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Abstract—In recent years, the hybridization of multi-objective
evolutionary algorithms with mathematical programming tech-
niques has significantly increased. Such hybrids attempt tocom-
bine the global search properties of evolutionary algorithms with
the exploitative power of mathematical programming techniques.
Most of these approaches normally rely on the use of gradients
and, therefore, their use is limited to certain types of problems.
The use of nonlinear direct search techniques—i.e., methods
that do not require gradient information—has been less popular
in hybrid multi-objective evolutionary algorithms. This p aper
focuses on the design of a hybrid algorithm between the well-
known MOEA/D and one of most popular direct search methods
(Nelder and Mead’s algorithm). The mathematical programming
technique adopted here, acts as a local search engine, whose
goal is to exploit promising regions of the search space that
have been generated by a multi-objective evolutionary algorithm.
Our preliminary results indicate that this sort of hybridiz ation is
promising for dealing with multi-objective optimization p roblems
having a moderately high number of decision variables.

I. I NTRODUCTION

Multi-objective evolutionary algorithms (MOEAs) have
been successfully adopted for solving a wide variety of
engineering and scientific problems [1]. However, one of
the limitations of MOEAs is their computational cost, which
turns out to be unaffordable in certain real-world problems.
This has motivated the development of numerous strategies
for reducing the number of fitness function evaluations
in a MOEA. In the last few years, several researchers
have developed hybrid approaches combining MOEAs with
mathematical programming techniques. Most of these hybrid
schemes require the gradient of the functions (see for
example [2]), and, therefore their use is limited. In recent
years, the development of hybrid algorithms which couple
direct search methods to a MOEA, has also attracted the
attention of several researchers. Next, we briefly discuss some
hybrid approaches found in the specialized literature, which
couple direct search techniques to a MOEA.

Koduru et al. [3] proposed a genetic algorithm using fuzzy
dominance and Nelder and Mead’s method. This approach
uses the simplex search as a local search engine for ob-
taining nondominated solutions in a genetic algorithm. The
simplex is defined by taking a solution from the current
population and this hybrid scheme is used to estimate the

parameters of a gene regulatory network. Koduru et al. [4]
hybridized nonlinear simplex search with a Multi-Objective
Particle Swarm Optimizer (MOPSO). This approach adopted
clustering techniques to build the simplex. Nonlinear sim-
plex search was used as a local search engine for finding
nondominated solutions in the neighborhood defined by the
particle to be improved. Zapotecas and Coello [5] presenteda
hybridization between the well-known Nondominated Sorting
Genetic Algorithm II (NSGA-II) and the nonlinear simplex
search method. In this approach, the search was directed by
an aggregating function and the simplex was constructed using
a low-discrepancy sequence within a reduced search space.
The proposed memetic algorithm was tested using problems
with a moderate dimensionality in decision variable space
(up to 30 decision variables). Zhong et al. [6] hybridized the
nonlinear simplex search and the Differential Evolution (DE)
algorithm. The simplex was constructed by selecting random
solutions from the current population, which were then sorted
according to Pareto dominance. At each iteration of the local
search engine, a movement into the simplex was performed
for generating new nondominated solutions. This evolutionary
approach was tested with problems having low dimensionality
in decision variable space (two and three decision variables).
Koch et al. [7] presented a hybrid algorithm which combines
the exploratory properties of the S-Metric Selection Evolution-
ary Multi-objective Optimization Algorithm (SMS-EMOA) [8]
with the exploitative power of the Hooke and Jeeves algorithm
which is used in the local search. At each iteration the Hooke
and Jeeves algorithm performs an exploratory move along the
coordinate axes. Afterwards, the vectors of the last exploratory
moves are combined to a projected direction that can accelerate
the descent of the search vector.

More recently, Zapotecas and Coello [9] presented a hybrid
approach for decomposition-based MOEAs. The proposed
algorithm hybridizes the nonlinear simplex search method with
MOEA/D. The local search engine is based on a previous
extension of the nonlinear simplex search for multi-objective
optimization developed by the same authors [10].

In this paper, we present a hybrid algorithm called
MOEA/D+LS-II, which incorporates the Nelder and Mead
method [11] into the well-known versions of MOEA/D [12].



The direct search method adopted here, acts as a local search
engine, whose goal is to exploit promising regions around
the solutions generated by the baseline MOEA. The proposed
MOEA/D+LS-II improves the selection mechanism and the
search direction used in [9] for the local search procedure.As
we will see later on, our preliminary results indicate that the
proposed memetic approach outperforms two state-of-the-art
MOEAs: MOEA/D [12] and MOEA/D+LS [9], in most of the
test problems adopted in our experimental study.

The remainder of this paper is organized as follows. In
Section II, we provide the basic definitions required for
understanding the rest of the paper. Section III describes
the proposed memetic algorithm, including a detailed
explanation of the local search mechanism that we propose.
Section IV presents the experimental study used for assessing
the performance of our proposed memetic algorithm. In
Section V, we provide a brief discussion of our results.
Finally, in Section VI, we provide our conclusions and some
possible paths for future research.

II. BASIC CONCEPTS

A. Multi-objective optimization

Without loss of generality and assuming minimization prob-
lems, a nonlinear multi-objective optimization problem (MOP)
can be formulated as:

min
x∈Ω

F(x) (1)

where Ω defines the decision space andF is
defined as the vector of objective functions:
F : Ω → R

k, F(x) = (f1(x), . . . , fk(x))T , such that
fi : R

n → R is a nonlinear function. In order to describe
the concept of optimality in which we are interested, the
following definitions are introduced [13]:

Definition 1. Let x,y ∈ Ω, we say thatx dominatesy
(denoted byx ≺ y) if and only if, fi(x) ≤ fi(y) and
fi(x) < fi(y) in at least onefi for all i = 1, . . . , k.

Definition 2. Let x⋆ ∈ Ω, we say thatx⋆ is a Pareto optimal
solution, if there is no other solutiony ∈ Ω such thaty ≺ x⋆.

Definition 3. The Pareto Optimal Setis defined by:

PS = {x ∈ Ω|x is a Pareto optimal solution}

Definition 4. The Pareto Optimal FrontPF is defined by:

PF = {F(x)|x ∈ PS}

We thus wish to find the best possibletrade-offsamong the
objectives, such that no objective can be improved without
worsening another. Since the number of Pareto optimal solu-
tions can be very large, we are also interested in obtaining
a well-distributed set of solutions, since the size of our
approximation (produced by a MOEA) will be normally small.

B. Decomposing Multi-Objective Optimization Problems

It is well-known that a Pareto optimal solution to a MOP,
under some assumptions, is an optimal solution of a scalar op-
timization problem in which, the objective is an aggregation of
all the objective functionsfi’s. Therefore, an approximation of
the Pareto optimal front can be decomposed into a number of
scalar objective optimization subproblems. In the specialized
literature, there are several approaches for transforminga MOP
into multiple single-objective optimization subproblems[14],
[13]. In the following, we briefly describe a method based on
the normal boundary intersection (NBI) [15] method, which
is referred to in this work.

1) Penalty Boundary Intersection Approach:The Penalty
Boundary Intersection (PBI) approach proposed by Zhang and
Li [12], uses a weighting vectorw and a penalty valueθ for
minimizing both the distance to the utopian vectord1 and the
direction error to the weighting vectord2 from the solution
F(x). Therefore, the optimization problem can be stated as:

minimize: g(x|w, z⋆) = d1 + θd2 (2)

where

d1 =
||(F(x) − z⋆)Tw||

||w||

and d2 =
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such thatx ∈ Ω and z⋆ = (z1, . . . , zk)T , such that:zi =
min{fi(x)|x ∈ Ω}.

Therefore, a good representation of the Pareto front can
be obtained by solving a set of problems defined by a
well-distributed set of weighting vectors. This is the main
idea behind current decomposition-based MOEAs—see for
example [12], [16], [17].

C. The Multi-Objective Evolutionary Algorithm Based on De-
composition (MOEA/D)

The Multi-Objective Evolutionary Algorithm Based on De-
composition (MOEA/D) [12], transforms a MOP into sev-
eral scalarization problems. Therefore, an approximationof
the Pareto front is obtained by solving theN scalarization
subproblems in which a MOP is decomposed.

ConsideringW = {w1, . . . ,wN} as the set of evenly
spread weighting vectors, MOEA/D finds the best solution of
each subproblem defined by each weighting vector using the
PBI approach. The objective function of thejth subproblem
is then defined byg(x|wj , z), where wj ∈ W and z =
(z1, . . . , zk)T is the artificial utopian vector whose component
zi is the minimum value found so far for the objectivefi.
In MOEA/D, a neighborhood of the weighting vectorwi

is defined as a set of its closest weighting vectors inW .
Therefore, the neighborhood of theith subproblem consists
of all the subproblems with the weighting vectors from the
neighborhood ofwi and it is denoted byB(wi).

At each generation, MOEA/D finds the best solution to
each subproblem throughout the evolutionary process and
maintains: 1) a population ofN points P = {x1, . . . ,xN},



Algorithm 1: General Framework of MOEA/D
Input :
a stopping criterion;
N : the number of the subproblems considered in
MOEA/D;
W : a well-distributed set of weighting vectors
{w1, . . . ,wN};
T : the number of weight vectors in the neighborhood of
each weighting vector.
Output :
EP : the nondominated solutions found during the search;
P : the final population found by MOEA/D.

1 begin
2 Step 1. INITIALIZATION :
3 EP = ∅;
4 Generate an initial populationP = {x1, . . . ,xN}

randomly;
5 FV i = F(xi);
6 B(wi) = {wi1 , . . . ,wiT

} wherewi1 , . . . ,wiT
are

the T closest weighting vectors towi, for each
i = 1, . . . , N ;

7 z = (+∞, . . . , +∞)T ;
8 while stopping criterion is not satisfieddo
9 Step 2.UPDATE: (the next population)

10 for xi ∈ P do
11 REPRODUCTION: Randomly select two

indexesk, l from B(wi), and then generate a
new solutiony from xk andxl by using
genetic operators.

12 MUTATION : Apply a mutation operator ony
to producey′.

13 UPDATE OFz: For eachj = 1, . . . , k, if
zj < fj(x), then setzj = fj(y

′).
14 UPDATE OFNEIGHBORING SOLUTIONS: For

each indexj ∈ B(wi), if
g(y′|wj , z) ≤ g(xj |wj , z), then setxj = y′

andFV j = F(y′). UPDATE OFEP : Remove
from EP all the vectors dominated byF(y′).
Add F(y′) to EP if no vectors inEP
dominateF(y′).

15 end
16 end
17 end

wherexi ∈ Ω is the current solution to theith subproblem;
2) FV 1, . . . , FV N , where FV i is the F -value of xi,
i.e., FV i = F(xi) for each i = 1, . . . , N ; 3) an external
population EP , which is used to store the nondominated
solutions found during the search. Algorithm 1 presents
the general framework of MOEA/D, although the interested
reader can be referred to [12] for a more detailed description.

D. The Nonlinear Simplex Search

Nelder and Mead’s method [11] also known as theNon-
linear Simplex Search, is an algorithm based on the simplex
algorithm of Spendley et al. [18], which was introduced for
minimizing nonlinear and multi-dimensional unconstrained
functions. While Spendley et al.’s algorithm uses regular sim-
plexes, Nelder and Mead’s method generalizes the procedure
to change the shape and size of the simplex. Therefore, the
convergence towards a minimum value at each iteration of
the nonlinear simplex search is conducted by three main
movements in a geometric shape calledsimplex.

The full algorithm is defined stating three scalar parameters
to control the movements performed in the simplex:reflection
(α), expansion(γ) andcontraction (β). At each iteration, the
n+1 vertices∆i of the simplex represent solutions which are
evaluated and sorted according to:f(∆1) ≤ f(∆2) ≤ · · · ≤
f(∆n+1). In this way, the movements performed in the sim-
plex by the nonlinear simplex search method are defined as:

1) Reflection: xr = (1 + α)xc − α∆n+1.
2) Expansion: xe = (1 + αγ)xc − αγ∆n+1.
3) Contraction:

a) Outside: xco = (1 + αβ)xc − αβ∆n+1.
b) Inside: xci = (1 − β)xc + β∆n+1.

wherexc = 1
n

∑n
i=1 ∆i is the centroid of then best points

(all vertices except for∆n+1), ∆1 and∆n+1 are the best and
the worst solutions identified within the simplex, respectively.
At each iteration, the initial simplex is modified by one of
the above movements, according to the following rules:

1. If f(∆1) ≤ f(xr) ≤ f(∆n), then∆n+1 = xr.
2. If f(xe) < f(xr) < f(∆1), then∆n+1 = xe,

otherwise∆n+1 = xr.
3. If f(∆n) ≤ f(xr) < f(∆n+1) andf(xco) ≤ f(xr),

then∆n+1 = xco.
4. If f(xr) ≥ f(∆n+1) andf(xci) < f(∆n+1),

then∆n+1 = xci.

III. T HE PROPOSEDAPPROACH

A. General Framework

Our proposed multi-objective memetic algorithm adopts
MOEA/D [12] as its baseline algorithm. The proposed local
search mechanism is based on Nelder and Mead’s method [11].
The memetic algorithm (called here, MOEA/D+LS-II)
explores the global search space using MOEA/D, while the
local search engine exploits the promising regions provided
by the MOEA. For a better understanding of the proposed
approach, Algorithm 2 presents the general framework of the
proposed MOEA/D+LS-II.Step 3refers to the complete local
search mechanism which is performed after each iteration of
MOEA/D. In the following sections, we describe in detail the
components of the local search mechanism.

B. Local Search Mechanism

MOEA/D+LS-II exploits the promising neighborhood of
the solutions found by the MOEA at each generation. As



Algorithm 2: General Framework of MOEA/D+LS-II
Input :
a stopping criterion;
N : the number of the subproblems considered in MOEA/D+LS-II;
W : a well-distributed set of weighting vectors{w1, . . . ,wN};
T : the number of weight vectors in the neighborhood of each weighting
vector;
Sls: the similarity threshold for the local search;

Els: the maximum number of evaluations for the local search.

Output :
EP : the nondominated solutions found during the search;
P : the final population found by MOEA/D+LS-II.

1 begin
2 Step 1. INITIALIZATION :
3 Generate an initial populationP = {x1, . . . ,xN}

randomly;
4 FV i = F(xi);
5 B(wi) = {wi1 , . . . ,wiT

} wherewi1 , . . . ,wiT
are

the T closest weighting vectors towi, for each
i = 1, . . . , N ;

6 z = (+∞, . . . , +∞)T ;
7 Step 2.THE MEMETIC ALGORITHM:
8 while stopping criterion is not satisfieddo
9 PerformStep 2 of the MOEA/D algorithm for

obtainingP (the next population).
10 Step 3.THE LOCAL SEARCH MECHANISM:
11 for j = 1, . . . , k + 1 do
12 Step 3.1.DEFINING THE SEARCH

DIRECTION:.
13 if j < k then
14 // Search towards the extremes of the Pareto front

15 ws = ej, whereej is the jth canonical
basis inR

k andk is the number of
objective functions.

16 else
17 // Search towards the maximum bulge of the Pareto

front

18 ws = (1/k, . . . , 1/k)
19 end
20 Step 3.2.SELECTING INITIAL SOLUTION :

Select the initial solution for the local search
according to Section III-B2.

21 Step 3.3.LOCAL SEARCH: Apply nonlinear
simplex search according to the Algorithm 3.

22 end
23 end
24 end

it was mentioned before, MOEA/D+LS-II uses Nelder and
Mead’s method as a local search engine for continuous
search spaces, in order to improve the solutions provided by
MOEA/D. In contrast to MOEA/D+LS [9], the local search
mechanism of MOEA/D+LS-II approximates solutions to the
extremes and the maximun bulge (sometimes called knee) of
the Pareto front. The nonlinear simplex search is employed
for minimizing a subproblem defined by a weighting vector

Algorithm 3: Use of Local Search
Input :
a stopping criterion;
Sls: the similarity threshold for the local search;

Els: the maximum number of evaluations for the local search.

Output :
P : the updated populationP .

1 begin
2 Step 1.CHECKING SIMILARITY : Obtain the

similarity (Sls) betweenpini and the previous initial
solution (p′

ini) for the local search—see
Section III-B3;

3 if there are enough resourcesand St < Sls then
4 Step 2.BUILDING THE SIMPLEX : Build the

initial simplex for the nonlinear simplex
search—see Section III-B4;

5 Step 3.DEFORMING THESIMPLEX : Perform any
movement (reflection, contraction or expansion)
for obtainingpnew according to Nelder and
Mead’s method—see Section III-B5;

6 Step 4.UPDATING THE POPULATION: Update
the populationP using the new solutionpnew

according to the rules presented in Section III-B6.
7 Step 5.STOPPINGCRITERION: If the stopping

criterion is satisfied then stop the local search.
Otherwise go toStep 3—see Section III-B7.

8 end
9 end

using the PBI approach. In the following, we present in
detail the components of our local search engine outlined in
Algorithms 2 and 3.

1) Defining the Search Direction:In contrast to the method
proposed in [9], the local search mechanism proposed here, ap-
proximates solutions to the Pareto front in two different stages.

1) Initially, the search is directed to the extremes of the
Pareto front. Therefore, the weighting vectors that define
the subproblems that approximate solutions (when they
are solved) to the extremes are defined by the canonical
basis inR

k—i.e., the search direction that approximates
solutions to thejth extreme of the Pareto front is defined
by the weighting vector:1

ws = ej

whereej is thejth canonical vector inRk.
2) Once the solutions lying at the extremes of the Pareto

front have been approximated, the local search is fo-
cused on minimizing the subproblem that approximates
the solutions lying on the knee of the Pareto front.
Therefore, the search direction is now defined by the
weighting vector:

ws = (1/k, . . . , 1/k)T

1Assuming the use of the PBI approach.



wherek is the number of objective functions.

Considering the use of the PBI approach, the penalty value
θ is set asθ = 5 for approximating solutions to the extremes,
whereas for the knee, a valueθ = 10 is employed. Note that
the search on the knee is relaxed defining a biggerθ value
than the one stated for the extremes.

2) Selection Mechanism:Let P be the set of solutions
found by MOEA/D at any generation. Letws be the weighting
vector that defines the search direction for the nonlinear
simplex search. The solutionpini which starts the search is
defined by:

pini = x ∈ P, such that minimizes:g(x|ws, z
⋆)

Solutionpini represents not only the initial search point, but
also the simplex head from which the simplex will be built.

3) Checking Similarity:The nonlinear simplex search ex-
plores the neighborhood of the solutionpini ∈ P . Since the
simplex search is applied after each iteration of the MOEA,
most of the time, the initial solutionpini does not change
its position from one generation to another. For this reason,
the proposed local search mechanism stores a record (p′

ini)
of the last position from which the nonlinear simplex search
starts. At the beginning of the execution of MOEA/D+LS-II,
the initial position record is set as empty, that is:p′

ini = ∅.
Once the simplex search is performed, the initial solution is
stored in the historical record, i.e.,p′

ini = pini. In this way,
for the next call of the local search, a previous comparison
of similarity is performed. That is, the local search will be
performed, if and only if,||pini − p′

ini|| > Sls, whereSls

represents the similarity threshold. Since in the first iteration
of the simplex search, there is no previous record of the initial
solution, the simplex search is automatically performed. Both
the updating of the historical record and the similarity operator
are performed for each initial solutionpini which minimizes
the subproblem defined byws. In our study, we adopted a
similarity thresholdSls = 0.001. This strategy differs from
those presented in [9], where local search is applied when the
population has less than 50% of nondominated solutions.

4) Building the Simplex:Let wini be the weighting vector
that defines the subproblem for which the initial search point
pini is minimum. LetS(wini) be the neighborhood of then
closest weighting vectors towini (wheren is the number of
decision variables of the MOP). Then, the simplex defined as:

∆ = {pini,p1, . . . ,pn}

is built in two different ways, depending on the direction on
which the simplex search is focused.

i. For the extremes of the Pareto front:The remainingn
solutionspi ∈ Ω (i = 1, . . . , n) are generated by using a
low-discrepancy sequence. In this work, we adopted the
Hammersley sequence [19] to generate a well-distributed
sampling of solutions in a determined search space. As
in [9], we use a strategy based on the genetic analysis
of a sample from the current population for reducing
the search space. Therefore, we compute the average

(m) and standard deviation(σ) of the chromosomes
(solutions) that minimize each subproblem defined by
the weighting vectors inS(wini). In this way, the new
bounds are defined by:

Lbound = m − σ
Ubound = m + σ

whereLbound andUbound are the vectors which define
the lower and upper bounds of the new search space,
respectively. Once the search space has been reduced,
the n remaining solutions are generated by means of
the Hammersley sequence using as boundsLbound and
Ubound.

ii . For the knee of the Pareto front:The remainingn
solutionspi ∈ P (i = 1, . . . , n) are chosen, such that,pi

minimizes each subproblem defined by each weighting
vector in S(wini). This is the same strategy employed
in MONSS [10] for constructing the simplex.

Note however that, since the dimensionality of the simplex
depends of the number of decision variables of the MOP, the
population size of the MOEA needs to be larger than the
number of decision variables.

5) Deforming the Simplex:Let ws be the weighting vector
that defines the search direction for the local search. Let∆ be
the simplex defined by the above description. The nonlinear
simplex search will be focused on minimizing the subproblem
defined by the weighting vectorws. At each iteration of the
nonlinear simplex search, then + 1 vertices of the simplex
∆ are sorted according to their value for the subproblem that
it tries to minimize (the best value is the first element). In
this way, a movement into the simplex is performed for gen-
erating the new solutionpnew. The movements are calculated
according to the equations provided by Nelder and Mead—
see Section II-D. Each movement is controlled by three scalar
parameters: reflection (α), expansion (β) and contraction (γ).

The simplex search was conceived for unbounded problems.
When dealing with bounded variables, the created solutions
can be located outside the allowable bounds after some move-
ments of the simplex search. In order to deal with this, we
bias the new solution if any component ofpnew lies outside
the bounds according to:

p(j)
new =











L
(j)
bound , if p

(j)
new < L

(j)
bound

U
(j)
bound , if p

(j)
new > U

(j)
bound

p
(j)
new , otherwise.

(3)

whereL
(j)
bound andU

(j)
bound are the lower and upper bounds of

the jth parameter ofpnew, respectively.
6) Updating the Population:The information provided by

the local search mechanism is introduced into the population of
MOEA/D. Since we are dealing with MOPs, the new solution
generated by any movement of the nonlinear simplex search
could be better than more than one solution in the current
population. Thus, we adopt the following mechanism in which
more than one solution from the population could be replaced.



Let P be the current population reported by the MOEA.
Let pnew be the solution generated by any movement of the
simplex search. LetB(ws) and W = {w1, . . . ,wN} be the
neighborhood of theT closest weighting vectors tows, and
the well-distributed set of all weighting vectors, respectively.
We define

Q =

{

B(ws) , if r < δ
W otherwise

wherer is a random number having uniform distribution. In
this work, we useδ = 0.5.

The current populationP is updated by replacing at most
Rls solutions fromP such that,g(pnew |wi, z) < g(xi|wi, z),
where wi ∈ Q and xi ∈ P , such thatxi minimizes the
subproblem defined bywi.

In this way, the loss of diversity is avoided by replacing
a maximum number of solutions fromP , instead of all
the solutions that minimize the subproblems defined by the
complete neighborhoodQ. In our study, we setRls = 15 as
the maximum number of solution to replace.

7) Stopping Criterion:The local search mechanism encom-
passes the search of solutions towards both the extremes and
the knee of the Pareto front. This mechanism is limited to a
maximum number of fitness function evaluations defined by
Els. In this way, the proposed local search has the following
stopping criteria:

1) If the nonlinear simplex search overcomes the maxi-
mum number of evaluations (Els), the simplex search
is stopped and the evolutionary process of MOEA/D
continues by going toStep 2of Algorithm 1.

2) The search could be inefficient if the simplex has been
deformed so that it has collapsed into a region in which
there are no local minima. According to Lagarias et
al. [20] the simplex search finds a better solution in at
mostn + 1 iterations (at least in convex functions with
low dimensionality). Therefore, if the simplex search
does not find a better value for the subproblem defined
by ws in n+1 iterations, we stop the search and continue
with the next direction defined by going toStep 3.1of
Algorithm 2. Otherwise, we perform other movement
into the simplex by going toStep 3of Algorithm 3.

IV. EXPERIMENTAL RESULTS

A. Test Problems and Performance Assessment

In order to assess the performance of our proposed memetic
algorithm, we compare its results with respect to those ob-
tained by the original MOEA/D [12] and the state-of-the-
art MOEA/D+LS [9]. We adopted 21 test problems whose
Pareto fronts have different characteristics including convexity,
concavity, disconnections and multi-modality. In the following,
we describe the test suites that we have adopted.

• Zitzler-Deb-Thiele (ZDT) test suite [21]. The four bio-
objective MOPs (except for ZDT5, which is a discrete
problem) were adopted. We used 30 decision variables
for ZDT1 to ZTD3, while ZDT4 and ZDT6 were tested
using 10 decision variables.

• Deb-Thiele-Laumanns-Zitzler (DTLZ) test suite [22].
The seven unconstrained MOPs were adopted. DTLZ1
was tested using 7 decision variables. For DTLZ2
to DTLZ6, we employed 12 decision variables, while
DTLZ7 was tested using 22 decision variables. For all
problems we tested the algorithms using three objective
functions for each MOP.

• Working-Fish-Group (WFG) test suite [23]. The nine
MOPs from this test suite were adopted. We usedk = 4
for the position related parameters andl = 20 for the
distance related parameters—i.e. 24 decision variables
(as it was suggested in [23])—adopting three objective
functions for each MOP.

To assess the performance of our proposed memetic al-
gorithm and the other two state-of-the-art MOEAs (i.e., the
original MOEA/D and MOEA/D+LS) on the test problems
adopted, theHypervolume (Hv) indicator was employed [24].
This performance measure is Pareto compliant [25], and quan-
tifies both approximation and maximum spread of nondomi-
nated solutions along the Pareto front. The interested reader is
referred to [24] for a more detailed description of this metric.

B. Parameters Settings

We compared the results obtained by our proposed
MOEA/D+LS-II with respect to those obtained by MOEA/D
and MOEA/D+LS (using the PBI approach). For a fair
comparison, the set of weighting vectors was the same for
all the algorithms, and they were generated in the same
way as in [12]. For each MOP, 30 independent runs were
performed with each algorithm. The parameters for the al-
gorithms are summarized in Table I, whereN represents
the number of initial solutions (100 for bi-objective prob-
lems and 300 for three-objective problems).Nit represents
the maximum number of iterations, which was set to 100
for all test problems. Therefore, both algorithms performed
10,000 (for the bi-objective problems) and 30,000 (for the
three-objective problems) fitness function evaluations for each
problem. The parametersTn, ηc, ηm, Pc and Pm represent
the neighborhood size, crossover index (for Simulated Bi-
nary Crossover (SBX)), mutation index (for Polynomial-Based
Mutation (PBM)), crossover rate and mutation rate, respec-
tively. For MOEA/D+LS and MOEA/D+LS-II,α, β and γ
represent the control parameters for the reflection, expansion
and contraction movements of the nonlinear simplex search,
respectively.Rls and Els represent the number of solutions
to be replaced and the maximum number of fitness func-
tion evaluations employed by the local search, respectively.
Ar and Sls, represent the action range and the similarity
threshold employed by the local search for MOEA/D+LS
and MOEA/D+LS-II, respectively. Finally, the parameterθ,
represents the penalty value used in the PBI approach for the
three approaches compared herein.

For each MOP, the algorithms were evaluated using
the Hypervolume (Hv) indicator. The results obtained are
summarized in Table II. These tables display both the
average and the standard deviation (σ) of the Hv indicator



TABLE I
PARAMETERS FORMOEA/D, MOEA/D+LSAND MOEA/D+LS-II

Parameter MOEA/D MOEA/D+LS MOEA/D+LS-II

N 100/300 100/300 100/300
Nit 100 100 100
Tn 20 20 20
ηc 20 20 20
ηm 20 20 20
Pc 1 1 1
Pm 1/n 1/n 1/n
α – 1 1
β – 2 2
γ – 1/2 1/2

Rls – 15 15
Els – 300 300
Ar – 5 –
Sls – – 0.001
θ 5 5 5

for each MOP. The reference vectors used for computing
the Hv performance measure are shown in Table II. These
vectors are established close to the individual minima for each
MOP, i.e., close to the extremes of the Pareto optimal front.
With that, a good measure of approximation and spread is
reported when the algorithms converge along the Pareto front.
For an easier interpretation, the best results are presented in
boldface for each test problem adopted.

V. D ISCUSSION OFRESULTS

As indicated before, the results obtained by our proposed
memetic algorithm (i.e., the MOEA/D+LS-II) were com-
pared against those produced by the original MOEA/D and
MOEA/D+LS. According to the results presented in Table II,
MOEA/D+LS-II had a better performance than MOEA/D
and MOEA/D+LS in most of the MOPs adopted. This table
provides a quantitative assessment of the performance of
MOEA/D+LS-II in terms of theHv indicator. That means that
the solutions obtained by MOEA/D+LS-II achieved a better
approximation of the Pareto optimal front than those solutions
obtained by both MOEA/D and MOEA/D+LS-II when a low
number of fitness function evaluations was used.

Note however, that for ZDT4, DTLZ1, DTLZ3 and WFG2,
the Hv indicator showed that the local search mechanisms
employed by both MOEA/D+LS and MOEA/D+LS-II did not
improve the performance of the original MOEA/D. The poor
performance of these hybrid MOEAs for ZDT4, DTLZ1 and
DTLZ3 is attributed to the high multi-frontality that these
problems have—for a detailed description of these problems
see [21], [22]. Analogously, the multi-modality of WFG2
(presented in the last function of the MOP) has an influence
on the performance of the hybrid MOEAs—for a detailed
description of the WFG test suite see [23].

The effectiveness of MOEA/D+LS with respect to the
original MOEA/D in the ZDT and DTLZ test suites has
been shown in [9]. The proposed MOEA/D+LS-II presented
here, was compared with respect to MOEA/D+LS not only
in the ZDT and DTLZ test suites, but also adopting the
WFG test suite. In Table II, it is possible to see that the
proposed MOEA/D+LS-II outperformed MOEA/D+LS in

most of the test problems adopted. Our results indicate that
MOEA/D+LS-II obtained better results in the ZDT and DTLZ
test problems. However, for ZDT2 and DTLZ4, our proposed
approach was outperformed by MOEA/D+LS, but not in a
significant manner. Thus, we argue that both MOEA/D+LS
and MOEA/D+LS-II are competitive in the ZDT and DTLZ
test suites. Regarding the WFG test suite, MOEA/D+LS-II
showed its robustness outperforming both to MOEA/D+LS,
and the original MOEA/D in most problems, which are
considered more difficult to solve [23].

VI. CONCLUSIONS ANDFUTURE WORK

We have proposed a hybridization of MOEA/D with a
nonlinear simplex search method, in which the mathemat-
ical programming method works as a local search engine.
The local search mechanism approximates solutions to the
extremes and the maximum bulge of the Pareto front adopting
a decomposition approach. Therefore, its use could be easily
coupled within other decomposition-based MOEAs, such as
those reported in [16], [17]. Our proposed multi-objective
memetic algorithm was found to be competitive with respect
to the original MOEA/D and the MOEA/D+LS over a set
of test functions taken from the specialized literature, when
performing 10,000 and 30,000 fitness function evaluations,for
problems having two and three objectives, respectively. We
consider that the strategy employed to hybridize Nelder and
Mead’s method with MOEA/D was appropriate for dealing
with the MOPs adopted here.

As part of our future work, we intend to focus on designing
other mechanism that helps us decide whether the local search
engine will be triggered or not. We also plan to explore
different strategies for constructing the simplex. We believe
that the use of an appropriate simplex and a good hybridization
strategy could be a powerful combination for solving complex
and computationally expensive MOPs—as for example those
presented in [12]. Finally, we also aim to extend our hybrid ap-
proach to constrained MOPs using any variants of the nonlin-
ear simplex search algorithm for dealing with such problems.
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