8e+3) 1.0907e+13 (3.3e+13) 2.9823e+9 (1.5e+10) 1.4955e+11 (4.8e+11)
7 *2.5871e+5 (9.2e+3) 5.6391e+18 (3.0e+19) 2.7063e+14 (1.5e+15) 2.2508e+15 (1.2e+16)

10 *1.9501e+6 (1.3e+5) 6.8219e+31 (3.7e+32) 7.5909e+20 (3.8e+21) 3.7049e+17 (1.8e+18)

dtlz4−1

3 *1.4023e+5 (1.5e+2) 1.4933e+9 (4.2e+9) 1.3408e+10 (3.4e+10) 2.0823e+5 (1.6e+3)
5 *7.6196e+5 (5.2e+4) 6.9684e+22 (3.6e+23) 2.088e+23 (7.9e+23) 2.5420e+11 (9.3e+11)
7 *8.8492e+5 (7.2e+3) 8.3333e+33 (4.5e+34) 1.0620e+33 (5.6e+33) 1.3106e+15 (6.8e+15)

10 *5.6494e+6 (1.7e+6) 9.7702e+37 (5.3e+38) 6.4856e+47 (1.9e+48) 1.0617e+23 (5.2e+23)

dtlz7−1

3 4.6499e+6 (1.8e+5) 7.4787e+10 (2.9e+11) *7.2603e+5 (1.1e+5) 1.3095e+7 (2.2e+5)
5 *7.3814e+6 (1.1e+6) 4.6987e+17 (2.1e+18) 2.1525e+7 (2.3e+7) 1.2511e+19 (6.7e+19)
7 *1.8044e+6 (3.8e+4) 8.3523e+20 (4.0e+21) 4.7305e+11 (1.4e+12) 7.5992e+25 (3.8e+26)

10 9.0018e+23 (4.3e+24) 6.3153e+29 (3.4e+30) 9.8209e+14 (3.1e+15) 3.1702e+38 (1.7e+39)


