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Abstract—In evolutionary multi-objective optimization, the
results generated by an evolutionary algorithm usually contain
an approximation, as good as possible, of the entire Pareto-
optimal front. However, sometimes the number of Pareto-optimal
solutions may be so large that the decision maker (DM) is
incapable of manipulating or understanding them. Methods
for considering only the Pareto-optimal solutions that the DM
prefers indeed constitute a hot research topic in the evolutionary
computation field. In this paper, we introduce a new dominance
relation called ĝ-dominance, which is an improved version of
the g-dominance relation and can be easily implemented in
traditional multi-objective evolutionary algorithms. In this work,
the proposed ĝ-dominance is implemented in NSGA-II. Our
experimental results show the effectiveness of ĝ-NSGA-II with
respect to the original g-NSGA-II.

Index Terms—multi-objective optimization, evolutionary com-
putation, preference, g-dominance

I. INTRODUCTION

Multi-objective optimization has been studied in depth for
several years, as many real-world problems involve optimizing
several (often conflicting) objectives. These are the so-called
multi-objective optimization problems (MOPs). When solving
a MOP, the goal is to generate solutions that represent the best
possible trade-offs among the objectives. Such solutions con-
stitute the so-called Pareto optimal set. During the past three
decades, many evolutionary algorithms have been proposed,
including the Nondominated Sorting Genetic Algorithm-II
(NSGA-II) [1], the Strength Pareto Evolutionary Algorithm 2
(SPEA2) [2], and the Multi-Objective Evolutionary Algorithm
based on Decomposition (MOEA/D) [3].

Since decision makers (DMs) normally have a preference
when selecting the final solution, considerable attention has
been paid to evolutionary algorithms (EAs) for preference-
based multi-objective optimization in recent years. Specifi-
cally, in order to handle the DMs’ preferences, many tech-
niques have been proposed and have been embedded in a
variety of evolutionary algorithms to solve MOPs and search
only the region of interest (ROI) that the DM prefers.

Reference point techniques are one of the most commonly
used methods to represent the DM’s preferences. A novel
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concept called g-dominance was proposed in [4] to define
the preferred Pareto-optimal solutions based on a reference
point. An additional novel concept called r-dominance, was
proposed in [5]. Before and after the appearance of these
two concepts, many techniques were proposed. For example,
in [6], NSGA-II was modified to search the partial Pareto-
optimal solutions that are close to the reference point. Based
on the use of a weighted achievement scalarizing function,
an evolutionary algorithm for solving MOPs according to the
DM’s preference was proposed in [7]. The preference informa-
tion of the reference point was decomposed into a number of
scalar optimization subproblems in the study presented in [8],
where the algorithmic framework was based on MOEA/D. A
technique involving reference points consisting of the desired
aspiration levels for the objective functions was examined
in [9]. A hybrid multi-objective immune algorithm, where
the number of reference points is flexible, was proposed in
[10]. Additionally, the NSGA-III was proposed to deal many-
objective problems (i.e., MOPs having more than 3 objectives)
as well as to handle DMs’ preferences using reference points
[11].

Reference direction techniques are an additional approach
for expressing the DM’s preferences. For example, based on
NSGA-II, a novel reference direction-based NSGA-II called
RDNSGA-II, was proposed in [12]. In [13], a modified SPEA
was proposed, in which the reference direction is used to guide
the search for multi-objective and many-objective optimiza-
tion.

In addition to the reference point and the reference direction
techniques, other approaches have also been used to express
the DM’s preference in MOEAs. For example, the preferred
sub-problems selected by the DMs were used to guide the
search process of MOEA/D in [14]. Based on the light beam
search presented in [15], a modified NSGA-II designed to
search the Pareto-optimal solutions preferred by the DM was
proposed in [16]. The Gaussian functions on a hyperplane was
used to represent the DM’s preferences in [17].

From among the above techniques, g-dominance [4] is a
highly versatile, and easy to implement dominance relation.
However, when the reference point is close to (or on) the
Pareto-optimal front (PF), the performance of g-dominance
relation is not ideal. In particular, when the PF is discontinu-



ous, there can be no Pareto-optimal solutions in the region that
is selected as the preferred one by the g-dominance relation.

In this paper, the idea of bilevel optimization is used to
describe a MOP with preferences, and an improved version of
g-dominance called ĝ-dominance is proposed. ĝ-dominance is
implemented in NSGA-II, and the corresponding algorithm
is called ĝ-NSGA-II. Our experimental results show that ĝ-
NSGA-II has obvious advantages over g-NSGA-II in terms of
diversity and convergence, where g-NSGA-II is the NSGA-II
using g-dominance instead of ĝ-dominance.

The remainder of this paper is organized as follows. Sec-
tion II describes previous related work, including the basic
concepts of multi-objective optimization, the g-dominance
relation, and NSGA-II. Section III is devoted to describe our
proposed ĝ-dominance relation and its implementation. Our
experimental design and the results obtained are shown in
Section IV. Finally, Section V summarizes this paper.

II. RELATED WORK

In this section, first the definition of a MOP is provided,
and then, the g-dominance relation is introduced. Finally, the
well-known NSGA-II is introduced, since it is adopted as our
baseline algorithm in this study.

A. Definition of Multi-objective Optimization Problem

A MOP is defined as follows (assuming minimization of all
the objectives) [18]:

Minimize F (x) = (f1(x), · · · , fM (x))T ,

Subject to


hi(x) = 0, i = 1, · · · , np

gj(x) ≤ 0, j = 1, · · · , nq

x ∈ Ω

,
(1)

where x = (x1, · · · , xn) is the decision variable vector, n is
the number of decision variables, Ω ∈ Rn is the decision
space, fk(x) : Rn → R (k = 1, · · · ,M) represents the
objective functions, M is the number of objectives, hi and
gj are the equality and inequality constraints of the problem,
respectively, and np and nq are the corresponding number of
equality and inequality constraints.

On the basis of the above definition, we explain some terms
related to MOPs as follows [1].

First, the Pareto dominance relationship is defined as
follows. For two given solutions x, y ∈ Ω , x Pareto dominates
y if and only if fi(x) ≤ fi(y) for each i ∈ {1, · · · ,M} and
there exists at least one j ∈ {1, · · · ,M}, fj(x) < fj(y).

The second term is Pareto-optimal solution. That is, for a
given solution x ∈ Ω , if x is a Pareto-optimal solution, then
there is no other solution y ∈ Ω that dominates x.

Finally, the Pareto-optimal set (PS) is defined as the
set of all the Pareto-optimal solutions, i.e., PS = {x ∈
Ω |x is Pareto optimal}, while the PF is defined as PF =
{f(x) ∈ RM |x ∈ PS}.

B. g-dominance

The g-dominance relation proposed by Molina et al. [4] is
a new dominance relation that combines the DM’s preferences
with the Pareto dominance principle. This relation divides the
objective space into two parts according to a reference point.
One part is the region on which the DM does not concentrate
and the second is the DM’s preference.

The approach in which the g-dominance relation divides the
objective space is described as follows. Given reference point
g, for any point w in the objective space, the association of
point w depends on Flagg(w):

Flagg(w) =


1, if wi ≤ gi,∀i = 1, . . . ,M

1, if wi ≥ gi,∀i = 1, . . . ,M

0, otherwise

, (2)

where M is the dimension of the objective space.
In objective space, point w with Flagg(w) = 1 satisfies

the DM’s preferencea. The g-dominance relation is defined as
follows.

Given a reference point g, a solution x g-dominates another
solution y when one of the following conditions is satisfied:

(1) Flagg(x) > Flagg(y);
(2) Flagg(x) = Flagg(y), x Pareto dominates y.
The convenience of the g-dominance relation is such that it

can be easily implemented in a variety of MOEAs. MOEAs
with the g-dominance relation will converge to solutions in
the ROI because of the two following reasons:

(1) When the reference point is feasible, the ROI is formed
by the solutions on the PF that dominate the reference
point.

(2) When the reference point is infeasible, the ROI consists
of the solutions on the PF that are dominated by the
reference point.

C. NSGA-II

NSGA-II, which was proposed by Deb et al. [1], is one
of the most popular multi-objective evolutionary algorithms
(MOEAs) currently available. The pseudocode for NSGA-II is
presented in Algorithm 1.

In Algorithm 1, the function NonDominatedSort(R(t))
divides the immediate population R(t) = P (t) ∪ Q(t) into
multiple levels. The first level, F1, includes all the non-
dominated individuals in R(t); the second level, F2, includes
all non-dominated individuals in R(t) − F1, and so on. The
individuals in Fi are better than those in Fj when i < j.

The function CrowdingDistance(Fi) is used to calculate
the crowding distance for all individuals in Fi. An individual
with a larger crowding distance is considered to be better. The
function NewPopulation(P (t+1)) is utilized to generate the
next population using recombination and mutation.

In this study, NSGA-II was employed as the basic frame-
work for the ĝ-dominance relationship. We refer the reader
to [1] for the detailed formula for calculating the crowding
distance, as well as for the details of the recombination and
mutation operators.



Algorithm 1 NSGA-II
Input: N (the size of population)
Output: approximated PF and PS

1: t = 1;
2: Create an initial population P (t) randomly;
3: Q(t) = ∅;
4: while termination condition is not satisfied do
5: F =NonDominatedSort(P (t) ∪Q(t));
6: P (t + 1) = ∅;
7: i = 1;
8: while |P (t + 1)|+ |Fi| ≤ N do
9: P (t + 1) = P (t + 1) ∪ Fi;

10: i = i + 1;
11: end while
12: CrowdingDistance(Fi);
13: Add best N−|P (t+1)| individuals in Fi to P (t+1);
14: Q(t + 1) = NewPopulation(P (t + 1));
15: t = t + 1;
16: end while

III. PROPOSED ĝ-DOMINANCE

In this section, first the basic idea of the proposed ĝ-
dominance relation is introduced. Second, the detailed defini-
tion of the ĝ-dominance relation is provided. Then, the similar-
ities and differences between ĝ-dominance and g-dominance
are illustrated using some examples. Finally, the algorithm ĝ-
NSGA-II is explained.

A. Basic Idea

For preference-based MOPs, the purpose of MOEAs is to
search the ROI, instead of the entire PF. Intuitively, preference-
based MOPs can be regarded as a kind of special bilevel
optimization problems, as follows:

(1) Lower level requirement: the solutions generated by the
MOEA should be Pareto optimal;

(2) Upper level requirement: the solutions generated by the
MOEA should be within the ROI.

In other words, the lower level optimization problem is the
original MOP, and the upper level problem is a new MOP
constructed to attain the DM’s preferences. However, thus far,
insufficient attention has been paid to preference-based MOPs
from the viewpoint of special bilevel optimization problems
[19], [20].

In this paper, the upper level of the problem is defined as

Minimize P (F (x)) =

(|f1(x)− g1|, · · · , |fM (x)− gM |)T , (3)

where g = (g1, · · · , gM ) is the given reference point, F (x) =
(f1(x), · · · , fM (x)) is a point in the objective space, and M
is the dimension of the objective space. Obviously, its goal is
to minimize the distance from the individuals to the reference
point at each dimension.

Then, the minimized bilevel MOP with preferences is de-
fined as

Minimize P (F (x)) = (|f1(x)− g1|, · · · , |fM (x)− gM |)T ,
Subject to Minimize F (x) = (f1(x), · · · , fM (x))T ,

Subject to


hi(x) = 0, i = 1, · · · , np

gj(x) ≤ 0, j = 1, · · · , nq

x ∈ Ω

,

(4)

where F (x) = (f1(x), · · · , fM (x)) is the decision variable
vector for P (F (x)), pk(F (x)) = |fk(x)− gk| : R→ R (k =
1, · · · ,M) represents the objective functions for satisfying the
preferences, and the remaining definitions are consistent with
equations (1) and (3).

The problems defined by equation (4) are a type of MOP
with preferences. The ROI expressed by equation (4) consti-
tutes the Pareto-optimal solutions with the minimum distances
from the individuals to the reference point, g, at each dimen-
sion. In the following, we define such a preference as the
ĝ-dominance relation and compare the ĝ-dominance and the
g-dominance relation.

B. ĝ-dominance

Before defining the ĝ-dominance relation, some concepts
are presented as follows. For two given individuals x, y in the
decision space of the above bilevel problem,

(1) x f -dominates y (x ≺f y): for the lower level optimiza-
tion problem F (x), x Pareto dominates y, that is, if and
only if fi(x) ≤ fi(y) for each i ∈ {1, · · · ,M} and there
exists at least one j ∈ {1, · · · ,M}, fj(x) < fj(y);

(2) x p-dominates y (x ≺p y): for the upper level op-
timization problem P ((F (x)), F (x) Pareto dominates
F (y), that is, if and only if |fi(x) − gi| ≤ |fi(y) − gi|
for each i ∈ {1, · · · ,M} and there exists at least one
j ∈ {1, · · · ,M}, |fj(x)− gj | < |fj(y)− gj |.

The ĝ-dominance relation is now introduced. A solution x
ĝ-dominates a solution y when one of the following conditions
is satisfied:

(1) x f -dominates y;
(2) x and y is non-f -dominated each other, and x p-

dominates y.

Moreover, the ĝ-dominance optimal solution is defined as
follows.

x is ĝ-dominance optimal, if and only if x is Pareto optimal
and no Pareto-optimal individual y satisfies y ≺p x.

C. Comparisons of g-dominance and ĝ-dominance

In this part, g-dominance and ĝ-dominance are compared.
We discuss first the common ground of the two relations and
then their differences. For convenience, the problem ZDT3
from [21] is taken as an example, and the three different ref-
erence points used are (0.5, 0.5), (0.2, -0.2), and (0.3,0.2419),
respectively.



Fig. 1. Real regions of interest defined by the g-dominance and the ĝ-
dominance relation when the reference point is located in the feasible region.

Fig. 2. Real regions of interest defined by the g-dominance and the ĝ-
dominance relation when the reference point is located in the infeasible region.

1) Common Ground: Figs. 1 and 2 show two examples,
when the reference points are in the feasible and infeasible
regions, respectively.

In Fig. 1, the reference point g is set as (0.5, 0.5), and the
black curve represents the PF of ZDT3.

(1) For g-dominance, according to Equation (2), regions P
and Q are preference areas with a Flagg of 1; the
real ROI of the g-dominance relation is composed of
non-dominated solutions in the region Q, i.e., the green
portion of the PF in Fig. 1.

(2) For ĝ-dominance, the real ROI consists of non-f -
dominated solutions that are also non-p-dominated. The
non-f -dominated solutions in region Q are p-dominance
equivalent, because, given any two non-f -dominated
solutions x, y in the region Q, there must be:
|f1(x)−g1| < |f1(y)−g1| & |f2(x)−g2| > |f2(y)−g2|
or
|f1(x)−g1| > |f1(y)−g1| & |f2(x)−g2| < |f2(y)−g2|.
Meanwhile, the non-f -dominated solutions outside re-
gion Q are p-dominated by the solutions in the region Q,
because, for any non-f -dominated solution y outside the

region Q, there must exist at least one non-f -dominated
solution x in the region Q satisfying:
|f1(x)−g1| < |f1(y)−g1| & |f2(x)−g2| ≤ |f2(y)−g2|
or
|f1(x)−g1| ≤ |f1(y)−g1| & |f2(x)−g2| < |f2(y)−g2|.
In summary, the ROI of the ĝ-dominance consists of the
non-dominated solutions in the region Q. Thus, the real
ROIs defined by the g-dominance and the ĝ-dominance
relation are consistent.

Fig. 2 reveals the same situation when the reference point
is set as (0.2,−0.2) in the infeasible region. That is, the real
ROIs defined by the g-dominance and the ĝ-dominance are
consistent.

Fig. 3. Real region of interest (ROI) defined by the ĝ-dominance when the
reference point is located in the special region. The ROI of g-dominance does
not exist.

2) Differences: In Fig. 3, the reference point is set as
(0.3, 0.2419). Meanwhile, in this figure, the positions of points
A and B on the PF are (0.2577, 0.2422) and (0.4093, 0.2418),
respectively. The two subgraphs in the figure show the relative
position relationship between Point A (or B) and the reference
point. It can be clearly observed that individuals on the PF
do not dominate the reference point, and they are also not
dominated by the reference point.

In this case, the real ROI defined by g-dominance is non-
existent rather than in the Pareto-optimal region.

In contrast, the ROI defined by the ĝ-dominance is lo-
cated in the Pareto-optimal region, which consists of points
A and B. Note that P (A) = (0.0423, 0.0003), P (B) =
(0.1093, 0.0001), and A and B are p-dominance equivalent.

Furthermore, the cases where the ROI defined by the g-
dominance does not exist may be rare in a two-dimensional
space; however, this would be a more common situation in a
three- or higher-dimensional space. Overall, the ĝ-dominance
can be regarded as an improved version of the g-dominance.

D. ĝ-NSGA-II

The main idea of ĝ-NSGA-II is to achieve the bilevel
dominating relationship. We need only to modify the
non-dominated sorting procedure in the original NSGA-II.



That is, Algorithm 2 is adopted to replace the function
NonDominatedSort(.) in Algorithm 1. At each time step
t, the input parameter TempP of Algorithm 2 is P (t)∪Q(t).

Algorithm 2 ĝ-Non-Dominated Sort
Input: TempP (population), g (reference point)
Output: F (the result of non-ĝ-dominance sorting)

1: maxLayer = 1;
2: while length(TempP ) > 0 do
3: P̄ = all ĝ-dominance optimal solutions in TempP ;
4: TempP = TempP − P̄ ;
5: F (P̄ ) = maxLayer;
6: maxLayer = maxLayer + 1;
7: end while

In Algorithm 2, first, at step 3, the non-f -dominated
solutions in population TempP are selected (denoted as
NonFDS for convenience), and then, the non-p-dominated
solutions in NonFDS are selected as P̄ . Second, TempP =
TempP − P̄ , and F (P̄ ) = maxLayer is set, where
maxLayer is initialized to 1. Third, maxLayer =
maxLayer + 1, and the above process is repeated until
TempP is empty.

IV. EXPERIMENTS

In this section, the experimental settings and results are
presented. Both ĝ-NSGA-II and g-NSGA-II were implemented
on the MATLAB platform PlatEMO [22].

A. Benchmark

The ZDT and DTLZ instances [21], [23], [24] are widely
used in multi-objective optimization and can illustrate rela-
tively well the ability of MOEAs to generate solutions in var-
ious situations. In this study, ZDT1∼4, ZDT6, and DTLZ1∼6
were adopted.

In our experiments, the ZDT test suite consiste of two-
objective problems and the DTLZ test suite consisted of three-
objective problems. The dimension of all the ZDT problems
was set to 30, except for ZDT4 and ZDT6 whose dimension-
ality was set to 10. The dimension of the DTLZ problems
was set to 12. The maximum allowable number of fitness
evaluations for the ZDT test problems was set to 20000 and
it was set to 30000 for the DTLZ test problems.

B. Metric

The inverted generational distance (IGD) [25] is a widely
employed indicator for measuring the distance between the PF
and the solutions generated by MOEAs, which considers both
diversity and convergence. It is defined as:

IGD(P ∗, P ) =

∑
v∈P∗ d(v, P )

|P ∗|
, (5)

where P ∗ denotes the real PF consisting of a set of uniformly
distributed points, P is the approximate PF composed of a
comparable set of points generated by the MOEA, and d(v, P )

represents the Euclidean distance from a point v in P ∗ to its
nearest point in P .

The IGD indicator considers the entire PF rather than the
region preferred by the DM. To concentrate on the DM’s
preferred solutions, we modified the IGD indicator as follows:

IGD(ROI∗, ROI) =

∑
v∈ROI∗ d(v,ROI)

|ROI∗|
, (6)

where ROI∗ contains the DM’s preferred solutions on the real
PF and ROI represents the results produced by the algorithms.

The modified IGD can better compare the distance between
the true ROI and the solutions generated by the algorithm.
For the sake of convenience, this modified version is called
IGD-ROI hereafter.

C. Reference Points

Fig. 4. Five reference points in a two-dimensional problem.

Fig. 5. Nine reference points in a three-dimensional problem.

Each problem was tested using different reference points
to allow extensive comparisons. The reference points Refi,j
were set as follows:

(1) For two-dimensional problems:

Refi,j = (c1 + (−1)i ∗ s1, c2 + (−1)j ∗ s2),

i, j = 1, 2;
(7)



(2) For three-dimensional problems:

Refi,j,k = (c1 + (−1)i ∗ s1, c2 + (−1)j ∗ s2,
c3 + (−1)k ∗ s3), i, j, k = 1, 2;

(8)

where

c = (c1, · · · , cD)

= ((ub1 − lb1)/2, · · · , (ubD − lbD)/2),

s = (s1, · · · , sD)

= ((ub1 − lb1)/4, · · · , (ubD − lbD)/4),

and lbd and ubd are the lower and upper boundaries of the true
PF in the dth dimensional objective space, cd is the average of
lbd and ubd, and s represents a vector consisting of offsets in
various dimensions, 1 ≤ d ≤ D. Refi,j and Refi,j,k denote
the reference points in two- and three-dimensional objective
space, respectively. Moreover, the center point c was also
tested as a reference point Refc in each problem.

For example, the true PF of ZDT1 [21], [23], [24] and the
positions of the five reference points are illustrated in Fig. 4.
The points A,B,C,D, and E correspond to Ref1,2 = (0.5 +
(−1)1 ∗ 0.25, 0.5 + (−1)2 ∗ 0.25) = (0.25, 0.75), Ref2,2 =
(0.75, 0.75), Ref1,1 = (0.25, 0.25), Ref2,1 = (0.75, 0.25),
and Refc = (0.5, 0.5), respectively. It can be seen that these
reference points include multiple types of locations, such as
feasible areas, infeasible areas, and regions near the PF.

For an additional example, Fig. 5 shows the nine reference
points on DTLZ1. As shown in the figure, in the three-
dimensional problem, the above reference point selection
method can better cover most of the representative regions
in the objective space.

D. Parameters Settings

The size of the population of all test cases was set to
100. The simulated binary crossover and polynomial-based
mutation operators were adopted in ĝ-NSGA-II. For the
crossover operator, the crossover probability was pc = 1 and
the distribution index was set to dc = 20. For the mutation
operator, the mutation probability was set to pm = 1/n (n is
the dimensionality of the solution space) and the distribution
index was set to dm = 20.

The parameters settings for g-NSGA-II were the same as
those for ĝ-NSGA-II to allow a fair comparison.

E. Experimental Results

The average values of IGD-ROI and their standard devia-
tions are shown in Tables I, II, and III. Each experiment was
independently run 20 times. A t-test was applied to determine
whether the performance of ĝ-NSGA-II is significantly better
at a 0.05 significance level.

1) Results of ZDT problems: It can be seen in Table I that,
for all cases of the ZDT instances, except for one (ZDT6),
ĝ-NSGA-II performs better than g-NSGA-II.

On ZDT6, when the position of the reference point was set
as (0.5394, 0.2303), g-NSGA-II performed better. However,

TABLE I
MEAN AND STANDARD DEVIATION VALUES OF IGD-ROI (ZDT)

Prob. Reference point g-NSGA-II ĝ-NSGA-II

ZDT1 (0.25,0.75) 0.0029(8.68E-04)(++) 0.0016(2.93E-04)
(0.25,0.25) 0.0030(1.02E-03)(++) 0.0019(2.51E-04)
(0.75,0.25) 0.0028(1.40E-03)(++) 0.0011(1.73E-04)
(0.75,0.75) 0.0059(1.91E-03)(++) 0.0039(5.54E-04)
(0.5,0.5) 0.0026(6.90E-04)(++) 0.0016(2.43E-04)

ZDT2 (0.25,0.75) 0.0031(8.09E-04)(++) 0.0017(2.35E-04)
(0.25,0.25) 0.0056(1.28E-03)(++) 0.0039(4.68E-04)
(0.75,0.25) 0.0033(1.80E-03)(++) 0.0013(2.99E-04)
(0.75,0.75) 0.0070(9.43E-03)(++) 0.0020(3.79E-04)
(0.5,0.5) 0.0038(1.28E-03)(++) 0.0017(2.71E-04)

ZDT3 (0.2129,1.33) 0.0029(9.18E-04)(++) 0.0022(1.55E-04)
(0.2129,0.4433) 0.0008(4.46E-04)(++) 0.0001(6.17E-05)
(0.6388,0.4433) 0.0582(1.19E-01)(+) 0.0061(1.47E-02)
(0.6388,1.33) 0.0064(1.89E-03)(++) 0.0048(4.21E-04)
(0.4259,0.8867) 0.0052(3.08E-03)(++) 0.0032(2.96E-04)

ZDT4 (0.25,0.75) 0.0753(9.17E-02)(++) 0.0090(1.41E-02)
(0.25,0.25) 0.0272(4.78E-02)(+) 0.0065(3.96E-03)
(0.75,0.25) 0.0597(6.71E-02)(++) 0.0166(3.38E-02)
(0.75,0.75) 0.0211(1.93E-02)(++) 0.0080(4.41E-03)
(0.5,0.5) 0.0764(8.88E-02)(++) 0.0056(2.61E-03)

ZDT6 (0.1798,0.6909) 0.0024(7.03E-04)(+) 0.0021(6.67E-04)
(0.1798,0.2303) 0.0042(1.08E-03)(+) 0.0040(7.59E-04)
(0.5394,0.2303) 0.0028(7.77E-04) 0.0030(9.44E-04)
(0.5394,0.6909) 0.0020(2.10E-03)(++) 0.0005(3.82E-04)
(0.3596,0.4606) 0.0031(1.34E-03)(++) 0.0025(5.08E-04)

++ and + indicate ĝ-NSGA-II performs significantly better and better than g-NSGA-
II, respectively.

the performance of ĝ-NSGA-II was close to that of g-NSGA-
II. In fact, g-NSGA-II obtained 0.0028 and ĝ-NSGA-II ob-
tained 0.0030.

The IGD-ROI is a good indicator of the difference between
the results obtained by the algorithms and the target ROI.
That is, the above experimental results show that the solutions
obtained by ĝ-NSGA-II are more in line with the needs of
the DM than those generated by g-NSGA-II on the ZDT test
problems. Meanwhile, the results of the t-test show that the
improvement achieved is statistically significant.

2) Results on the DTLZ test problems: In Tables II and III,
it can be seen that, as compared with g-NSGA-II, ĝ-NSGA-
II obtained outstanding results on four instances: DTLZ1,
DTLZ3, DTLZ5, and DTLZ6. The t-test values show that ĝ-
NSGA-II performed significantly better than g-NSGA-II on
these four problems. The performance of g-NSGA-II was
better than that of ĝ-NSGA-II on DTLZ2 for four reference
points and on DTLZ4 for six reference points.

Overall, our experimental results show that ĝ-NSGA-II can
better handle the DM’s preferences.

F. Two Special Cases

In this study, two special cases were used to compare the
performance of ĝ-NSGA-II and g-NSGA-II. Fig. 6 and Fig. 7
show the results of a specific run of the two cases. In fact, in
most cases, the results of the two cases are similar to those in
the figures.



TABLE II
MEAN AND STANDARD DEVIATION VALUES OF IGD-ROI (DTLZ, PART 1)

Prob. Reference point g-NSGA-II ĝ-NSGA-II

DTLZ1 (0.125,0.375,0.375) 11.3340(4.61E+00)(++) 0.0875(1.49E-01)
(0.125,0.125,0.375) 10.4750(2.98E+00)(++) 0.0753(1.20E-01)
(0.125,0.375,0.125) 12.2340(3.61E+00)(++) 0.1226(2.05E-01)
(0.125,0.125,0.125) 10.0440(3.23E+00)(++) 0.0943(1.30E-01)
(0.25,0.25,0.25) 9.8832(2.84E+00)(++) 0.0381(6.11E-02)

DTLZ2 (0.25,0.75,0.75) 0.0111(4.54E-04) 0.0114(4.61E-04)
(0.25,0.25,0.75) 0.0241(3.60E-03)(++) 0.0212(1.70E-03)
(0.25,0.75,0.25) 0.0213(1.55E-03)(++) 0.0194(6.27E-04)
(0.25,0.25,0.25) 0.0499(3.27E-03)(+) 0.0477(2.83E-03)
(0.5,0.5,0.5) 0.0146(1.44E-03)(++) 0.0130(8.21E-04)

DTLZ3 (0.25,0.75,0.75) 25.1670(6.75E+00)(++) 0.1570(2.98E-01)
(0.25,0.25,0.75) 22.3890(6.50E+00)(++) 0.2640(4.07E-01)
(0.25,0.75,0.25) 22.5890(7.74E+00)(++) 0.3879(5.64E-01)
(0.25,0.25,0.25) 24.0880(5.55E+00)(++) 0.2254(3.31E-01)
(0.5,0.5,0.5) 24.5360(7.57E+00)(++) 0.2639(4.24E-01)

DTLZ4 (0.25,0.75,0.75) 0.0110(3.40E-04) 0.0114(3.87E-04)
(0.25,0.25,0.75) 0.0216(1.53E-03)(+) 0.0214(1.23E-03)
(0.25,0.75,0.25) 0.0202(1.33E-03)(++) 0.0193(5.73E-04)
(0.25,0.25,0.25) 0.0466(3.07E-03) 0.0477(2.05E-03)
(0.5,0.5,0.5) 0.0143(1.20E-03)(++) 0.0132(5.66E-04)

DTLZ5 (0.1768,0.5303,0.75) 0.2080(4.15E-04)(++) 0.0020(6.58E-05)
(0.1768,0.1768,0.75) 0.0017(8.56E-05)(++) 0.0016(7.24E-05)
(0.1768,0.5303,0.25) 0.0052(7.53E-04)(++) 0.0043(4.12E-04)
(0.1768,0.1768,0.25) 0.0042(2.09E-04)(++) 0.0038(1.58E-04)
(0.3536,0.3536,0.5) 0.0022(4.90E-04)(++) 0.0019(7.66E-05)

DTLZ6 (0.1768,0.5303,0.75) 0.2460(3.99E-02)(++) 0.0022(1.28E-04)
(0.1768,0.1768,0.75) 0.0282(4.01E-02)(++) 0.0017(5.81E-05)
(0.1768,0.5303,0.25) 0.0251(1.84E-02)(++) 0.0046(4.38E-04)
(0.1768,0.1768,0.25) 0.0218(2.05E-02)(++) 0.0039(1.56E-04)
(0.3536,0.3536,0.5) 0.0288(2.56E-02)(++) 0.0019(7.03E-05)

++ and + indicate respectively that ĝ-NSGA-II performs significantly better and better
than g-NSGA-II.

1) Case 1: In the first case, the reference point was close
to the Pareto optimal front.

Here, we take ZDT3 and the reference point g =
(0.25, 0.25) as an example. As shown in Fig. 6, g-NSGA-
II cannot properly converge to the ROI. But ĝ-NSGA-II can.

When the reference point is very close to the PF, since the
solutions in the preferred region of g-NSGA-II are selected
first for being evolved, these individuals cannot easily be
concentrated on one point at the PF as a result of the gap
between them and the PF. Nevertheless, ĝ-NSGA-II always
selects first the nearest Pareto-optimal solution for evolution.
Consequently, ĝ-NSGA-II can properly locate the ROI.

2) Case 2: In the second case, the reference point was
located in the region where the real ROI of g-dominance is
nonexistent.

Here, we take the problem ZDT3 and the reference point
g = (0.3, 0.2419) as an example. When the reference point is
located at (0.3, 0.2419), the real ROI defined by g-dominance
does not exist. The results obtained by the two algorithms are
shown in Fig. 7. The results of g-NSGA-II are concentrated
on the non Pareto-optimal region, whereas ĝ-NSGA-II is
effective.

TABLE III
MEAN AND STANDARD DEVIATION VALUES OF IGD-ROI (DTLZ, PART 2)

Prob. Reference point g-NSGA-II ĝ-NSGA-II

DTLZ1 (0.375,0.375,0.375) 11.1740(3.77E+00)(++) 0.0959(1.19E-01)
(0.375,0.125,0.375) 11.9580(4.35E+00)(++) 0.0864(1.24E-01)
(0.375,0.375,0.125) 10.3500(3.24E+00)(++) 0.1711(1.98E-01)
(0.375,0.125,0.125) 9.9710(3.55E+00)(++) 0.0772(1.20E-01)

DTLZ2 (0.75,0.75,0.75) 0.0359(1.56E-03) 0.0365(1.82E-03)
(0.75,0.25,0.75) 0.0110(4.28E-04) 0.0115(3.67E-04)
(0.75,0.75,0.25) 0.0107(3.78E-04) 0.0110(4.75E-04)
(0.75,0.25,0.25) 0.0233(5.62E-03)(++) 0.0192(4.64E-04)

DTLZ3 (0.75,0.75,0.75) 27.5560(7.41E+00)(++) 0.1199(2.24E-01)
(0.75,0.25,0.75) 27.4220(6.15E+00)(++) 0.0434(3.24E-02)
(0.75,0.75,0.25) 26.2620(6.99E+00)(++) 0.1998(3.88E-01)
(0.75,0.25,0.25) 24.0030(8.13E+00)(++) 0.1572(3.08E-01)

DTLZ4 (0.75,0.75,0.75) 0.0361(1.39E-03) 0.0363(1.43E-03)
(0.75,0.25,0.75) 0.0109(4.72E-04) 0.0113(3.49E-04)
(0.75,0.75,0.25) 0.0108(3.68E-04) 0.0111(3.57E-04)
(0.75,0.25,0.25) 0.0197(9.55E-04) 0.0197(6.36E-04)

DTLZ5 (0.5303,0.5303,0.75) 0.0004(1.97E-05) 0.0004(1.90E-05)
(0.5303,0.1768,0.75) 0.2079(3.00E-04)(++) 0.0020(7.51E-05)
(0.5303,0.5303,0.25) 0.0021(1.68E-04)(++) 0.0018(8.26E-05)
(0.5303,0.1768,0.25) 0.0053(9.14E-04)(++) 0.0046(5.47E-04)

DTLZ6 (0.5303,0.5303,0.75) 0.1349(2.80E-01)(++) 0.0005(1.28E-05)
(0.5303,0.1768,0.75) 0.2490(4.21E-02)(++) 0.0022(1.19E-04)
(0.5303,0.5303,0.25) 0.0648(1.69E-01)(+) 0.0018(8.45E-05)
(0.5303,0.1768,0.25) 0.0295(2.07E-02)(++) 0.0044(3.27E-04)

++ and + indicate respectively that ĝ-NSGA-II performs significantly better and better
than g-NSGA-II.

Fig. 6. Results obtained by g-NSGA-II and ĝ-NSGA-II when the reference
point is close to the Pareto optimal front (One Run).

In this case, according to equation (2), all individuals with
Flagg(.) = 1 are not Pareto optimal. Therefore, g-NSGA-
II cannot find the PF in this case. However, ĝ-NSGA-II is
effective, because it selects the nearest individuals from the
Pareto-optimal solutions.

V. CONCLUSION AND FUTURE WORK

In this paper, a new dominance relation called ĝ-dominance
was proposed. This approach hybridizes the reference point
method and the Pareto dominance principle. ĝ-dominance can



Fig. 7. Results obtained by the g-NSGA-II and ĝ-NSGA-II when the reference
point is located in the region where the real region of interest of g-dominance
is nonexistent (One Run).

be regarded as an improved version of g-dominance. The new
ĝ-dominance relation was implemented in NSGA-II, and our
experimental results showed that ĝ-NSGA-II performs better
in terms of processing user preferences than the original g-
NSGA-II.

Some studies have shown that the more complex the prob-
lem environment, the greater the pressure on the DM to make
decisions [26], [27]. However, the incorporation of preferences
will undoubtedly reduce decision costs. In the future, it would
be worthwhile to implement and test the ĝ-dominance relation
in dynamic MOPs, as well as in many-objective optimization
problems. Moreover, the use of multiple reference points
still needs further study. Finally, when the user continually
changes the reference point, the above strategy is undoubtedly
inefficient and wastes resources. Evidently, we need better
means of handling time-evolving reference points.
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