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Abstract—In recent years, the hybridization of multi-objective  parameters of a gene regulatory network. Koduru et al. [4]
evolutionary algorithms with mathematical programming tech-  hypridized nonlinear simplex search with a Multi-Objeetiv

nigues has significantly increased. Such hybrids attempt taom- Particle Swarm Optimizer (MOPSO). This approach adopted

bine the global search properties of evolutionary algoritims with lusteri techni to build th imol Nonli .
the exploitative power of mathematical programming techngues. clustering techniques o bui € simpiex. Nonlinear sim-

Most of these approaches normally rely on the use of gradiest Plex search was used as a local search engine for finding
and, therefore, their use is limited to certain types of protems. nondominated solutions in the neighborhood defined by the

The use of nonlinear direct search techniques—i.e., methsd particle to be improved. Zapotecas and Coello [5] preseated
that do not require gradient information—has been less poplar hybridization between the well-known Nondominated Saytin

in hybrid multi-objective evolutionary algorithms. This p aper . . . .
focuses on the design of a hybrid algorithm between the well- Genetic Algorithm Il (NSGA-Il) and the nonlinear simplex

known MOEA/D and one of most popular direct search methods S€arch method. In this approach, the search was directed by
(Nelder and Mead's algorithm). The mathematical programming  an aggregating function and the simplex was constructetjusi

technique adopted here, acts as a local search engine, whosg |ow-discrepancy sequence within a reduced search space.
goal is to exploit promising regions of the search space that The proposed memetic algorithm was tested using problems

have been generated by a multi-objective evolutionary algghm. ith derate di . lity in decisi iabl
Our preliminary results indicate that this sort of hybridiz ation is with a moderate dimensionality In decision variable space

promising for dealing with multi-objective optimization p roblems (Up to 30 decision variables). Zhong et al. [6] hybridized th
having a moderately high number of decision variables. nonlinear simplex search and the Differential EvolutiorEjD

algorithm. The simplex was constructed by selecting random
solutions from the current population, which were thenesbrt
Multi-objective evolutionary algorithms (MOEAs) haveaccording to Pareto dominance. At each iteration of thelloca
been successfully adopted for solving a wide variety akearch engine, a movement into the simplex was performed
engineering and scientific problems [1]. However, one d&br generating new nondominated solutions. This evolatign
the limitations of MOEAs is their computational cost, whictapproach was tested with problems having low dimensignalit
turns out to be unaffordable in certain real-world problems decision variable space (two and three decision varible
This has motivated the development of numerous strategkésch et al. [7] presented a hybrid algorithm which combines
for reducing the number of fitness function evaluatiorihe exploratory properties of the S-Metric Selection Etiolu-
in a MOEA. In the last few years, several researcheasy Multi-objective Optimization Algorithm (SMS-EMOA) |8
have developed hybrid approaches combining MOEAs withith the exploitative power of the Hooke and Jeeves algorith
mathematical programming techniques. Most of these hybmidich is used in the local search. At each iteration the Hooke
schemes require the gradient of the functions (see fand Jeeves algorithm performs an exploratory move along the
example [2]), and, therefore their use is limited. In recembordinate axes. Afterwards, the vectors of the last exjptoy
years, the development of hybrid algorithms which couplaoves are combined to a projected direction that can aeteler
direct search methods to a MOEA, has also attracted ttee descent of the search vector.
attention of several researchers. Next, we briefly discossees  More recently, Zapotecas and Coello [9] presented a hybrid
hybrid approaches found in the specialized literature,ctvhiapproach for decomposition-based MOEAs. The proposed
couple direct search techniques to a MOEA. algorithm hybridizes the nonlinear simplex search methitkd w
Koduru et al. [3] proposed a genetic algorithm using fuzalOEA/D. The local search engine is based on a previous
dominance and Nelder and Mead’s method. This approagktension of the nonlinear simplex search for multi-obyect
uses the simplex search as a local search engine for optimization developed by the same authors [10].
taining nondominated solutions in a genetic algorithm. The In this paper, we present a hybrid algorithm called
simplex is defined by taking a solution from the currefMfOEA/D+LS-II, which incorporates the Nelder and Mead
population and this hybrid scheme is used to estimate thethod [11] into the well-known versions of MOEA/D [12].

I. INTRODUCTION



The direct search method adopted here, acts as a local se&clecomposing Multi-Objective Optimization Problems

engine, whose goal is to exploit promising regions around; js well-known that a Pareto optimal solution to a MOP,
the solutions generated by the baseline MOEA. The proposgtlier some assumptions, is an optimal solution of a scatar op
MOEA/D_+LS_—II improves the selection mechanism and thgmization problem in which, the objective is an aggregatid
search direction used in [9] for the local search proceddse. | the objective functiong;’s. Therefore, an approximation of

we will see later on, our preliminary results indicate (@ t yhe pareto optimal front can be decomposed into a number of
propose.d memetic approach outperforms two state-ofthe-&:a|ar objective optimization subproblems. In the spizdl
MOEAs: MOEA/D [12] and MOEA/D+LS [9], in most of the jiterature, there are several approaches for transformM@P

test problems adopted in our experimental study. into multiple single-objective optimization subprobleifid],

The remainder of this paper is organized as follows. Ifi3] |n the following, we briefly describe a method based on
Section I, we provide the basic definitions required fofhe normal boundary intersection (NBI) [15] method, which
understanding the rest of the paper. Section Il describgSreferred to in this work.
the proposed memetic algorithm, including a detailed 1y penalty Boundary Intersection Approacithe Penalty
explanation of the local search mechanism that we Propog®yundary Intersection (PBI) approach proposed by Zhang and
Section IV presents the experimental study qsed for astgesqi_i [12], uses a weighting vectow and a penalty valué for
the performance of our proposed memetic algorithm. I@inimizing both the distance to the utopian veafrand the
Section V, we provide a brief discussion of our resultgjirection error to the weighting vectak, from the solution

Finally, in Section VI, we provide our conclusions and Somg ) Therefore, the optimization problem can be stated as:
possible paths for future research.

minimize: g(x|w,z*) = d; + 0ds (2)
Il. BAsic CONCEPTS
where
A. Multi-objective optimization I(F(x) — z)Tw]|
Without loss of generality and assuming minimization prob- = [|wl|

lems, a nonlinear multi-objective optimization problem@/) and dy = ‘ (F(x) — 2*) — di ™ H
can be formulated as: i

. such thatx € Q andz* = (21,...,2)7, such thatz; =

21618 F(x) @) min{ f;(x)|x € Q}.

. o ] Therefore, a good representation of the Pareto front can
where € defines the decision space and& is pe optained by solving a set of problems defined by a
defined as the vector of objective functionsye_gistributed set of weighting vectors. This is the main

F:Q- Rk; F(x) = (fl(x)a-_--vfk(x))T* such that jgea pehind current decomposition-based MOEAs—see for
fi : R® — R is a nonlinear function. In order to descr'beexample [12], [16], [17].

the concept of optimality in which we are interested, the
following definitions are introduced [13]: C. The Multi-Objective Evolutionary Algorithm Based on De-
composition (MOEA/D)

Definition 1. Let x,y € 2, we say thatx dominatesy  The Multi-Objective Evolutionary Algorithm Based on De-
(denoted byx < y) if and only if, fi(x) < fi(y) and composition (MOEA/D) [12], transforms a MOP into sev-
fi(x) < fi(y) in at least onef; forall i =1,... k. eral scalarization problems. Therefore, an approximatibn

the Pareto front is obtained by solving thé scalarization
Definition 2. Let x* € , we say that* is a Pareto optimal subproblems in which a MOP is decomposed.

solution, if there is no other solutign € 2 such thaty < x*. ConsideringWW = {w,...,wy} as the set of evenly
spread weighting vectors, MOEA/D finds the best solution of
Definition 3. The Pareto Optimal Seis defined by: each subproblem defined by each weighting vector using the

PBI approach. The objective function of th& subproblem
is then defined byy(x|w;,z), wherew; € W andz =
Definition 4. The Pareto Optimal FrontPF is defined by: (21.’ e ’Z’“)? i.s the artificial utopian vector whose cpmponent
z; i1s the minimum value found so far for the objectiye
PF = {F(x)|x € PS} In MOEA/D, a neighborhood of the weighting vectev;
is defined as a set of its closest weighting vectorsiiin
We thus wish to find the best possilitade-offsamong the Therefore, the neighborhood of th& subproblem consists
objectives, such that no objective can be improved withoaf all the subproblems with the weighting vectors from the
worsening another. Since the number of Pareto optimal soheighborhood ofw; and it is denoted byB(w;).
tions can be very large, we are also interested in obtainingAt each generation, MOEA/D finds the best solution to
a well-distributed set of solutions, since the size of owach subproblem throughout the evolutionary process and
approximation (produced by a MOEA) will be normally smallmaintains: 1) a population oN points P = {x1,...,xn},

PS = {x € Qx is a Pareto optimal solutign



Algorithm 1: General Framework of MOEA/D D. The Nonlinear Simplex Search

Input: Nelder and Mead’s method [11] also known as then-
a stopping criterion; linear Simplex Searghs an algorithm based on the simplex
N: the number of the subproblems considered in algorithm of Spendley et al. [18], which was introduced for
MOEA/D; minimizing nonlinear and multi-dimensional unconstraine
W a well-distributed set of weighting vectors functions. While Spendley et al.’s algorithm uses reguilar- s
{w1,...,wn} plexes, Nelder and Mead’s method generalizes the procedure
T the number of weight vectors in the neighborhood of to change the shape and size of the simplex. Therefore, the
each weighting vector. convergence towards a minimum value at each iteration of
Output: the nonlinear simplex search is conducted by three main
EP: the nondominated solutions found during the searchinovements in a geometric shape calahplex
P: the final population found by MOEA/D. The full algorithm is defined stating three scalar paranseter
1 begin to control the movements performed in the simpleftection
) Step 1.INITIALIZATION : (o), expansmn('y) andcqntractlon (6). At each iteration, the
3 EP = () n+1 verticesA,; of the simplex represent solutions which are
4 Generate an initial populatioR = {xy,...,xx} evaluated and sorted according §(A;) < f(Az) <--- <
randomly; f(AL11). In th|s_ way, t_he movements performed in the sim-
5 FVi = F(x)); plex by the nonlinear simplex search method are defined as:
6  B(wi)={wi,...,w;.} wherew,,,...,w;, are 1) Reflectionx, = (1 + a)xc — a1,
the T closest weighting vectors tw;, for each 2) Expansionx. = (1 + ay)xe. — ayApny1.
i=1,...,N; 3) Contraction
7 z=(400,...,4+00)T; a) Outside x., = (1 + afB)z. — aBA,41.
8 while stopping criterion is not satisfiedo b) Inside x.; = (1 — B)x. + BA,11.
9 Step 2.UPDATE: (the next population) wherex, = 23" | A; is the centroid of then best points
10 for x; € P do (all vertices except fon,, 1), A; andA,,; are the best and
1 REPRODUCTION Randomly select two the worst solutions identified within the simplex, respesiij.
indexesk, I from B(w;), and then generate a At each iteration, the initial simplex is modified by one of
new ?olutionytfrom x;; andx; by using the above movements, according to the following rules:
genetic operators.
12 MUTATION: Apply a mutation operator ogp L1 f(A1) < f(xr) < f(An), henApyy = x,.
to producey’. 2. If f(xe_) < f(xy) < f(Aq), thenA, 41 = .,
13 UPDATE OFz: For eachj = 1,...,k, if OtherwiseAn 1 = X;.
2 < fj(x), then Seth — fj(y/)- 3. If f(An) S f(xr) < f(An+1) andf(xco) S f(xr)’
14 UPDATE OF NEIGHBORING SOLUTIONS: For then A,y = Xeo.
each indexj € B(w;), if 4. If f(xr) = f(Ant1) and f(xei) < f(Apt1),
9(y'|w;,z) < g(x;|lw;,z), then setx; =y’ then An 1 = Xei.
and FV’ = F(y’). UPDATE OF EP: Remove I1l. THE PROPOSEDAPPROACH
from EP all the vectors dominqted bE (y'). A. General Framework
Add F(y’) to EP if no vectors inEP o . .
dominateF (y). Our proposed _mult|-0bj_ect|ve memetic algorithm adopts
15 end MOEA/D [12] as its baseline algorithm. The proposed local
16 end search mechanism is based on Nelder and Mead’s method [11].
17 end The memetic algorithm (called here, MOEA/D+LS-II)

explores the global search space using MOEA/D, while the
local search engine exploits the promising regions pralide
by the MOEA. For a better understanding of the proposed
approach, Algorithm 2 presents the general framework of the
proposed MOEA/D+LS-1IStep 3refers to the complete local
wherex; € Q is the current solution to th&" subproblem; search mechanism which is performed after each iteration of
2) FV',...,FVN, where FV' is the F-value of x;, MOEA/D. In the following sections, we describe in detail the

i.e, FV' = F(x;) for eachi = 1,...,N; 3) an external components of the local search mechanism.
population EP, which is used to store the nondominated

solutions found during the search. Algorithm 1 presents )

the general framework of MOEA/D, although the intereste: Local Search Mechanism

reader can be referred to [12] for a more detailed descriptio MOEA/D+LS-1l exploits the promising neighborhood of
the solutions found by the MOEA at each generation. As




Algorithm 2: General Framework of MOEA/D+LS-II

Algorithm 3: Use of Local Search

Input :

a stopping criterion;

N: the number of the subproblems considered in MOEA/D+LS-I;

W: a well-distributed set of weighting vectofsvi,...,wn};

T: the number of weight vectors in the neighborhood of eactghtiig
vector;

Sis: the similarity threshold for the local search;

E;s: the maximum number of evaluations for the local search.
Output:

EP: the nondominated solutions found during the search

P: the final population found by MOEA/D+LS-II.

2

Input :
a stopping criterion;
S;s: the similarity threshold for the local search;

E;: the maximum number of evaluations for the local search.
Output:
P: the updated populatioR.

1 begin

Step 1.CHECKING SIMILARITY : Obtain the
similarity (S;s) betweenp;,,; and the previous initial
solution (', .) for the local search—see

nt

1 begin Section IlI-B3;

2 Step 1.INITIALIZATION : if there are enough resourcesd S; < .S;5 then

3 Generate an initial populatioR = {x1,...,xn} 4 Step 2.BUILDING THE SIMPLEX: Build the
randomly; initial simplex for the nonlinear simplex

4 FV' = F(x;); search—see Section 111-B4;

5 B(w;) ={w;,,...,w;.} wherew, ..., w;, are 5 Step 3.DEFORMING THESIMPLEX: Perform any
the T closest weighting vectors te;, for each movement (reflection, contraction or expansion)
i=1,...,N, for obtainingp,..,, according to Nelder and

6 z = (+00,...,+00)T; Mead’s method—see Section 11I-B5;

7 Step 2. THE MEMETIC ALGORITHM: 6 Step 4.UPDATING THE POPULATION: Update

8 while stopping criterion is not satisfiedo the populationP using the new solutiom,,¢.,

9 PerformStep 2 of the MOEA/D algorithm for according to the rules presented in Section I1I-B6.

obtaining P (the next population). 7 Step 5.STOPPINGCRITERION: If the stopping
10 Step 3.THE LOCAL SEARCH MECHANISM: criterion is satisfied then stop the local search.
11 for j=1,...,k+1do Otherwise go tdStep 3—see Section I1I-B7.
12 Step 3.1.DEFINING THE SEARCH 8 end
DIRECTION.. 9 end
13 if j <k then
14 /I Search towards the extremes of the Pareto front
15 Ws = .ej’ ivheree-7_ is the j*" canonical using the PBI approach. In the following, we present in
b;\_Sls !an andk is the number of detail the components of our local search engine outlined in
. elsg jective functions. AIgorithms_Z and 3. o
- I/ Search towards the maximum bulge of the Pareto 1) Defining the Search Directionin contrast to the method
front proposed in [9], the local search mechanism proposed hgre, a
18 we = (1/k,...,1/k) proximates solutions to the Pareto front in two differeagsts.
19 end 1) Initially, the search is directed to the extremes of the
20 Step 3.2.SELECTING INITIAL SOLUTION: Pareto front. Therefore, the weighting vectors that define
Select the initial solution for the local search the subproblems that approximate solutions (when they
according to Section I11-B2. are solved) to the extremes are defined by the canonical
21 Step 3.3.LOCAL SEARCH: Apply nonlinear basis inR*—i.e., the search direction that approximates
simplex search according to the Algorithm 3. solutions to the*" extreme of the Pareto front is defined
22 end by the weighting vector*
23 end o
24 end Ws =€

it

Mead’s method as a local search engine for continuous
search spaces, in order to improve the solutions provided by

was mentioned before, MOEA/D+LS-Il uses Nelder and

MOEA/D. In contrast to MOEA/D+LS [9], the local search
mechanism of MOEA/D+LS-Il approximates solutions to the
extremes and the maximun bulge (sometimes called knee) of we = (1/k,...,1/k)T
the Pareto front. The nonlinear simplex search is employed Y
for minimizing a subproblem defined by a weighting vector 1Assuming the use of the PBI approach.

wheree’ is the j** canonical vector ifR¥,
2) Once the solutions lying at the extremes of the Pareto
front have been approximated, the local search is fo-
cused on minimizing the subproblem that approximates
the solutions lying on the knee of the Pareto front.
Therefore, the search direction is now defined by the
weighting vector:



wherek is the number of objective functions. (m) and standard deviatiofr) of the chromosomes
Considering the use of the PBI approach, the penalty value (solutions) that minimize each subproblem defined by

0 is set ag) = 5 for approximating solutions to the extremes,  the weighting vectors irt(w;y;). In this way, the new
whereas for the knee, a valéle= 10 is employed. Note that bounds are defined by:
the search on the knee is relaxed defining a bighealue L o
bound = m-ao
than the one stated for the extremes. Upound = m+o
2) Selection MechanismLet P be the set of solutions our
found by MOEA/D at any generation. Let, be the weighting whereLjound andUpyuna are the vectors which define
vector that defines the search direction for the nonlinear the lower and upper bounds of the new search space,
simplex search. The solutiop;,,; which starts the search is respectively. Once the search space has been reduced,
defined by: the n remaining solutions are generated by means of
Pini = X € P, such that minimizesy(x|w, z*) tIrJn:O:anmersley sequence using as boubsna and
Solution p;,.; represents not only the initial search point, but ii- For the knee of the Pareto frontThe remainingn
also the simplex head from which the simplex will be built. solutionsp; € P (i = 1,...,n) are chosen, such that;
3) Checking Similarity: The nonlinear simplex search ex- minimizes each subproblem defined by each weighting
plores the neighborhood of the solutipp,; € P. Since the vector in S(wiy;). This is the same strategy employed

simplex search is applied after each iteration of the MOEA,  in MONSS [10] for constructing the simplex.
most of the time, the initial solutiom;,; does not change Note however that, since the dimensionality of the simplex
its position from one generation to another. For this reasatepends of the number of decision variables of the MOP, the
the proposed local search mechanism stores a regsjrd) ( population size of the MOEA needs to be larger than the
of the last position from which the nonlinear simplex searaumber of decision variables.
starts. At the beginning of the execution of MOEA/D+LS-1l, 5) Deforming the Simplextet w, be the weighting vector
the initial position record is set as empty, thatg;, = 0. that defines the search direction for the local search A &te
Once the simplex search is performed, the initial solut®n the simplex defined by the above description. The nonlinear
stored in the historical record, i.ep;,; = pini. In this way, simplex search will be focused on minimizing the subproblem
for the next call of the local search, a previous comparisalefined by the weighting vectox,. At each iteration of the
of similarity is performed. That is, the local search will bawonlinear simplex search, the+ 1 vertices of the simplex
performed, if and only if,||pin: — P},;l| > Sis, WhereS;s A are sorted according to their value for the subproblem that
represents the similarity threshold. Since in the firstiien it tries to minimize (the best value is the first element). In
of the simplex search, there is no previous record of thelnitthis way, a movement into the simplex is performed for gen-
solution, the simplex search is automatically performeathB erating the new solutiop,,..,. The movements are calculated
the updating of the historical record and the similarityreper according to the equations provided by Nelder and Mead—
are performed for each initial solutigm;,,; which minimizes see Section II-D. Each movement is controlled by three scala
the subproblem defined bw,. In our study, we adopted aparameters: reflectiomf, expansion§) and contraction~).
similarity thresholdsS;, = 0.001. This strategy differs from  The simplex search was conceived for unbounded problems.
those presented in [9], where local search is applied when ¥vhen dealing with bounded variables, the created solutions
population has less than 50% of nondominated solutions. can be located outside the allowable bounds after some move-
4) Building the Simplexiet w;,; be the weighting vector ments of the simplex search. In order to deal with this, we
that defines the subproblem for which the initial search poibias the new solution if any component pf,.., lies outside
Pin: IS minimum. LetS(w;,;) be the neighborhood of the the bounds according to:
closest weighting vectors ter;,,; (wheren is the number of

decision variables of the MOP). Then, the simplex defined as: LY L if pi, <LY)
A = {Pini,P1,- .- Pn} Pt = Uppna -+ if PHw > Uil ®)
pﬁﬂe)w , otherwise.

is built in two different ways, depending on the direction on ‘ .
which the simplex search is focused. whereL”) andU’)  are the lower and upper bounds of

boun boun
i. For the extremes of the Pareto frorithe remainingn the j** parameter ob,...,, respectively.

solutionsp; € Q (i = 1,...,n) are generated by usinga 6) Updating the PopulationThe information provided by
low-discrepancy sequence. In this work, we adopted tliee local search mechanism is introduced into the populatio
Hammersley sequence [19] to generate a well-distribut8OEA/D. Since we are dealing with MOPs, the new solution
sampling of solutions in a determined search space. snerated by any movement of the nonlinear simplex search
in [9], we use a strategy based on the genetic analysisuld be better than more than one solution in the current
of a sample from the current population for reducingopulation. Thus, we adopt the following mechanism in which

the search space. Therefore, we compute the averagere than one solution from the population could be replaced



Let P be the current population reported by the MOEA. « Deb-Thiele-Laumanns-Zitzler (DTLZ) test suite [22].
Let p,cw be the solution generated by any movement of the The seven unconstrained MOPs were adopted. DTLZ1

simplex search. LeB(wy) andW = {wy,...,wx} be the was tested using 7 decision variables. For DTLZ2
neighborhood of thé” closest weighting vectors ter,, and to DTLZ6, we employed 12 decision variables, while
the well-distributed set of all weighting vectors, resjpesy. DTLZ7 was tested using 22 decision variables. For all
We define ) problems we tested the algorithms using three objective
Q- { B(ws) ifr<é functions for each MOP.
w otherwise « Working-Fish-Group (WFG) test suite [23]. The nine

wherer is a random number having uniform distribution. In ~ MOPs from this test suite were adopted. We used 4
this work, we use = 0.5. for the position related parameters ahd= 20 for the

The current populatioi® is updated by replacing at most ~ distance related parameters—i.e. 24 decision variables
Ry, solutions fromP such thatg(prew|Ws, 2) < g(x:|wi, 2), (as it was suggested in [23])—adopting three objective
wherew; € Q andx; € P, such thatx; minimizes the functions for each MOP.
subproblem defined by;. To assess the performance of our proposed memetic al-

In this way, the loss of diversity is avoided by replacingorithm and the other two state-of-the-art MOEAs (i.e., the
a maximum number of solutions fron®, instead of all original MOEA/D and MOEA/D+LS) on the test problems
the solutions that minimize the subproblems defined by tl€lopted, thédypervolume (Hv) indicator was employed [24].
complete neighborhoo@. In our study, we seR?;, = 15 as This performance measure is Pareto compliant [25], and-quan
the maximum number of solution to replace. tifies both approximation and maximum spread of nondomi-

7) Stopping Criterion:The local search mechanism encompated solutions along the Pareto front. The interestecerdéad
passes the search of solutions towards both the extremes kgfgirred to [24] for a more detailed description of this neetr
the knee of the Pareto front. This mechanism is limited to@
maximum number of fitness function evaluations defined by

Ej,. In this way, the proposed local search has the foIIowinI\% We compared the results obtained by our proposed
stopping criteria: OEA/D+LS-II with respect to those obtained by MOEA/D

1) If the nonlinear simplex search overcomes the max"fl—nd MOEA/D+LS (using the PBI approach). For a fair

mum number of evaluations.), the simplex search comparison, the set of weighting vectors was the same for

is stopped and the evolutionary process of MOEA/B" the a_llgonthms, and they were generated in the same
; . . way as in [12]. For each MOP, 30 independent runs were
continues by going ttep 2of Algorithm 1, erformed with each algorithm. The parameters for the al-

2) The search could be inefficient if the simplex has bedh 9 ’ P

deformed so that it has collapsed into a region in whi(:(illorithmS are summarized in Table 1, wheré represents
P 9 tpe number of initial solutions (100 for bi-objective prob-

there are no local minima. .Accordmg to Lag.ana.s Sems and 300 for three-objective problemsy;; represents
al. [20] the simplex search finds a better solution in . X : .

. . . . . the maximum number of iterations, which was set to 100
mostn + 1 iterations (at least in convex functions with

low dimensionality). Therefore, if the simplex Seard1‘1or all test problems. Therefore, both algorithms perfadme

does not find a better value for the subproblem defineg’ooo (for the bi-objective problems) and 30,000 (for the

by w. in n-1 iterations, we stop the search and Ccmtinu([:)ree-objectlve problems) fitness function evaluatiomsefch

4 S i ; problem. The parameters,,, n., 0., P. and P,, represent
with the next direction defined by going &tep 3.1of tthe neighborhood size, crossover index (for Simulated Bi-

fr\ll'g)otrrl:grgirﬁbl(e);hbeygcs)i%gv:;tggr?gT Acl)ér(;ﬁ:hrr:o;/emennary Crossover (SBX)), mutation index (for Polynomial-Bds
' Mutation (PBM)), crossover rate and mutation rate, respec-
IV. EXPERIMENTAL RESULTS tively. For MOEA/D+LS and MOEA/D+LS-Il,a, 5 and ~
represent the control parameters for the reflection, expans
and contraction movements of the nonlinear simplex search,
In order to assess the performance of our proposed memegigpectively.R;, and E;, represent the number of solutions
algorithm, we compare its results with respect to those oy pe replaced and the maximum number of fitness func-
tained by the original MOEA/D [12] and the state-of-thetijon evaluations employed by the local search, respegtivel
art MOEA/D+LS [9]. We adopted 21 test problems whos@, and S,,, represent the action range and the similarity
Pareto fronts have different characteristics includingwexity, threshold employed by the local search for MOEA/D+LS
concavity, disconnections and multi-modality. In thedoling, and MOEA/D+LS-II, respectively. Finally, the parametér
we describe the test suites that we have adopted. represents the penalty value used in the PBI approach for the
« Zitzler-Deb-Thiele (ZDT) test suite [21]. The four bio- three approaches compared herein.
objective MOPs (except for ZDT5, which is a discrete For each MOP, the algorithms were evaluated using
problem) were adopted. We used 30 decision variablése Hypervolume %{v) indicator. The results obtained are
for ZDT1 to ZTD3, while ZDT4 and ZDT6 were testedsummarized in Table Il. These tables display both the
using 10 decision variables. average and the standard deviation)( of the Hv indicator

Parameters Settings

A. Test Problems and Performance Assessment



TABLE |

PARAMETERS FORMOEA/D, MOEA/D+LSAND MOEA/D+LS-II most of the test problems adopted. Our results indicate that
MOEA/D+LS-Il obtained better results in the ZDT and DTLZ
[ Parameter] MOEA/D | MOEA/D+LS | MOEA/D+LS-N | test problems. However, for ZDT2 and DTLZ4, our proposed
N 100/300 1007300 100/300 approach was outperformed by MOEA/D+LS, but not in a
];jf 12%0 12%0 12000 significant manner. Thus, we argue that both MOEA/D+LS
Ne 20 20 20 and MOEA/D+LS-II are competitive in the ZDT and DTLZ
I 2 2 2 test suites. Regarding the WFG test suite, MOEA/D+LS-II
P,y /n i/n /n showed its robustness outperforming both to MOEA/D+LS,
o - 1 1 and the original MOEA/D in most problems, which are
B = 2 2 . iy
5 - 17 7 considered more difficult to solve [23].
Ry - 15 15
Eis = 300 300
A, = 5 - VI. CONCLUSIONS AND FUTURE WORK
5. = = 0.001
6 5 5 5

We have proposed a hybridization of MOEA/D with a
nonlinear simplex search method, in which the mathemat-
ical programming method works as a local search engine.
for each MOP. The reference vectors used for computine |ocal search mechanism approximates solutions to the
the Hv performance measure are shown in Table Il. Theg&tremes and the maximum bulge of the Pareto front adopting
vectors are established close to the individual minima émhe a decomposition approach. Therefore, its use could beyeasil
MORP, i.e., close to the extremes of the Pareto optimal frordgupled within other decomposition-based MOEAs, such as
With that, a good measure of approximation and spreadtifose reported in [16], [17]. Our proposed multi-objective
reported when the algorithms converge along the Paret. fromemetic algorithm was found to be competitive with respect
For an easier interpretation, the best results are pretémteto the original MOEA/D and the MOEA/D+LS over a set
boldface for each test problem adopted. of test functions taken from the specialized literatureewh
performing 10,000 and 30,000 fitness function evaluatitors,
problems having two and three objectives, respectively. We

As indicated before, the results obtained by our proposednsider that the strategy employed to hybridize Nelder and
memetic algorithm (i.e., the MOEA/D+LS-Il) were com-Mead’'s method with MOEA/D was appropriate for dealing
pared against those produced by the original MOEA/D amidth the MOPs adopted here.

MOEA/D+LS. According to the results presented in Table Il, As part of our future work, we intend to focus on designing
MOEA/D+LS-Il had a better performance than MOEA/Dother mechanism that helps us decide whether the localtsearc
and MOEA/D+LS in most of the MOPs adopted. This tablengine will be triggered or not. We also plan to explore
provides a quantitative assessment of the performance different strategies for constructing the simplex. We dadi
MOEA/D+LS-Il in terms of the}{v indicator. That means thatthat the use of an appropriate simplex and a good hybridizati
the solutions obtained by MOEA/D+LS-II achieved a bettestrategy could be a powerful combination for solving comple
approximation of the Pareto optimal front than those sohgi and computationally expensive MOPs—as for example those
obtained by both MOEA/D and MOEA/D+LS-Il when a lowpresented in [12]. Finally, we also aim to extend our hybgd a
number of fitness function evaluations was used. proach to constrained MOPs using any variants of the nonlin-

Note however, that for ZDT4, DTLZ1, DTLZ3 and WFG2,ear simplex search algorithm for dealing with such problems
the Hv indicator showed that the local search mechanisms
employed by both MOEA/D+LS and MOEA/D+LS-II did not
improve the performance of the original MOEA/D. The poor
performance of these hybrid MOEAs for ZDT4, DTLZ1 and The first author acknowledges support from CONACyYT through
DTLZ3 is attributed to the high multi-frontality that thesea scholarship to pursue graduate studies at the Computencgci
problems have—for a detailed description of these problemspartment of CINVESTAV-IPN. The second author gratefuly
see [21], [22]. Analogously, the multi-modality of WFGZ2knowledges support from CONACYT project no. 103570.
(presented in the last function of the MOP) has an influence
on the performance of the hybrid MOEAs—for a detailed
description of the WFG test suite see [23].

The effectiveness of MOEA/D+LS with respect to the[l] C. A. Coello Coello, G. B. Lamont, and D. A. Van Veldhuizen
original MOEAD i the ZDT and DTLZ test suites has — Sllinary Mg fr Soing M Obiees Fltns 2 e
been shown in [9]. The proposed MOEA/D+LS-II presemqu] P. K. Shukla, “On Gradient Based Local Search Methods mcdh-
here, was compared with respect to MOEA/D+LS not only  strained Evolutionary Multi-objective Optimization,” iEvolutionary
in the ZDT and DTLZ test suites, but also adopting the Multi-Criterion Optimization, 4th International Confenee, EMO 2007

. . . S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, and T. Muratas.Ed
WFG test suite. In Table Il it is pOSSIble to see that the Matshushima, Japan: Springer. Lecture Notes in Computen&e Vol.

proposed MOEA/D+LS-Il outperformed MOEA/D+LS in 4403, March 2007, pp. 96-110.
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