
MOEA/D assisted by RBF Networks for Expensive
Multi-Objective Optimization Problems

Saúl Zapotecas Martínez
CINVESTAV-IPN (EVOCINV)

Departamento de Computación
México, D.F. 07360, MEXICO

saul.zapotecas@gmail.com

Carlos A. Coello Coello
CINVESTAV-IPN (EVOCINV)

Departamento de Computación
México, D.F. 07360, MEXICO
ccoello@cs.cinvestav.mx

ABSTRACT

The development of multi-objective evolutionary algorithms
assisted by surrogate models has increased in the last few
years. However, in real-world applications, the high modal-
ity and dimensionality that functions have, often causes prob-
lems to such models. In fact, if the Pareto optimal set of a
multi-objective optimization problem is located in a search
space in which the surrogate model is not able to shape the
corresponding region, the search could be misinformed and
thus converge to wrong regions. Because of this, a consider-
able amount of research has focused on improving the pre-
diction of the surrogate models by adding the new solutions
to the training set and retraining the model. However, when
the size of the training set increases, the training complexity
can significantly increase. In this paper, we present a surro-
gate model which maintains the size of the training set, and
in which the prediction of the function is improved by using
radial basis function networks in a cooperative way. Prelim-
inary results indicate that our proposed approach can pro-
duce good quality results when it is restricted to performing
only 200, 1,000 and 5,000 fitness function evaluations. Our
proposed approach is validated using a set of standard test
problems and an airfoil design problem.

Categories and Subject Descriptors

I.2.8 [Computing Methodologies]: Artificial Intelligence—
Problem Solving, Control Methods, and Search.

Keywords

Multi-objective optimization, expensive optimization, RBF
neural networks.

1. INTRODUCTION
Multi-Objective Evolutionary algorithms (MOEAs) have

been successfully adopted to solve multi-objective optimiza-
tion problems (MOPs) in a wide variety of engineering and
scientific problems [1]. However, in real-world applications
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is common to find objective functions which are very expen-
sive to evaluate (in terms of computational time). This has
considerably limited the use of evolutionary techniques to
these types of problems. In recent years, several researchers
have developed different strategies for reducing the compu-
tational time (measured in terms of the number of fitness
function evaluations) that a MOEA requires to solve a de-
termined problem. From such strategies, the use of surro-
gate models has been one of the most common techniques
adopted to solve complex problems. In the specialized lit-
erature, several authors have reported the use of surrogate
models for dealing with MOPs—see for example [11, 4, 6, 16,
19] among others. However, the features of some problems,
such as high modality and dimensionality, often present ma-
jor obstacles to surrogate models. Therefore, if the Pareto
optimal set of a MOP is located in a search space in which
the surrogate model is not able to shape the correspond-
ing region, the search could be misinformed and converge
to wrong regions. Because of this, an important number of
researchers have tried to improve the prediction of surro-
gate models by adding new solutions to the training set and
then retraining the surrogate model at each iteration of the
MOEA, see for example [19, 16]. However, as the training
set gets larger, the complexity of the training also increases.

In this paper, we present an algorithm based on the well-
known MOEA/D [18] which is assisted by radial basis func-
tion (RBF) networks. The proposed approach uses a static
size for the training set and the function prediction of the
surrogate model is improved by using a set of RBF net-
works in a cooperative way. With this, the computational
complexity (measured in terms of computational time) is
not dependent on the size of the training set, being limited
only to the number of decision variables that the MOP has.
The main goal of this paper is to contribute to the state-
of-the-art regarding MOEAs assisted by surrogate models,
which we believe is of interest in a wide variety of real-world
problems (given the wide applicability of MOEAs [1]). We
show in this paper that cooperative RBF networks can sig-
nificantly reduce the number of fitness function evaluations
that are required to produce reasonably good approxima-
tions of MOPs of different complexity.

The remainder of this paper is organized as follows. In
Section 2, we present the basic concepts to understand the
rest of the paper. In Section 3, we describe in detail our pro-
posed approach. In Section 4, the test problems adopted to
validate our approach are described. In Section 5, we show
and discuss the results obtained by our proposed approach.



Finally, in Section 6, we provide our conclusions and some
possible paths for future research.

2. BASIC CONCEPTS

2.1 Multi-Objective Optimization
Without loss of generality we will assume only minimiza-

tion problems. Thus, a nonlinear multi-objective optimiza-
tion problem can be formulated as:

min
x∈Ω

F(x) (1)

where Ω defines the decision variable space and F : Ω → R
k

defines the vector of objective functions F(x) = (f1(x), . . . ,-
fk(x))

T , such that fi : Rn → R is a nonlinear function. In
order to describe the concept of optimality in which we are
interested, the following definitions are introduced [10]:

Definition 1. Let x,y ∈ Ω, we say that x dominates
y (denoted by x ≺ y) if and only if, fi(x) ≤ fi(y) and
F(x) 6= F(y).

Definition 2. Let x⋆ ∈ Ω, we say that x⋆ is a Pareto
optimal solution, if there is no other solution y ∈ Ω such
that y ≺ x⋆.

Definition 3. The Pareto optimal set PS is defined by:
PS = {x ∈ Ω|x is Pareto optimal solution}, and the Pareto
optimal front PF is defined as: PF = {F(x)|x ∈ PS}.

2.2 Radial Basis Function Networks
Radial Basis Function (RBF) networks are a feed-forward

kind of neural network, which are commonly represented
with three layers: an input layer with n nodes, a hidden layer
with h nonlinear RBFs (or neurons), and an output node ϕ.
The function value in a RBF depends on the distance from
each point x to the origin, i.e. g(x) = g(||x||). This function
value can be generalized to distances from some other point
cj , commonly called center of the basis function, that is:

g(x,cj) = g(||x− cj ||)

The output ϕ : Rn 7→ R of the network is defined as:

ϕ(x) =

h
∑

j=1

wjg(||x− cj ||) (2)

where h is the number of neurons in the hidden layer, cj is
the center vector for the jth neuron, and wj ’s are the weights
of the linear output neuron. In its basic form, all inputs are
connected to each hidden neuron. The norm is typically
taken to be the Euclidean distance and the basis function
g or kernel is taken to be Gaussian, although other basis
functions are also possible (see for example those shown in
Table 1).

RBF networks can be used to interpolate a function f :
R

n 7→ R when the values of that function are known on a
finite number of points: f(xi) = yi, i = 1 . . . , N . Taking
into account the h centers cj ’s (j = 1, . . . , h) and evaluating
the values of the basis functions at the points xi, i.e., φij =
g(||cj−xi||, σj) the weights can be solved from the equation:
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(3)

Table 1: Kernels for a RBF neural network, where
r = ||x − ci||

Kernel Description

Cubic g(r) = r3

Thin Plate Spline g(r) = r2 ln(r)

Gaussian g(r, σ) = exp(−r2/2σ2)

Multi-quadratic g(r, σ) =
√
r2 + σ2

Inverse multi-quadratic g(r, σ) =
√
r2 + σ2

Therefore, the weights wi’s can be solved by simple linear
algebra, using the least squares method, that is:

w = (ΦTΦ)−1ΦTy (4)

The parameter σj of the kernels (Gaussian, multi-quadratic
and inverse multi-quadratic) determines the amplitude of
each basis function and it can be adjusted to improve the
model accuracy.

3. OUR PROPOSED APPROACH

3.1 MOP Decomposition
A Pareto optimal solution to a MOP, under some assump-

tions, is an optimal solution of a scalar optimization problem
in which the objective is an aggregation of all the objective
functions fi’s. Therefore, an approximation of the Pareto
optimal front can be decomposed into a number of scalar ob-
jective optimization subproblems. Several approaches have
been proposed for decomposing a MOP into multiple single-
objective optimization subproblems [10]. In the following,
we describe an approach based on the normal boundary
intersection (NBI) [2] method, which is referred to in this
work.

3.1.1 Penalty Boundary Intersection Approach

The Penalty Boundary Intersection (PBI) approach pro-
posed by Zhang and Li [18], uses a weight vector w and
a penalty value θ for minimizing both the distance to the
utopian vector d1 and the direction error to the weight vec-
tor d2 from the solution F(x). The optimization problem
can be stated as:

Minimize: g(x|w,z⋆) = d1 + θd2 (5)

where

d1 =
||(F(x)− z⋆)Tw||

||w||
and d2 =

∣

∣

∣

∣

∣

∣

∣

∣

(F(x)− z
⋆) − d1

w

||w||

∣

∣

∣

∣

∣

∣

∣

∣

such that x ∈ Ω and z⋆ = (z1, . . . , zk)
T , such that: zi =

min{fi(x)|x ∈ Ω}.
Therefore, a good representation of the Pareto front can

be obtained by solving a set of problems defined by a well-
distributed set of weight vectors. This is the main idea be-
hind current decomposition-based MOEAs, see e.g. [18, 17].

3.2 General Framework
Our proposed MOEA/D assisted by Radial Basis Func-

tions (MOEA/D-RBF) decomposes the MOP (1) into N
single-objective optimization problems. MOEA/D-RBF uses
a well-distributed set ofN weight vectorsW = {w1, . . . ,wN}
to define a set of single-objective optimization subproblems
by using the PBI approach. Each subproblem is solved by
MOEA/D, which is assisted by a surrogate model based on
RBF networks. For a better understanding of the proposed



Algorithm 1: General framework of MOEA/D-RBF

Input:
W = {wi, . . . ,wN}: A well-distributed set of weight vectors.
Nt: The number of points in the initial training set.
Emax: The maximum number of evaluations allowed in
MOEA/D-RBF.
Output:
A: An approximation to the PF .

1 begin

2 Initialization: Generate a set Tset = {x1, . . . ,xNt} of Nt

points such that xi ∈ Ω (i = 1, . . . Nt), by using an
experimental design method. Evaluate the F-functions
values of these points. Set A as the set of nondominated
solutions found in Tset. Set neval = Nt. Generate a
population P̂ = {x1, . . . ,xN} of N individuals such that
xi ∈ Ω (i = 1, . . . N), by using an experimental design
method. stopping criterion = FALSE. For details of this
step see Section 3.3.

3 while (stopping criterion == FALSE) do

4 Model Building: Using the F-function values of the
points in Tset, build the predictive surrogate model by
using different RBF networks. Calculate the weights for
each RBF network according to its training error in
Tset. For details of this step see Section 3.4.

5 Evaluate P̂ : Evaluate the population P̂ using the
surrogate model.

6 Find an approximation to PF : By using MOEA/D,

the surrogate model and the population P̂ , obtain
P̂⋆ = {x̂i, . . . , x̂Nt}, where P̂⋆ is an approximation to
PF , see Section 3.5.

7 Select points for updating Tset: By using the

selection scheme, select a set of solutions from P̂⋆ to be
evaluated and included in the training set Tset. Update
A using the selected solutions. For each evaluated
solution, set neval = neval + 1. If neval ≥ Emax then

stopping criterion = TRUE. For a detailed description
of this step see Section 3.6.

8 Update population P̂ : Update the population P̂
according to the updating scheme, see Section 3.7.

9 end

10 return A;

11 end

approach, Algorithm 1 shows the general framework of the
proposed MOEA/D-RBF. In the following sections, we de-
scribe in detail the components of our MOEA/D-RBF which
are outlined in Algorithm 1.

3.3 Initialization
Initially, a training set Tset = {xi, . . . ,xNt} of Nt well-

spread solutions is generated. For this task, we employed
the Latin hypercube sampling method [9]. The set of so-
lutions Tset is evaluated by using the real fitness function.
The number of current fitness function evaluations neval is
initially set as neval = Nt. MOEA/D-RBF uses an external
archive A to store the nondominated solutions found so far in
the evolutionary process. This archive is initialized with the
nondominated solutions found in Tset. At the beginning, a
population P̂ = {xi, . . . ,xN} of N solutions is generated by
employing the Latin hypercube sampling method. The stop-
ping criterion considered in MOEA/D-RBF is the number
of fitness function evaluations and, therefore, the stopping
criterion is initially set as false, i.e. stopping criterion =
FALSE.

3.4 Building the Model
As previously indicated, we use a surrogate model based

on RBF networks. In order to improve the prediction of the
surrogate model, the Gaussian, the multi-quadratic and the
inverse multi-quadratic kernels are used in a cooperative way

x1

x2

xn g2n+1

g2

g1

P f

Figure 1: Network representation of Kolmogorov’s
theorem

for obtaining the approximated value of a solution. In the
following sections, we describe the necessary components for
building the surrogate model.

3.4.1 Hidden Nodes

The hidden nodes in an RBF network play an important
role in the performance of the RBF network. In general,
there is no method available for estimating the number of
hidden nodes in an RBF network. However, it has been sug-
gested in [5, 13] that Kolmogorov’s theorem [7] concerning
the realization of arbitrary multivariate functions, provides
theoretical support for neural networks that implement such
functions.

Theorem 1 (Kolmogorov [7]). A continuous real-val-
ued function defined as f : [0, 1]n 7→ R, n ≥ 2, can be repre-
sented in the form:

f(x1, . . . , xn) =

2n+1
∑

j=1

gj

(

n
∑

i=1

φij(xi)

)

(6)

where the gj’s are properly chosen continuous functions of
one variable, and the φij ’s are continuous monotonically in-
creasing functions independent of f .

The basic idea in Kolmogorov’s theorem is captured in the
network architecture of Figure 1, where a universal transfor-
mationM maps Rn into several uni-dimensional transforma-
tions. The theorem states that one can express a continuous
multivariate function on a compact set in terms of sums and
compositions of a finite number of single variable functions.
Motivated by this idea, the surrogate model built here, uses
2n + 1 hidden nodes (where n is the number of decision
variables of the MOP). Considering Tset as the training set
of Nt solutions used by the surrogate model, the centers of
the 2n + 1 basis functions are defined by using the well-
known k-means algorithm [8] on the training set Tset (with
k = 2n + 1). This criterion establishes that the cardinality
of Tset should be greater than 2n+ 1, i.e., 2n+ 1 < Nt.

3.4.2 Building the surrogate model

The high modality and dimensionality of some real-world
functions, often produce problems to surrogate models. When
the surrogate model is not able to properly shape the region
of the search space in which the Pareto set is located, then
the search may be biased towards inappropriate regions. In
order to improve the function prediction, MOEA/D-RBF
uses different kernels for building different RBF networks.
Each RBF network provides different shape of the search
space and all of them provide information to predict the
value of an arbitrary solution. Here, three different kernels
are adopted: Gaussian, multi-quadratic and inverse multi-
quadratic; these kernels are chosen because they possess the



parameter σ which can be adjusted to improve the model
accuracy, see Table 1. Note however that other types of ker-
nels can also be adopted, although the use of more kernels
could significantly increase the training time. In the follow-
ing description, we consider the case with one single output
node, i.e. with a single function. Note however, that this
model can be generalized for more than one function.

Let Tset = {x1, . . . ,xNt} be the set of Nt solutions eval-
uated with the real fitness function. Let h be the number
of hidden nodes (or basis functions) considered in the RBF
network. Let cj and σj (j = 1, . . . , m) be the center and the
amplitude of each basis function, respectively. The training
of the RBF network for a determined kernel K consists in
finding the weight vector w = (w1, . . . , wm)T such that it
solves equation (4). Each parameter σj of each basis func-
tion is initially defined by the standard deviation of the so-
lutions contained in each cluster obtained by the k-means
algorithm (with mean cj).

Once the weight vector w is obtained, the model accu-
racy is improved by adjusting the vector of parameters σ =
(σ1, . . . , σm)T . Since the value of the adopted kernel de-
pends of σj , from equation (3), the training error on the
training set Tset, can be written as:

ψ(σ) = ||Φw − y|| (7)

where y = (y1, . . . , yNt)
T is the vector of the real func-

tion values for each solution xi ∈ Tset, i.e., yi = f(xi).
Φ is the matrix which contains the evaluations of each point
xi ∈ Tset for each basis function, i.e., φij = g(||cj −xi||, σj),
for i = 1, . . . , Nt and j = 1, . . . , h.

The parameters σj are then adjusted by using the Differ-
ential Evolution (DE) algorithm [14], whose objective is to
minimize the training error defined in equation (7). Once the
σj parameters are adjusted, the prediction function for a de-
termined kernel K of a solution x ∈ Ω can be calculated by:

ϕ̂K(x) =

h
∑

j=1

wj · g(||x− cj ||, σj) (8)

3.4.3 Cooperative surrogate models and Function Pre-
diction

Once the three RBF networks are built, each of them us-
ing the three above mentioned kernels, the prediction of the
function is carried out. Let ϕGK(x), ϕMK(x) and ϕIMK(x)
be the predicted value given by RBF networks using the
Gaussian, multi-quadratic and inverse multi-quadratic ker-
nel, respectively. These three RBF networks cooperate by
providing information of the search space that they model.
Therefore, the function prediction f̂ for an arbitrary x ∈ Ω
is defined by:

f̂(x) = λ1 · ϕGK(x) + λ2 · ϕMK(x) + λ3 · ϕIMK(x) (9)

where Λ = (λ1, λ2, λ3)
T is a weight vector, i.e. λi ≥ 0 and

∑3

i=1
λi = 1. Therefore, the weight for each predicted value

needs to be calculated.
Let Tset be the knowledge set for training the different

RBF networks. The weight vector Λ is then calculated by:

λi =
αi

|Tset|
, i = 1, 2, 3 (10)

where αi is the number of solutions in Tset with the lowest
prediction error for the ith RBF network (Gaussian, multi-
quadratic and inverse multi-quadratic, respectively).
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3.5 Finding an Approximation to PF

MOEA/D-RBF approximates solutions to the PF by us-
ing the well-known MOEA/D [18]. The search is conducted
by the set of weight vectors W = {w1, . . . ,wN}. MOEA/D
searches the solutions to each scalar problem defined by
each weight vector wi ∈ W . The evolutionary process of
MOEA/D is performed during a determined number of gen-
erations by employing the prediction function defined in
equation (9). The final population denoted as P̂ ⋆ is then
reported as an approximation to PF .

3.6 Selecting Points to Evaluate
Let W = {w1, . . . ,wN} be the well-distributed set of

weight vectors used by MOEA/D. Let P̂ ⋆ be the approxima-
tion to PF obtained by MOEA/D. LetWs = {ws

1, . . . ,w
s
Ns

}
be a well-distributed set of weight vectors, such that |Ws| <
|W |. For eachws

i ∈ Ws, we defineBs(w
s
i ) = {w1, . . . ,wNa},

such that w1, . . . ,wNa ∈ W are the Na = ⌊ N
Ns

⌋ closest
weight vectors from W to ws

i . With that, an association of
weight vectors from W to Ws is defined. This association
defines a set of neighborhoods Bs(w

s
i ) which are distributed

along the whole set of weight vectorsW , see Figure 2. Once
the neighborhoods Bs(w

s
i ) have been defined, a set of so-

lutions is selected to be included in the training set Tset,
according to the next description.

3.6.1 Selecting Points to be Evaluated using the Real
Fitness Function

A set S = {x1, . . . ,wNs} of Ns solutions taken from P̂ is
chosen to be evaluated using the real fitness function. Each
solution in S is selected such that it minimizes the problem
defined by a weight vectorwj ∈ Bs(w

s
i ), where i = 1, . . . , Ns

and j = 1, . . . Na.
At each call of the selection procedure, the weight vec-

tor wj is selected by sweeping the set of weight vectors in
Bs(w

s
i ) in a cyclic way, i.e., once the last weight vector is

selected, the next one is picked up from the beginning. Since
the neighborhoods Bs(w

s
i ) are distributed along the whole

weight setW , the selection of solutions in each neighborhood
should obtain spread solutions along the PF . No solution
in S should be duplicated. If this is the case, the repeated
solution should be removed from S. For each new evaluated
solution, we set neval = neval + 1, if neval ≥ Emax then we



set stopping criterion = TRUE, where neval and Emax are
the current and the maximum number of fitness function
evaluations, respectively.

3.6.2 Updating the Training Set and the External
Archive

The maximum number of solutions in the training set Tset

is defined by the parameter Nt. The updating of Tset is
carried out by defining a well-distributed set of Nt weight
vectors Wt = {wt

1, . . . ,w
t
Nt

}. Therefore, the best Nt differ-
ent solutions from T = {Tset ∪ S}, such that they minimize
the subproblems defined by each weight vector wt

i ∈ Wt, are
used to update Tset. If after updating the training set, any
solution sj ∈ S was not selected to be included in Tset, then,
it is added by replacing the closest solution (in the objec-
tive space) in Ts. With this, all solutions in S are included
in Tset and the model can be improved even if it has been
misinformed formerly.

The external archive A contains the nodominated solu-
tions found along the search. For each sj ∈ S, the external
archive is updated by removing from A all the solutions dom-
inated by sj , and then, sj is stored in A if no solutions in A
dominate si.

3.7 Updating the Population
Once the external archive is updated, the population P̂ is

also updated for the next iteration of MOEA/D. Considering
the external archive A as the set of nondominated solutions
found by MOEA/D-RBF, the population P̂ of N solutions
is updated according to the following description.

Let m and σ be the average and standard deviation of the
solutions contained in A. Then, new bounds in the search
space are defined according to:

Lbound = m − σ
Ubound = m + σ (11)

where Lbound and Ubound are the vectors which define the
lower and upper bounds of the new search space, respec-
tively.

Once the new bounds have been defined, a well-distributed
set Q of N−|A| solutions is generated by means of the Latin
hypercube sampling method [9] in the new search space. The

population P̂ is then redefined by the union of Q and A, that
is P̂ = {Q ∪A}.

4. TEST PROBLEMS

4.1 Standard Test Problems
In order to assess the performance of our proposed ap-

proach (MOEA/D-RBF), we compare its results with re-
spect to those obtained by the original MOEA/D [18] and
by MOEA/D-EGO [19], which uses surrogates (based on the
Gaussian stochastic process model). We adopted the Zitzler-
Deb-Thiele (ZDT) test problems [20] except for ZDT5 (which
is a discrete problem). The detailed description of such prob-
lems can be found in [20]. In order to evaluate the capabil-
ities of MOEA/D-RBF when dealing with computationally
expensive problems, we also tested its performance using a
real-world problem, as a case study. Next, we describe the
airfoil problem which was adopted to validate our proposed
approach.

4.2 Airfoil Shape Optimization: A case study
Our case study consists of the multi-objective optimiza-

tion of an airfoil shape problem adapted from [15] (called
here MOPRW). This problem corresponds to the airfoil shape
optimization of a standard-class glider, aiming to obtain an
optimum performance for a sailplane.

4.2.1 Problem Statement

Two conflicting objective functions are defined in terms
of a sailplane average weight and operating conditions [15].
They are defined as:

i) Minimize: CD/CL

s.t. CL = 0.63, Re = 2.04 · 106,M = 0.12

ii) Minimize: CD/C
3/2
L

s.t. CL = 1.05, Re = 1.29 · 106,M = 0.08

where CD/CL and CD/C
3/2
L correspond to the inverse of

the glider’s gliding ratio and sink rate, respectively. Both
are important performance measures for this aerodynamic
optimization problem. CD and CL are the drag and lift
coefficients.

The aim is to maximize the gliding ratio (CL/CD) for ob-
jective (i), while minimizing the sink rate in objective (ii).
Each of these objectives is evaluated at different prescribed
flight conditions, given in terms of Mach and Reynolds num-
bers. The aim of solving this MOP is to find a better airfoil
shape, which improves a reference design.

4.2.2 Geometry Parametrization

In the present case study, the PARSEC airfoil representa-
tion [12] was adopted. Fig. 3 illustrates the 11 basic param-
eters used for this representation: rle leading edge radius,
Xup/Xlo location of maximum thickness for upper/lower
surfaces, Zup/Zlo maximum thickness for upper/lower sur-
faces, Zxxup/Zxxlo curvature for upper/lower surfaces, at
maximum thickness locations, Zte trailing edge coordinate,
∆Zte trailing edge thickness, αte trailing edge direction, and
βte trailing edge wedge angle.

For the present case study, the modified PARSEC geom-
etry representation adopted here allows us to define inde-
pendently the leading edge radius, both for upper and lower
surfaces. Thus, a total of 12 decision variables are used.
Their allowable ranges are defined in Table 2.

Table 2: Parameter ranges for our modified PAR-
SEC airfoil representation

Design Variable Lower Bound Upper Bound

rleup 0.0085 0.0126
rlelo 0.0020 0.0040
αte 7.0000 10.0000
βte 10.0000 14.0000
Zte -0.0060 -0.0030
∆Zte 0.0025 0.0050
Xup 0.4100 0.4600
Zup 0.1100 0.1300

Zxxup -0.9000 -0.7000
Xlo 0.2000 0.2600
Zlo -0.0230 -0.0150

Zxxlo 0.0500 0.2000

The PARSEC airfoil geometry representation uses a linear
combination of shape functions for defining the upper and



Figure 3: PARSEC airfoil parametrization.

lower surfaces. These linear combinations are given by:

Zupper =
6
∑

n=1

anx
n−1
2 , Zlower =

6
∑

n=1

bnx
n−1
2 (12)

In the above equations, the coefficients an, and bn are
determined as functions of the 12 described geometric pa-
rameters, by solving two systems of linear equations, one
for each surface. It is important to note that the geometric
parameters rleup/rlelo, Xup/Xlo, Zup/Zlo, Zxxup/Zxxlo, Zte,
∆Zte, αte, and βte are the actual design variables in the op-
timization process, and that the coefficients an, bn serve as
intermediate variables for interpolating the airfoil’s coordi-
nates, which are used by the CFD solver (we used the Xfoil
CFD code [3]) for its discretization process.

5. COMPARISON OF RESULTS

5.1 Performance Measure
In order to evaluate the performance of our proposed ap-

proach, we compared its results with respect to those ob-
tained by MOEA/D and MOEA/D-EGO. For comparing
these algorithms, we adopted the I−H performance measure
which is described below.

5.1.1 I−H metric

The Hypervolume (IH) performance measure was pro-
posed by Zitzler [21]. This performance measure is Pareto
compliant [22] and quantifies the approximation of nondom-
inated solutions to the Pareto optimal front. The hyper-
volume corresponds to the non-overlapped volume of all the
hypercubes formed by a reference point r (given by the user)
and each solution p in the Pareto set approximation (P ). It
is mathematically defined as:

IH(P ) = Λ

(

⋃

p∈P

{x|p ≺ x ≺ r}

)

where Λ denotes the Lebesgue measure and r ∈ R
k denotes

a reference vector being dominated by all valid candidate
solutions in P . The I−H performance measure is then defined
as:

I−H(P ⋆, P ) = IH(P ⋆)− IH(P )

where IH(P ⋆) is the hypervolume between the Pareto op-
timal front P ⋆ and a reference point r. I−H assesses both
convergence and spread of the Pareto front. A low I−H value,
indicates that our approximation P is close to PF and has
a good spread towards the extreme portions of the Pareto
front.

In our experiments, as in [19], we select 500 evenly dis-
tributed points on the Pareto optimal front PF and let
these points be P ⋆ for each standard test problem. Since

the Pareto optimal front of the the airfoil shape problem is
unknown, only the IH performance measure is used. In this
case, obtaining a high IH value, indicates that our approxi-
mation P is close to PF .

5.2 Experimental Setup
As indicated before, the proposed approach is compared

with respect to MOEA/D and MOEA/D-EGO. For each
MOP, 30 independent runs were performed with each algo-
rithm. As in [19], the number of decision variables is set
to be eight for the ZDT benchmark. Each algorithm was
restricted to 200 fitness function evaluations and the results
of MOEA/D-EGO were directly taken from [19].

For the airfoil design problem, the search was restricted
to 5,000 fitness function evaluations. Since the computa-
tional complexity of the model building in MOEA/D-EGO
increases with the number of training points, MOEA/D-
EGO becomes impractical as the number of fitness function
evaluations increases, see [19]. Because of this, the compari-
son of results in the airfoil design problem is carried out only
between MOEA/D and MOEA/D-RBF. In addition, we also
show the results obtained by MOEA/D-RBF and MOEA/D
using 30 and 10 decision variables for the ZDT test problems,
as it was suggested by Zitzler et al. [20]. Since the difficulty
to solve the ZDT test problems increases with respect to the
number of decision variables, the search for these algorithms
was restricted to 1,000 fitness function evaluations.

The parameters used for both MOEA/D and MOEA/D-
RBF, were set as in [18], since there is empirical evidence
that indicates that these are the most appropriate param-
eters for solving the ZDT test suite—see [18]. The weight
vectors for the algorithms were generated as in [18], i.e., the
setting of N and W = {w1, . . . ,wN} is controlled by a pa-
rameter H . More precisely, w1, . . . ,wN are all the weight
vectors in which each individual weight takes a value from

{

0

H
,
1

H
, . . . ,

H

H

}

.

Therefore, the number of such vectors in W is given by N =
Ck−1

H+k−1
, where k is the number of objective functions.

For all the MOPs, MOEA/D was tested with H = 99,
i.e. N = 100 weight vectors. For MOEA/D-RBF (and for
MOEA/D-EGO) H = 299, i.e. 300 weight vectors. The set
Wt was generated with H = 10n − 1, therefore Nt = 10n
weight vectors (which define the cardinality of the train-
ing set), where n is the number of decision variables of the
MOP. The set Ws uses H = 9, i.e. Ns = 10 weight vec-
tors. For adjusting the parameter σ in the model building,
the DE/rand/1/bin strategy was adopted. The parameters
for DE were set to: CR = 0.5, F = 1, a population size 20
and the number of generations was restricted to 50 genera-
tions. The execution of the algorithms was carried out on a
computer with a 2.66GHz processor and 4GB in RAM.

As indicated before, the algorithms were evaluated us-
ing the I−H and the IH metrics. The results obtained are
summarized in Tables 3–5. These tables display both the
average and the standard deviation (σ) of the I−H and IH
indicators for each MOP, respectively. The reference vector
r used for computing the performance measures, for each
MOP, is shown in each table of results. For an easier in-
terpretation, the best results are presented in boldface for
each test problem adopted.



Table 3: Results of the I−H performance measure for
MOEA/D-RBF, MOEA/D-EGO and MOEA/D, us-
ing eight decision variables

MOP

MOEA/D-RBF MOEA/D-EGO MOEA/D reference
average average average vector (r)

(σ) (σ) (σ)

ZDT1
0.009170 0.067200 17.209529

(10, 10)T(0.000890) (0.080100) (3.310987)

ZDT2
0.009703 0.019800 26.223664

(10, 10)T(0.001520) (0.003500) (3.945007)

ZDT3
0.115358 0.117800 41.218250

(20, 20)T(0.898476) (0.070700) (7.307372)

ZDT4
1681.548786 1709.520000 1749.365260

(50, 50)T(469.374655) (593.510000) (436.261557)

ZDT6
1.690381 0.100000 68.134088

(10, 10)T(2.006687) (0.100900) (2.672056)

5.3 Results and Discussion

5.3.1 ZDT Test Problems

Table 3 shows the results obtained for the IH performance
measure when the algorithms are tested on the ZDT test
problems using eight decision variables. From this table,
it can be clearly seen that the best results were obtained
by MOEA/D-RBF and MOEA/D-EGO. With respect to
MOEA/D-RBF and MOEA/D-EGO, it is possible to see
that MOEA/D-RBF obtained better results than those ob-
tained by MOEA/D-EGO in most of the adopted MOPs.
The exception was ZDT6 where MOEA/D-EGO was sig-
nificantly better than MOEA/D-RBF. However, this does
not mean that the performance of MOEA/D-RBF is bad.
The average CPU times of 30 independent runs performed
by MOEA/D-RBF oscillate between 15 and 16 seconds for
each ZDT test problem. According to studies by Zhang et
al. [19] MOEA/D-EGO (using the Fuzzy C means method)
employed between 936 and 1,260 seconds for solving ZDT1
and ZDT2, respectively. From such studies and the one re-
ported here, we conclude that MOEA/D-RBF is much faster
than MOEA/D-EGO, when solving the ZDT test problems
using eight decision variables.

In Table 4, we show the results obtained by MOEA/D-
RBF and the original MOEA/D in the ZDT test problems
using 30 and 10 decision variables, respectively (for a de-
tailed description see [20]). From this table it is possible to
see that MOEA/D-RBF obtained a better approximation to
PF than the one achieved by MOEA/D in most of the test
problems adopted. This comparison was performed in order
to show the effectiveness of our proposed MOEA/D-RBF in
terms of the quality of the solutions that it reached with
respect to the solutions obtained by MOEA/D. As we can
see, MOEA/D-RBF significantly outperformed MOEA/D in
most of the ZDT test problems. The exception was ZDT4
which is a multi-frontal MOP which evidently causes diffi-
culties to the surrogate model proposed here.

5.3.2 Airfoil Design Problem

According to Table 5, we can see that MOEA/D-RBF ob-
tained better hypervolume values than MOEA/D. Figure 4
shows the convergence graph for the IH performance mea-
sure. From this graph, we can see that the results obtained
by MOEA/D with 5,000 fitness function evaluations were
achieved by our MOEA/D-RBF using a lower number of
fitness function evaluations (only 1,250 evaluations, on av-
erage). MOEA/D employed, on average, 5,050 seconds to

Table 4: Results of the I−H performance measure for
MOEA/D-RBF and MOEA/D, using 30 and 10 de-
cision variables, respectively

MOP

MOEA/D-RBF MOEA/D reference
average average vector (r)

(σ) (σ)

ZDT1
0.004831 9.758961

(5, 5)T(0.000382) (1.235485)

ZDT2
0.006654 14.040807

(5, 5)T(0.000744) (1.806522)

ZDT3
2.298589 11.029210

(5, 5)T(0.952347) (1.526359)

ZDT4
1828.493909 575.670683

(50, 50)T(382.604894) (185.030230)

ZDT6
1.244183 22.057469

(5, 5)T(0.996797) (2.385873)

achieve the value reported in Table 5 in the IH performance
measure, while our MOEA/D-RBF required 2,000 seconds
to achieve a similar value. Thus, we argue that our proposed
MOEA/D-RBF is a good choice for dealing with computa-
tionally expensive MOPs. The approximations to the Pareto
front for this problem is presented in Figure 5, which corre-
sponds to the set of nondominated solutions found by each
algorithm in the run with the value nearest to the mean
value of the IH performance measure.

Table 5: Results of the IH performance measure for
MOEA/D-RBF and MOEA/D for the airfoil design
problem

MOP
MOEA/D-RBF MOEA/D reference

average average vector (r)
(σ) (σ)

MOPRW1
2.493786e-07 2.149916e-07 (0.007610,

(6.483342e-09) (2.446593e-08) 0.005236)T
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Figure 4: IH convergence graph for the airfoil design
problem

6. CONCLUSIONS AND FUTURE WORK
We have proposed here a version of MOEA/D which is

assisted by cooperative RBF networks, with the aim of im-
proving the prediction of the function value. The RBF
networks employed here, use different kernels in order to
have different shapes of the fitness landscape. With that,
each RBF network provides information which is used to
improve the value of the objective function. According to
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Figure 5: Approximation to PF given by MOEA/D-
RBF and MOEA/D for the airfoil design problem

the results reported here, our proposed MOEA/D-RBF is
able to outperform both to the original MOEA/D and to
MOEA/D-EGO (which is a version of MOEA/D that also
adopts surrogates) when performs only 200 and 1,000 fitness
function evaluations. We also validated our proposed ap-
proach with a real-world computationally expensive multi-
objective optimization problem: airfoil design. In this case,
our proposed MOEA/D-RBF was able to reduce by more
than half the CPU time required by MOEA/D to achieve a
certain IH value. This illustrates the potential of our pro-
posed approach for solving computationally expensive multi-
objective problems.

As part of our future work, we plan to use our approach
in problems having three or more objectives. Also, we pre-
tend to couple to our approach a local search mechanism, so
that, while MOEA/D-RBF obtains candidate solutions to
be evaluated with the real fitness function, the local search
refines these solutions, thus accelerating the convergence to-
wards the true Pareto front. Finally, we are also interested
in testing our approach with more real-world problems hav-
ing more decision variables, and that is indeed part of our
ongoing research.
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