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ABSTRACT Many existing Multi-objective Particle Swarm Optimizers (MOPSOs) may encounter
difficulties for a set of good approximated solutions when solving problems with more than three objectives.
One possible reason is that the diluted selection pressure causes MOPSOs to fail to generate a set of good
approximated Pareto solutions. In this paper, a new approach called the Hybrid Global Leader Selection
Strategy (HGLSS) is proposed to deal with many-objective problems more effectively. HGLSS provides two
global leader selection mechanisms: one for exploration and one for exploitation. Each particle (solution)
can choose one of these two leader selection schemes to identify its global best leader. An external archive is
adopted for maintaining the diversity of the found solutions and it contains the final solution reported at the
end of the run. The update of the external archive is based on both Pareto dominance and density estimation.
The performance of the proposed approach is compared with respect to nine state-of-the-art multi-objective
metaheuristics in solving several benchmark problems. Our results indicate that the proposed algorithm
generally outperforms the others in terms of Modified Inverted Generational Distance (IGD+) indicator.

INDEX TERMS Many-objective optimization; particle swarm optimization; leader selection

I. INTRODUCTION

Multi-objective optimization involves optimizing two or
more (normally conflicting) objective functions simultane-
ously and it frequently arises in many application domains
such as business and engineering [1]–[3]. In general, mini-
mizing a multi-objective optimization problem (MOP) with
K objectives can be stated as:

min F (x) = (f1(x), f2(x), f3(x), . . . , fK(x)) (1)

where x ∈ <M is an M -dimensional set of decision vari-
ables.

A solution is non-dominated if none of the objective
functions can be further improved without degrading some
of the other objective values. Solution x dominates solution
y, denoted by x ≺ y, if and only if fk(x) ≤ fk(y) for all
k = 1, 2, . . . ,K and k∗ exists such that fk∗(x) < fk∗(y).
Also, if no x′ exists in the decision space such that x′ ≺ x, x
is defined as a Pareto optimal solution (POS). The Pareto set

(PS) contains all POSs and its image (i.e., their corresponding
objective function values) is called the Pareto front (PF),
defined by PF = {F (x)|x ∈ PS}.

Over the past few decades, different Multi-objective evo-
lutionary algorithms (MOEAs) have been proposed and their
abilities in solving MOPs with few objectives (two or three)
have been shown [4]–[7]. However, several studies [8], [9]
have shown that the performance of most MOEAs (partic-
ularly those based on Pareto ranking) severely deteriorates
when dealing with problems having more than three objec-
tives (they are called many-objective optimization problems
(MaOPs)). As the number of objectives increases, the propor-
tion of non-dominated solutions increases sharply [10], and
thus the selection pressure provided by the Pareto optimal
relation is quickly diluted.

Some MOEAs have recently been proposed to handle
MaOPs. From among them, the multi-objective evolutionary
algorithm based on decomposition (MOEA/D) [11], [12] is
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the most popular. MOEA/D decomposes a MOP into a set of
single-objective sub-problems by using a scalarizing function
and these sub-problems are then simultaneously optimized. A
set of weight vectors must be assigned properly to get a set of
good approximated Pareto solutions. However, some studies
have shown that MOEA/D with fixed weight vectors may
not be able to approximate the whole Pareto front [13], [14].
Another popular approach is to make use of hypervolume-
based MOEAs [15]–[17], but this approach may not be
suitable for problems having more than five objectives [18]
due to the high computational cost involved in computing
exact hypervolume contributions.

Particle swarm optimization (PSO) is a population-based
metaheuristic inspired on the flight patterns of a flock of birds
[19], [20]. Over the years, a wide variety of Multi-Objective
Particle Swarm Optimizers (MOPSOs) have been proposed
[21]–[23]. The study from [24] analyzed the performance of
six popular MOPSOs over a set of benchmark problems. This
study showed that the Speed-constrained MOPSO (SMPSO)
[25] was able to outperform other MOPSOs in several MOPs
having 2 and 3 objectives, but this approach was not properly
tested on MaOPs.

There are, however, several proposals of MOPSOs for
properly dealing with MaOPs. For example, Britto and Pozo
[26] proposed the use of reference points to update the
archive to address the issue of scalability in MOPSOs when
solving MaOPs. They showed that the approximated Pareto
solutions of the proposed algorithm were close to the selected
reference points. On the other hand, Wickramasinghe and Li
[27] proposed a user-preference-based MOPSO which does
not rely on the use of dominance comparisons, but uses a
distance metric as its guidance method. This MOPSO is able
to converge close to the preferred regions, but such regions
have to be specified by the decision maker beforehand.

As described before, the main difficulty in MOPSOs is
the diluted selection pressure [10] that significantly affects
performance when the number of objectives increases. This
paper develops a new many-objective particle swarm opti-
mizer that can handle the convergence and diversity properly
at the same time by using a hybrid global leader selection
strategy (HGLSS). Moreover, an external archive is used
to maintain both the diversity of the algorithm and the ap-
proximated solutions. Our performance investigation shows
that the proposed algorithm outperforms other popular multi-
objective optimization algorithms in some benchmark many-
objective optimization problems in terms of the modified
inverted generational distance (IGD+) indicator.

The remainder of this paper is organized as follows. Sec-
tion II introduces a few preliminary concepts on particle
swarm optimization and multi-objective particle swarm opti-
mization. Section III presents our proposed algorithm called
MOPSO-HGLSS. Section IV shows the performance investi-
gation in four sub-sections. The first sub-section introduces a
performance measure called IGD+ [28] which is used in this
paper to compare our results with respect to those of other
approaches. The second sub-section discusses the parameters

settings in MOPSO-HGLSS. The third sub-section compares
our proposed HGLSS with respect to other leader selection
strategies under the framework of the MOPSO algorithm.
The last sub-section compares the performance of MOPSO-
HGLSS with respect to nine popular population-based meta-
heuristics (SMPSO [25], dMOPSO [29], MOPSOhv [30],
MaPSO [31], MOEA/D [32] NSGA-III [33], DBEA [34],
RVEA [35] and ARMOEA [36]), in terms of IGD+ with
different scalable MOPs (using 3, 5, 8 and 10 objectives).
Section V presents our conclusions and some possible paths
for future research.

II. PRELIMINARIES
A. PARTICLE SWARM OPTIMIZATION
PSO was originally proposed by James Kennedy and Russell
C. Eberhart in 1995 [19]. In PSO, a group of particles
(solutions) is randomly initialized within the valid ranges of
the decision variables. Then, the velocity of each particle is
initialized and the whole swarm starts its motion. At every
cycle, the movement of each particle is influenced by its
personal best position and the best global position in the
swarm. Let xti be the position of the ith particle at cycle t,
its velocity vti is updated as follows:

vt+1
i = ωvti + c1r1(xpb,i − xti) + c2r2(xgb − xti) (2)

where ω is the inertia weight; c1 and c2 are defined as
constants representing the cognitive and social factors, re-
spectively; r1 and r2 are two random (continuous) variables
defined within the range [0, 1]; xpb,i is the personal best po-
sition of the ith particle and xgb is the global best position in
the swarm. The personal best xpb,i of ith particle is replaced
by its new particle if its current fitness value is better, i.e., if
f(xti) < f(xpb,i), then xpb,i = xti. The global best of the
swarm xgb is identified by finding the one with the smallest
fitness value, i.e., xgb = arg min f(xti) for all i.

The position of the ith particle is updated by using the
following equation:

xt+1
i = xti + vt+1

i . (3)

B. MULTI-OBJECTIVE PARTICLE SWARM
OPTIMIZATION
In the standard PSO, the whole swarm tends to converge
to the global best leader because all particles in the swarm
share a common global best leader, but some modifications
are required for PSO to solve MOPs. The first modification
is an external archive, which is widely accepted for use
with a (predefined) fixed size as a means to store the non-
dominated solutions generated by the algorithm. Addition-
ally, the external archive should maintain a set of good non-
dominated solutions in terms of diversity and convergence.
The second modification is a global leader selection scheme,
which can be used to identify the global best leader for each
particle from the external archive. This mechanism is very
important in MOPSOs because it affects the flight trajectories
of particles and hence affects their convergence and diversity.
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Due to the importance of the leader selection scheme, a
variety of proposals are currently available (see [37]–[40]).
Among them, WSum [41], NWSum [42] and crowding dis-
tance [37] are the most popular ones. The scheme of WSum
was introduced for personal best selection by assigning a
higher weight to those criteria in which particle is already
relatively good. In [42], the author considered this scheme for
global best selection. For a particularM -dimensional particle
x ∈ <M with an archive member y ∈ Y where Y is the
set of all members in the archive, the weighted sum value
is calculated as follows and the archive member with the
smallest weighted sum value is chosen as the global leader
of that particle.

WSum(y, x) =

K∑
k=1

fk(x)∑J
j fj(x)

fk(y) (4)

The scheme of NWSum is another version of WSum whose
particles identify their global best leaders using (4) but with
the maximum weighted sum value. The scheme of Crowding
Distance (CD) was proposed in [43] to estimate the density
of solutions and they are assigned with a CD value. The
boundary solutions are assigned with infinity CD values.
Then, the solutions are sorted according to the CD values in
descending order. The top 5% of the sorted solutions will be
randomly selected as leaders. The aforementioned strategies
are also applied to select the personal best in MOPSOs [42].
Besides, various other personal best selection strategies are
proposed and some of them are widely used. In [44], the per-
sonal best is randomly selected from an external archive. This
approach is computationally efficient and favors diversity.
However, it may lead to a lack of convergence [42]. In [29],
[45], the personal best of each particle is updated if the new
aggregation value is better. Furthermore, mutation is widely
used to increase the exploratory capability of MOPSOs and
to prevent premature convergence.

III. MULTI-OBJECTIVE PARTICLE SWARM
OPTIMIZATION WITH HYBRID GLOBAL LEADER
SELECTION STRATEGY
A. MOTIVATION
As discussed previously, the global leader selection scheme
plays an important role which affects both the convergence
and the diversity of MOPSO and it is difficult to maintain
both when using a single global leader selection scheme,
especially when the number of objectives is large. Thus we
propose using a Hybrid Global Leader Selection Scheme
(HGLSS). Under our proposed scheme, two global leader
selection schemes are available for every particle to choose:
one is for exploration and the other one is for exploitation.
Each particle recognizes its global best based on one of these
two leader selection schemes. In this work, we propose the
use of two existing leader selection strategies for particles.
They are Euclidean Distance Strategy (EDS) [46] and Space
Expanding Strategy (SES) [47].

For exploitation, EDS is adopted to guide particles to the

closest archive members so that particles can reach their
leaders within a small number of generations. Under this
scheme, particles select their own global leaders from the ex-
ternal archive (this will be explained in Section III-B) based
on the Euclidean distance calculation. For K objectives, the
Euclidean distance (ED) of two solutions x1 and x2 is given
by:

ED(x1, x2) =

√√√√ K∑
k=1

(fk(x1)− fk(x2))2 (5)

To determine the global leader of a particle, the Euclidean
distance between the particle and all members in the external
archive is calculated and the archive member with the short-
est Euclidean distance (in objective space) is chosen as the
global leader of that particle, i.e.,

ED(y∗, x) ≤ ED(y, x) (6)

given that y = y1, y2, . . . , yn ∈ Y where Y is the set of
all members in the archive and y∗ is the global leader of a
particle where y∗ ∈ Y .

For exploration, SES is responsible for maintaining the
diversity of the MOPSO. SES attempts to push some particles
to the boundary leaders and new solutions are aimed to
be discovered close to the boundary leaders. In SES, the
objective to select a leader is random at the beginning. Then,
all external archive members are sorted according to their fit-
ness values using the selected objective. Finally, one archive
member is randomly selected from the top 5% of the sorted
archive [48], [49] and the selected member becomes the
global leader of the particle. This 5% is to weight the focus
away from the compromise solutions. Under SES, particles
in the swarm are randomly pushed toward to the boundary of
the external archive so that the spread of the particles can be
increased. Algorithm 1 shows the pseudocode of SES.

Algorithm 1 Pseudocode of SES

Input: External archive Y
1: Create a variable objIndex for holding the objective

index;
2: Randomly select one of the objectives, save the objective

index to objIndex;
3: Sort the external archive members according to objective
objIndex in ascending order of objective values;

4: for each particle i do
5: Randomly select a member from the top 5% of the

sorted archive as the global best xgb;
6: end for

Output: A global best xgb

In our proposed schemes, particles select their leaders from
EDS or SES. The selection is based on the probability ρ: A
random number between 0 and 1 is generated. If the random
number is less than ρ, SES is selected; otherwise EDS is
selected. To maintain the ability of exploitation, ρ cannot
be too large (e.g., 0.1); otherwise, there may not be enough
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particles to get enough solutions for achieving convergence.
Due to the importance of ρ, the effect of this parameter on
the overall performance will be investigated in Section IV-B.

B. EXTERNAL ARCHIVE
An external archive is required in MOPSO-HGLSS to store
a set of good approximated Pareto solutions. The external
archive has four main duties: 1) store new non-dominated
solutions; 2) remove solutions if they become dominated; 3)
select and remove archive members if the archive is full; and
4) maintain the diversity of archive members. In MOPSO-
HGLSS, two mechanisms have been designed to achieve
these duties: 1) Pareto Dominance Selection (PDS) (for the
first two duties), and 2) Neighbor Factor Selection (NFS) (for
the last two duties).

Algorithm 2 Pseudocode of the update of the external
archive
Input: Particles at cycle t, i.e., xti for all i; the external

archive Y ∗

1: for each particle xti do
2: insert_x=0;
3: for each archive member yj ∈ Y ∗ do
4: if xti ≺ yj then
5: Remove yj from Y ∗;
6: insert_x=1;
7: else if xti ⊀ yj then
8: if archive Y ∗ is not full then
9: insert_x=1;

10: else
11: Calculate the NFS values for each yj ∈ Y ∗;
12: Set the NFS values of boundary archive mem-

bers to infinity;
13: Remove the archive member with the smallest

NFS value;
14: insert_x=1;
15: end if
16: end if
17: end for
18: if insert_x==1 then
19: Insert xti to Y ∗;
20: end if
21: end for
Output: Y ∗

PDS is widely adopted in multi-objective evolutionary
algorithms (see e.g., [50]): if a new solution dominates at
least one archive member, such archive member(s) will be
removed and the new solution will be inserted into the
archive; otherwise, the new solution will be discarded. If the
new solution is incomparable (s1 and s2 are incomparable
if neither s1 ⊀ s2 nor s2 ⊀ s1, and s1 6= s2) with
the archive members (i.e., all archive members and the new
solution are non-dominated solutions) and the archive is
not full, the new solution will be added into the archive.
However, if the new solution is incomparable with the archive

members and the archive is full, an additional criteria which
estimates the density of the archive members based on the
Euclidean distance [42] (we call it NFS in this paper) is used
to determine which solution should be removed from the
archive. Note that the role of NFS is to maintain the diversity
of archive members. If b is the new solution, NFS removes a
solution with the smallest NF (Neighbor Factor) value among
all solutions where the NF value of a solution is defined as
follows:

NF(y) = ED(y1, y) + ED(y2, y) (7)

where ED(y1, y) ≤ ED(y2, y) ≤ ED(y′, y) for y, y1, y2 ∈
Y + b and y′ ∈ Y − y1, y2. The NF value of a solution indi-
cates the diversity of a solution among all archive members.
If the NF value of a solution is small, it means it is close to
its neighbors (i.e., y1 and y2) and thus the diversity is not
good. If this solution is removed, the diversity of all archive
members will increase. Note that the boundary members (i.e.,
solutions with the smallest fitness value(s) in one or more
objectives) will not be considered for removal because they
need to remain in the archive to maintain a well-distributed
Pareto front.

C. MUTATION OPERATOR
Mutation operators are widely used in MOPSOs to pre-
vent premature convergence and increase their exploratory
capabilities. Note that the mutation rate should not be too
high; otherwise, the overall performance of a MOPSO will
degrade. Our proposed algorithm adopts polynomial-based
mutation [51]. Let r be a random number uniformly dis-
tributed in [0, 1] and ηm be the index for polynomial-based
mutation, then, the ith particle to be mutated is calculated at
iteration t as follows:

x
′t
i = xti + ηq(x̄− x) (8)

where x̄, x are the upper and lower bounds of xti, ηq is defined
as:{

[2r + (1− 2r)(1− η1)ηm+1]
1

ηm+1 − 1, r ≤ 0.5

1− [2(1− r) + 2(r − 0.5)(1− η2)ηm+1]
1

ηm+1 , r > 0.5,

and
η1 =

xti − x
x̄− x

, η2 =
x̄− xti
x̄− x

.

D. THE FULL MOPSO-HGLSS ALGORITHM
Algorithm 3 shows the pseudocode of the full MOPSO-
HGLSS algorithm (i.e., HGLSS is implemented in the
MOPSO algorithm). At the beginning, the external archive is
initialized along with the position, speed and best locations
of all particles. Then, the swarm is evaluated and the archive
is updated. Non-dominated particles will be added into the
archive. If the external archive is full, an archive member or
a non-dominated particle will be removed based on their NF
values. The following procedure will be repeated until the
maximum number of generations is reached: particles update
their velocities based on their global best and their personal
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best values. The global best of each particle is determined
by using HGLSS while the personal best is updated if it is
dominated by the current position. If they are non-dominated
to each other, one of them will be randomly selected [42].
After updating the position of all particles, mutation occurs
with a designated probability to enhance the exploratory
ability of the proposed algorithm. To ensure particles moving
within the search space, bounds checking for all the particles
is conducted after updating the positions. If the decision
variable of a particle is smaller than the lower bound or larger
than the upper bound, then it will be assigned to the lower
or upper bound value. Finally, the evaluation of all particles
is carried out. Before proceeding to the next generation, the
external archive and the personal best of all particles are
updated.

Algorithm 3 Pseudocode of the MOPSO-HGLSS algorithm

Input: An empty external archive Y = []
1: Set the iteration counter t = 1;
2: for each particle i do
3: Initialize the position randomly within its allowable

boundaries;
4: Initialize personal best xpb,i = xti;
5: Initialize its speed to zero vti = 0;
6: Evaluation;
7: end for
8: Update the external archive Y ;
9: for t = 2 to the last generation do

10: for For each particle i do
11: Use HGLSS to generate xgb;
12: if xti ≺ xpb,i then
13: xpb,i = xti;
14: else if rand > 0.5 then
15: xpb,i = xti;
16: end if
17: Update the velocity using (2);
18: Update the position using (3);
19: end for
20: Mutation;
21: Boundary;
22: Evaluation;
23: Update the external archive Y ;
24: t = t+ 1;
25: end for
Output: Y ∗

IV. PERFORMANCE COMPARISONS
This section introduces the performance measures used in the
performance comparison, investigates the parameters settings
of HGLSS, and compares HGLSS with respect to other
popular algorithms.

A. PERFORMANCE MEASURES
As the convergence and the diversity of approximated Pareto
solutions are two main issues in multi-objective optimization,

we decided to adopt the Modified Inverted Generational
Distance (IGD+) indicator [28].

The idea of using an inverted form of the Generational
Distance indicator was apparently proposed first by Bosman
and Thierens [53], although it was first used with the name
of Inverted Generational Distance (IGD) in [52]. IGD is
able to measure both the convergence and the diversity of
the approximated Pareto solutions. Let PF ∗ be a set of
uniformly distributed points sampled from the true Pareto
front and Y ∗ be the set of approximated Pareto solutions.
Note that Y = Y ∗ at the end of the generations. IGD is
defined as:

IGD(Y ∗, PF ∗) =

∑
x∈PF∗ ED(b∗, x)

|PF ∗|
(9)

where ED(b∗, x) ≤ ED(y, x) for b∗ ∈ Y ∗ and all y ∈ Y ∗ and
|PF ∗| is the cardinality of PF ∗. The lower the IGD value is,
the better the approximated Pareto solutions will be.

IGD is one of the most popular indicators used for assess-
ing performance of multi-objective optimization algorithms
(see e.g., [33], [54]. However, IGD is Pareto non-compliant
[55], [56], which may cause misleading results. To make IGD
weakly Pareto compliant, the authors in [28] suggested taking
the Pareto dominance relation between the approximated
solutions and a reference set into account. This means that if
an approximated solution is dominated by a reference point,
the Euclidean distance is adopted in (9). If they are non-
dominated with respect to each other, the minimum distance
from the reference point to the region that is dominated
by the solution is calculated. The authors also showed that
the modified IGD is weakly Pareto compliant. For each test
instance in this paper, PF ∗ contains 100,000 Pareto optimal
points which were generated uniformly for calculating the
IGD+ value of the solutions generated by the algorithms
under evaluation.

B. PERFORMANCE INVESTIGATION OF HGLSS
This sub-section investigates the effect of ρ on the perfor-
mance of HGLSS in some optimization problems where ρ is
the probability that particles identify their global best using
either EDS or SES (i.e., our proposed HGLSS). DTLZ1 and
DTLZ2 are used: DTLZ1 has many local Pareto fronts and
it is used to test whether an algorithm can converge into the
true Pareto front, while DTLZ2 is used to investigate whether
an algorithm can maintain a good solution distribution. In
addition, WFG6, WFG7, WFG8 and WFG9 are also used. All
these tests were conducted using the mentioned test problems
with ten objectives. Each test was assigned a specified value
of ρ.

For each test, 30 independent runs were conducted. The
total number of evaluations was set to 80,000 for the DTLZ
test problems and 150,000 for the WFG test problems. The
size of the swarm and the external archive were set to 100.
The values of c1 and c2 were set to 2.5. The inertia weight
was set to 0.1, ηm = 20 and the mutation rate pm was set to
1/n, where n is the number of decision variables.
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(a) (b)

(c) (d)

(e) (f)

FIGURE 1: The mean IGD+ value vs. ρ for (a) DTLZ1, (b)
DTLZ2, (c) WFG6, (d) WFG7, (e) WFG8 and (f) WFG9 with
ten objectives.

Figure 1 shows the change of the mean IGD+ value for
the obtained solutions when the value of ρ changes from
0 to 1. The figure shows that the mean IGD+ value of the
approximated Pareto optimal solutions for each chosen test
problem is the lowest when ρ = 0.1. The result meets
the expectation discussed in Section III-A (i.e., EDS should
dominate SES). Otherwise, particles may possibly disturb
their original flights and the swarm may lose exploitation
ability for a large value of ρ. As ρ increases, the mean IGD+

value increases, which implies that the performance of the
convergence and the diversity of the algorithm get worse.

Based on the performance investigation of the mean IGD+

values on the selected test problems obtained by our proposed
algorithm with different probabilities, ρ = 0.1 is an appropri-
ate setting for HGLSS and it will be used later on for the rest
of our experiments.

C. PERFORMANCE COMPARISONS AMONG HGLSS
AND OTHER STATE-OF-THE-ART LEADER SELECTION
STRATEGIES
This sub-section compares the performance of HGLSS with
five leader selection strategies by using 11 scalable test prob-

lems with different numbers of objectives. The five strategies
are crowding distance (CD) [37], WSum [41], NWSum [42],
SES only and EDS only (both SES and EDS are mentioned
in Section III-A). All these leader selection strategies are
implemented under the framework of the MOPSO algo-
rithm. Thus six such MOPSO algorithms are called MOPSO-
HGLSS, MOPSO-CD, MOPSO-Wsum, MOPSO-NWSum
MOPSO-SES and MOPSO-EDS, respectively. For each of
the compared algorithms, the size of the swarm and the
external archive are all set to 100. The values of c1 and c2
are both set to 2.5. The inertia weight is set to 0.1, ηm = 20
and the mutation rate pm = 1/n. The 11 test problems are
(a) DTLZ1 and DTLZ2 from the DTLZ test suite [57], and
(b) WFG1 to WFG9 from the WFG test suite [58]. Note
that DTLZX-Y refers to the DTLZX test problem with Y
objectives. For example, DTLZ1-10 refers to DTLZ1 with
ten objectives. For all instances, 30 independent runs are
conducted. The maximum number of evaluations of each
algorithm is set to 80,000 for the DTLZ test problems and
to 150,000 for the WFG test problems. Table 1 shows the
mean (outside the parentheses) and the standard deviation
(inside the parentheses) of the algorithms in terms of the
mean IGD+ value for different MOPs with different numbers
of objectives. The best mean is shown in boldface. Wilcoxon
rank-sum test [59] at a 0.05 significance level was conducted
between the proposed algorithm and the five other MOPSOs
(with different leader selection schemes), respectively. In
Table 1, ‡, † and = are marked next to the values of an
algorithm in the tables to denote that the performance of the
algorithm is significantly better, worse or has no significant
difference with respect to that of MOPSO-HGLSS. Table 2
summarizes the results of the test in terms of IGD+. With
respect to IGD+, MOPSO-HGLSS obtained better results in
191 out of 220 performance comparisons. From the results,
we conclude that HGLSS performs better that the other com-
pared leader selection strategies with regards to exploration
and exploitation under the framework of MOPSO.

D. PERFORMANCE COMPARISONS OF HGLSS-MOPSO
WITH OTHER ALGORITHMS
This sub-section compares the performance of HGLSS-
MOPSO with respect to that of nine popular multi-
objective/many-objective algorithms using 19 scalable test
problems with different numbers of objectives (DTLZ1,
DTLZ2, WFG1 to WFG9, and MaF1 to MaF8 [60]). For all
instances, 30 independent runs were conducted. The maxi-
mum number of evaluations of each algorithm was set to
80,000 for the DTLZ test problems, 150,000 for the WFG
and MaF test problems.

The compared algorithms can be classified into two
groups: MOPSOs and MOEAs. The group of MOPSOs
consists of SMPSO [25], dMOPSO [29], MOPSOhv [30],
MaPSO [31] and the proposed algorithm, while the other
group consists of MOEA/D [32], NSGA-III [33], DBEA
[34], RVEA [35] and ARMOEA [36]. In [25], the au-
thors found that the speed of the particles in MOPSO was
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TABLE 1: Performance comparisons of MOPSOs with different leader selection strategies in terms of the mean IGD+ value

M MOPSO-HGLSS MOPSO-CD MOPSO-WSum MOPSO-NWSum MOPSO-SES MOPSO-EDS

W
FG

1

3 4.73E-1(3.8E-2) 5.21E-1(1.2E-2)† 4.85E-1(1.0E-2)= 4.79E-1(8.9E-3)= 4.79E-1(6.2E-3)= 4.59E-1(2.3E-2)‡
5 5.52E-1(3.6E-2) 6.58E-1(9.7E-3)† 6.34E-1(1.3E-2)† 6.12E-1(1.6E-2)† 6.27E-1(2.6E-3)† 5.60E-1(6.8E-3)=
8 1.31E+0(3.7E-2) 1.60E+0(7.2E-3)† 1.38E+0(8.2E-3)= 1.32E+0(1.5E-2)= 1.36E+0(6.2E-3)= 1.29E+0(3.8E-2)=
10 3.53E+0(5.9E-2) 4.16E+0(1.9E-2)† 4.11E+0(8.5E-3)† 4.08E+0(9.2E-3)† 4.05E+0(2.8E-2)† 3.50E+0(8.8E-2)=

W
FG

2

3 2.22E-2(3.3E-3) 2.01E-1(7.3E-3)† 1.56E-1(4.6E-3)† 2.10E-1(9.8E-3)† 2.52E-2(4.1E-3)† 3.12E-2(6.6E-3)†
5 5.41E-2(5.9E-3) 2.42E-1(6.1E-3)† 2.08E-1(6.9E-3)† 2.10E-1(8.2E-3)† 7.18E-2(7.4E-3)† 9.78E-2(5.4E-3)†
8 7.78E-2(8.2E-3) 4.55E-1(3.2E-2)† 4.11E-1(4.8E-2)† 3.67E-1(6.1E-2)† 1.63E-1(1.2E-2)† 3.46E-1(3.9E-2)†
10 1.36E-1(2.9E-2) 1.81E+0(1.2E-1)† 1.37E+0(2.8E-1)† 1.28E+0(1.7E-1)† 4.10E-1(3.7E-2)† 1.44E+0(1.9E-1)†

W
FG

3

3 3.87E-2(4.8E-3) 3.00E-1(2.4E-2)† 2.37E-1(4.7E-2)† 2.82E-1(4.3E-2)† 8.67E-2(6.8E-3)† 1.03E-1(1.8E-2)†
5 2.28E-1(4.8E-2) 1.65E+0(2.6E-1)† 9.65E-1(1.3E-1)† 1.32E+0(2.1E-1)† 5.18E-1(5.6E-2)† 4.51E-1(7.9E-2)†
8 4.60E-1(6.3E-2) 1.34E+1(2.2E+0)† 1.02E+1(1.1E+0)† 1.21E+1(3.1E+0)† 3.27E+0(1.0E+0)† 4.18E+0(1.3E+0)†
10 5.51E-1(8.2E-1) 4.93E+1(6.0E+0)† 3.99E+1(7.1E+0)† 4.01E+1(1.1E+1)† 1.91E+1(5.6E+0)† 2.16E+1(5.1E+0)†

W
FG

4

3 3.01E-2(5.8E-2) 1.23E-1(1.2E-2)† 1.25E-1(2.0E-2)† 1.17E-1(1.9E-2)† 1.01E-1(1.7E-2)† 6.26E-2(9.8E-3)†
5 9.98E-2(8.3E-2) 2.59E-1(3.5E-2)† 2.63E-1(3.9E-2)† 2.33E-1(5.1E-2)† 3.55E-1(4.8E-2)† 1.99E-1(2.8E-2)†
8 1.26E-1(1.0E-2) 4.63E-1(7.8E-2)† 4.13E-1(7.8E-2)† 4.37E-1(7.3E-2)† 6.59E-1(3.2E-2)† 4.30E-1(6.9E-2)†
10 1.51E-1(1.3E-2) 7.65E-1(9.9E-2)† 6.17E-1(1.3E-1)† 6.02E-1(7.1E-2)† 9.13E-1(7.9E-2)† 6.88E-1(8.2E-2)†

W
FG

5

3 4.38E-2(1.8E-3) 7.14E-2(7.9E-3)† 9.65E-2(6.6E-3)† 9.88E-1(1.0E-2)† 4.86E-2(1.1E-3)† 6.07E-2(4.6E-3)†
5 1.11E-1(4.9E-3) 1.53E-1(8.6E-3)† 1.50E-1(7.1E-3)† 1.58E-1(7.9E-3)† 1.16E-1(5.1E-3)= 1.39E-1(7.1E-3)†
8 1.53E-1(6.9E-3) 2.22E-1(1.9E-2)† 2.12E-1(1.7E-2)† 2.09E-1(3.1E-2)† 1.59E-1(8.1E-3)= 2.00E-1(2.0E-2)†
10 1.91E-1(9.1E-3) 2.51E-1(3.4E-2)† 2.36E-1(4.1E-2)† 2.34E-1(1.8E-2)† 1.98E-1(1.1E-2)= 2.04E-1(2.3E-2)†

W
FG

6

3 5.72E-2(2.1E-3) 6.53E-2(4.1E-3)† 5.80E-2(1.2E-3)= 5.76E-2(1.8E-3)= 5.74E-2(1.7E-3)= 5.74E-2(1.4E-3)=
5 1.20E-1(1.1E-2) 1.74E-1(2.8E-2)† 1.39E-1(1.1E-2)† 1.43E-1(1.6E-2)† 1.18E-1(9.3E-3)= 1.20E-1(1.3E-2)=
8 1.52E-1(9.6E-3) 2.63E-1(2.9E-2)† 2.53E-1(4.3E-2)† 2.08E-1(1.1E-2)† 2.15E-1(4.6E-2)† 2.10E-1(6.1E-2)†
10 1.66E-1(9.8E-3) 2.99E-1(3.7E-2)† 2.62E-1(2.1E-2)† 2.29E-1(2.0E-2)† 2.46E-1(1.6E-2)† 2.35E-1(2.5E-2)†

W
FG

7

3 2.88E-2(8.7E-4) 1.66E-1(1.1E-2)† 1.73E-1(1.9E-2)† 1.48E-1(1.2E-2)† 7.01E-2(1.6E-2)† 6.00E-2(5.6E-3)†
5 9.92E-2(8.3E-3) 2.88E-1(2.1E-2)† 2.79E-1(2.3E-2)† 2.54E-1(2.7E-2)† 2.11E-1(6.8E-3)† 1.84E-1(9.9E-3)†
8 1.66E-1(9.8E-3) 4.01E-1(2.9E-2)† 3.68E-1(3.3E-2)† 3.58E-1(3.1E-2)† 3.00E-1(2.1E-2)† 2.21E-1(1.8E-2)†
10 1.78E-1(9.3E-3) 4.99E-1(3.1E-2)† 4.68E-1(3.7E-2)† 4.36E-1(2.7E-2)† 3.52E-1(1.9E-2)† 2.51E-1(1.6E-2)†

W
FG

8

3 6.48E-2(4.1E-3) 1.32E-1(1.3E-2)† 1.75E-1(6.8E-3)† 1.69E-1(7.1E-3)† 1.01E-1(1.1E-2)† 9.76E-2(6.5E-3)†
5 1.18E-1(9.8E-3) 1.85E-1(1.9E-2)† 1.63E-1(7.9E-3)† 1.59E-1(6.5E-3)† 2.03E-1(8.4E-3)† 1.47E-1(9.1E-3)†
8 1.71E-1(7.6E-3) 2.35E-1(2.3E-2)† 2.21E-1(1.9E-2)† 2.24E-1(1.8E-2)† 2.81E-1(7.3E-3)† 2.12E-1(5.5E-3)†
10 2.02E-1(9.2E-3) 2.91E-1(2.1E-2)† 2.77E-1(3.6E-2)† 2.80E-1(2.0E-2)† 3.38E-1(1.5E-2)† 2.48E-1(1.3E-2)†

W
FG

9

3 4.39E-2(3.1E-3) 5.28E-2(1.1E-2)† 3.76E-2(1.2E-3)‡ 4.23E-2(2.8E-3)= 4.40E-2(2.6E-3)= 4.37E-2(1.7E-3)=
5 1.08E-1(9.8E-3) 1.76E-1(4.8E-2)† 1.26E-1(1.4E-2)† 1.24E-1(1.1E-2)† 1.05E-1(8.5E-3)= 1.07E-1(9.1E-3)=
8 5.46E-1(2.1E-2) 9.01E-1(2.7E-1)† 6.04E-1(5.2E-2)† 6.48E-1(2.1E-1)† 5.43E-1(2.3E-2)= 5.48E-1(3.1E-2)=
10 1.38E+0(1.5E-2) 2.68E+0(9.5E-1)† 1.56E+0(6.8E-1)† 1.60E+0(8.1E-1)† 1.35E+0(1.8E-2)= 1.38E+0(1.2E-2)=

D
T

L
Z

1 3 3.29E-2(7.9E-4) 3.51E+1(1.4E+1)† 3.89E+1(1.6E+1)† 4.11E+1(1.0E+1)† 1.20E+0(4.8E+0)† 5.81E-2(5.7E-3)†
5 9.13E-2(3.4E-3) 3.57E+1(1.2E+1)† 4.11E+1(1.0E+1)† 3.68E+1(1.1E+1)† 5.21E+0(7.0E+0)† 1.21E-1(1.3E-2)†
8 1.54E-1(6.5E-3) 3.66E+1(1.1E+1)† 4.18E+1(1.1E+1)† 3.43E+1(1.2E+1)† 9.28E+0(9.1E+0)† 2.27E-1(1.1E-1)†
10 1.86E-1(1.2E-2) 4.10E+1(1.1E+1)† 4.32E+1(7.4E+0)† 3.42E+1(1.2E+1)† 7.71E+0(1.0E+1)† 2.87E-1(3.5E-2)†

D
T

L
Z

2 3 2.81E-2(3.1E-3) 7.58E-2(7.9E-3)† 1.22E-1(2.1E-2)† 9.79E-2(3.1E-2)† 4.82E-2(3.0E-3)† 3.51E-2(2.8E-3)†
5 1.35E-1(9.1E-2) 3.01E-1(1.4E-2)† 3.07E-1(1.6E-2)† 3.13E-1(2.8E-2)† 2.54E-1(3.7E-2)† 1.53E-1(2.3E-2)†
8 2.51E-1(2.1E-2) 4.99E-1(2.1E-2)† 5.38E-1(2.3E-2)† 4.81E-1(3.1E-2)† 4.26E-1(2.6E-2)† 3.04E-1(2.9E-2)†
10 3.49E-1(1.9E-2) 5.71E-1(2.6E-2)† 5.99E-1(3.1E-2)† 5.94E-1(3.6E-2)† 5.68E-1(2.7E-2)† 3.91E-1(2.1E-2)†

TABLE 2: Summary of the Wilcoxon rank-sum test results for the selected leader selection strategies with respect to the mean
IGD+ value.

MOPSO-CD MOPSO-WSum MOPSO-NWSum MOPSO-SES MOPSO-EDS

† 44 40 40 33 34
‡ 0 1 0 0 1
= 0 3 4 11 9

†, ‡ and = denote the number of times the performance of the corresponding algorithm is significantly better, worse or has no
significant difference with respect to that of the proposed algorithm, respectively.
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sometimes too high, making the particles move directly
towards the boundaries. To tackle this problem, the au-
thors presented a modified MOPSO algorithm called Speed-
constrained Multi-objective PSO (SMPSO) that limits the
velocities of the particles. dMOPSO uses decomposition
to select leaders and update the external archive. In [30],
the authors proposed a hypervolume-based MOPSO called
MOPSOhv. This algorithm uses the hypervolume contribu-
tion of the archived solutions for selecting the global best and
the personal best for every particle in the swarm. In [31], the
particle swarm optimizer with the use of scalar projections,
is extended for many-objective optimization. MOEA/D is a
popular decomposition-based MOEA proposed by Li and
Zhang [32]. In MOEA/D, a MOP is decomposed into a set
of single-objective problems through the use of a scalar-
izing function, and these sub-problems are simultaneously
optimized using neighborhood search. NSGA-III, DBEA
and RVEA are decomposition-based algorithms which deal
with many-objective problems, whereas ARMOEA is an
indicator-based algorithm for many-objective optimization.

For SMPSO, both the swarm size and the archive size are
set to 100. The inertia weight is set to 0.1. The values of
c1 and c2 are assigned randomly between 1.5 and 2.0. The
mutation rate is set to 1/n. For dMOPSO, its inertia weight
is assigned randomly between 0.1 and 0.4. The values of
c1 and c2 are assigned randomly between 1.5 and 2.0. The
swarm size is set to 100 and the age threshold is set to 2. For
MOPSOhv, both the swarm size and the archive size are set to
100. The inertia weight is set to 0.4. The values of c1 and c2
are set to 1.0. The mutation rate is set to 0.5. MOEA/D uses
the differential evolution crossover. The crossover probability
and the differential weight are set to 1.0 and 0.5, respectively.
The neighborhood size is set to 20. The population size of
NSGA-III, DBEA and RVEA are set to 105. The population
size of MaPSO is set to 92. For ARMOEA, the population
size is set to 105. In HGLSS, the size of the swarm and
external archive are set to 100. The values of c1 and c2 are
set to 2.5. The inertia weight is set to 0.1. The mutation rate
is set to 1/n and its distribution index is set to 20.

Figures 2 to 7 show some approximated Pareto fronts of
the median run produced by the compared algorithms for
different MOPs (with three objectives), whereas Figures 8
to 18 show the parallel coordinates of Pareto fronts produced
by the compared algorithms for different MOPs (with 10
objectives). Tables 3 and 5 show the mean (outside the paren-
theses) and the standard deviation (inside the parentheses) of
the selected algorithms in terms of the mean IGD+ value
for different MOPs with different numbers of objectives.
The best mean is shown in boldface. The Wilcoxon rank-
sum test at a 0.05 significance level was conducted between
the proposed algorithm and the nine popular multi-objective
optimization algorithms that we selected, respectively. In
Tables 3 and 5, †, ‡ and = are marked next to the values of an
algorithm in the tables to denote that the performance of the
algorithm is significantly better, worse or has no significant
difference with respect to that of MOPSO-HGLSS.

WFG1 is separable and unimodal. Its Pareto optimal front
is both concave and convex. In Table 3, it is shown that
MOPSO-HGLSS always outperforms SMPSO, dMOPSO
and MOPSOhv when WFG1 is scaled from three to ten ob-
jectives (3, 5, 8 and 10 objectives) in terms of the mean IGD+

value. However, MaPSO and ARMOEA outperform the pro-
posed algorithm. MOEA/D performs better than MOPSO-
HGLSS in WFG1-3 but it is outperformed when the number
of objectives is 5, 8 and 10. For DBEA, it outperforms
the proposed algorithm when using 3 and 8 objectives, but
is outperformed when the number of objectives is 10. For
NSGA-III, it outperforms the proposed algorithm when the
problem has 3 objectives, but it is outperformed when the
number of objectives is 5, 8 and 10. For RVEA, it has sim-
ilar performance with the proposed algorithm when using 3
objectives, while the proposed algorithm outperforms RVEA
when the number of objectives is 5, 8 and 10.

The Pareto optimal front of WFG2 is disconnected and
convex. Figure 2 shows the approximations of the true Pareto
front of this problem produced by DBEA, NSGA-III, RVEA,
ARMOEA and our proposed algorithm. Figure 9 shows how
both SMPSO and our proposed algorithm can generate well-
distributed Pareto fronts. Regarding the mean IGD+ value,
our proposed algorithm performs better than the others when
the problem is scaled up to 8 and 10 objectives.

The Pareto optimal front of WFG3 is degenerated and
linear. Note that MOPSO-HGLSS performs better than
SMPSO, MaPSO, DBEA and ARMOEA when WFG3 was
scaled from 3 to 10 objectives. Although the performance of
MOPSO-HGLSS is worse than that of dMOPSO, MOPSOhv,
MOEA/D, NSGA-III and RVEA in some test instances, it
outperforms them when the problem is scaled up to 8 and 10
objectives.

WFG4 is multimodal and its Pareto optimal front is con-
cave. It should be noted that our proposed algorithm outper-
forms MaPSO and ARMOEA when the problem is scaled
from three to ten objectives in terms of the mean IGD+

value. DBEA and RVEA outperform the proposed algorithm
when the problem has 3 and 5 objectives, but they are outper-
formed when the problem has 8 and 10 objectives. Besides,
our proposed algorithm outperforms dMOPDO, MOPSOhv,
MOEA/D and NSGA-III when the problem has 8 and 10
objectives. Figure 11 shows that the performance of our
proposed algorithm improves when the problem is scaled up
to 10 objectives.

WFG5 is deceptive and separable. Its Pareto optimal front
is concave. Regarding IGD+, our proposed algorithm per-
forms better than SMPSO, dMOPSO, MOPSOhv, MaPSO
and MOEA/D when the problem is scaled from 3 to 10
objectives in terms of mean IGD+ value. It also outperforms
DBEA and NSGA-III when the problem has 10 objectives.
Note that RVEA has similar performance than our proposed
algorithm when the problem has 3 and 10 objectives. Al-
though Figure 4 shows that DBEA, NSGA-III, RVEA and
ARMOEA produce better-distributed Pareto fronts than our
proposed algorithm, Figure 12 shows that the performance of
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

FIGURE 2: Pareto fronts produced by (a) MOPSO-HGLSS, (b) SMPSO, (c) dMOPSO, (d) MOPSOhv, (e) MaPSO, (f) MOEA/D,
(g) DBEA, (h) NSGA-III, (i) RVEA and (j) ARMOEA on problem WFG2-3, respectively.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

FIGURE 3: Pareto fronts produced by (a) MOPSO-HGLSS, (b) SMPSO, (c) dMOPSO, (d) MOPSOhv, (e) MaPSO, (f) MOEA/D,
(g) DBEA, (h) NSGA-III, (i) RVEA and (j) ARMOEA on problem WFG4-3, respectively.

our proposed algorithm improves when the problem is scaled
up to 10 objectives. Additionally, Table 3 shows that our
proposed algorithm obtains the smallest IGD+ value when
the problem has 10 objectives.

WFG6 is non-separable and unimodal. Its Pareto optimal
front is concave in shape. The performance of our pro-
posed algorithm is not satisfactory when the problem has
3 and 5 objectives, respectively. However, as the problem
is scaled up, MOPSO-HGLSS outperforms the other algo-
rithms in terms of IGD+. Similar to WFG5, Figure 5 shows
that DBEA, NSGA-III, RVEA and ARMOEA can generate

better-distributed Pareto fronts than our proposed algorithm.
However, Figure 13 shows that the performance of our pro-
posed algorithm improves when the problem is scaled up to
10 objectives. Additionally, Table 3 shows that our proposed
algorithm obtains the smallest IGD+ value when the problem
has 10 objectives.

WFG7 is separable, unimodal and parameter dependent.
Its Pareto optimal front is concave. Regarding IGD+, our pro-
posed approach outperforms the compared algorithm except
for NSGA-III and RVEA. RVEA has a similar performance
to that of our proposed algorithm when the problem has 3

VOLUME 4, 2016 9
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

FIGURE 4: Pareto fronts produced by (a) MOPSO-HGLSS, (b) SMPSO, (c) dMOPSO, (d) MOPSOhv, (e) MaPSO, (f) MOEA/D,
(g) DBEA, (h) NSGA-III, (i) RVEA and (j) ARMOEA on problem WFG5-3, respectively.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

FIGURE 5: Pareto fronts produced by (a) MOPSO-HGLSS, (b) SMPSO, (c) dMOPSO, (d) MOPSOhv, (e) MaPSO, (f) MOEA/D,
(g) DBEA, (h) NSGA-III, (i) RVEA and (j) ARMOEA on problem WFG6-3, respectively.

and 5 objectives. Figure 14 shows that both SMPSO and
our proposed algorithm can generate well-distributed Pareto
fronts when the problem has 10 objectives.

WFG8 is unimodal and parameter dependent but non-
separable. Its Pareto optimal front is concave. Although the
performance of our proposed algorithm is not satisfactory
in WFG8-3, WFG8-5 and WFG8-8 in terms of IGD+, its
performance improves when the problem is scaled up to 10
objectives. As shown in Figure 15, our proposed algorithm is
not the best optimizer whereas SMPSO can generate a well-
distributed Pareto front when the problem has 10 objectives.

WFG9 is non-separable, multimodal, parameter dependent
and deceptive. Its Pareto optimal front is concave. Table 3
shows that the scalability of our proposed approach is not as
good as that of the other algorithms under WFG9 in terms
of mean IGD+ value. Furthermore, Figure 16 shows that
SMPSO can generate a well-distributed Pareto front when the
problem has 10 objectives.

DTLZ1 is multimodal and its Pareto optimal front is
linear. Regarding the mean IGD+ value, our proposed ap-
proach performs better than SMPSO, dMOPSO, MOPSOhv,
MOEA/D and DBEA when the problem is scaled from 3 to
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

FIGURE 6: Pareto fronts produced by (a) MOPSO-HGLSS, (b) SMPSO, (c) dMOPSO, (d) MOPSOhv, (e) MaPSO, (f) MOEA/D,
(g) DBEA, (h) NSGA-III, (i) RVEA and (j) ARMOEA on problem DTLZ1-3, respectively.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

FIGURE 7: Pareto fronts produced by (a) MOPSO-HGLSS, (b) SMPSO, (c) dMOPSO, (d) MOPSOhv, (e) MaPSO, (f) MOEA/D,
(g) DBEA, (h) NSGA-III, (i) RVEA and (j) ARMOEA on problem DTLZ2-3, respectively.

10 objectives. For NSGA-III, its performance is worse than
that of our proposed algorithm when the problem has 3, 5
and 8 objectives. For RVEA, it has a similar performance as
our proposed algorithm when the problem has 3, 5, 8 and 10
objectives. However, MaPSO and ARMOEA outperform our
proposed algorithm. Both Figures 6 and 17 show that RVEA
and ARMOEA work perform in this problem.

DTLZ2 is unimodal and its Pareto optimal front is
concave. Note that MOPSO-HGLSS performs better than
SMPSO and MOPSOhv when the problem is scaled from
3 to 10 objectives in terms of mean IGD+ value. How-

ever, dMOPSO and MOEA/D perform better than MOPSO-
HGLSS for DTLZ2-5, DTLZ2-8 and DTLZ2-10. For
MaPSO and ARMOEA, they are outperformed by our pro-
posed algorithm in terms of mean IGD+ values. Regarding
DBEA, it outperforms our proposed algorithm for DTLZ2-3
but it is outperformed when the number of objectives is 5 and
10 in terms of mean IGD+ value. For NSGA-III and RVEA,
they outperform our proposed algorithm when the problem
has 3, 5, 8 and 10 objectives. Figure 18 shows that RVEA
performs well in this problem.

MaF1 is a modified version of DTLZ1 which has an
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

FIGURE 8: The parallel coordinates of Pareto fronts produced by (a) MOPSO-HGLSS, (b) SMPSO, (c) dMOPSO, (d) MOPSOhv,
(e) MaPSO, (f) MOEA/D, (g) DBEA, (h) NSGA-III, (i) RVEA and (j) ARMOEA on problem WFG1-10, respectively.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

FIGURE 9: The parallel coordinates of Pareto fronts produced by (a) MOPSO-HGLSS, (b) SMPSO, (c) dMOPSO, (d) MOPSOhv,
(e) MaPSO, (f) MOEA/D, (g) DBEA, (h) NSGA-III, (i) RVEA and (j) ARMOEA on problem WFG2-10, respectively.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

FIGURE 10: The parallel coordinates of Pareto fronts produced by (a) MOPSO-HGLSS, (b) SMPSO, (c) dMOPSO, (d)
MOPSOhv, (e) MaPSO, (f) MOEA/D, (g) DBEA, (h) NSGA-III, (i) RVEA and (j) ARMOEA on problem WFG3-10, respectively.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

FIGURE 11: The parallel coordinates of Pareto fronts produced by (a) MOPSO-HGLSS, (b) SMPSO, (c) dMOPSO, (d)
MOPSOhv, (e) MaPSO, (f) MOEA/D, (g) DBEA, (h) NSGA-III, (i) RVEA and (j) ARMOEA on problem WFG4-10, respectively.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

FIGURE 12: The parallel coordinates of Pareto fronts produced by (a) MOPSO-HGLSS, (b) SMPSO, (c) dMOPSO, (d)
MOPSOhv, (e) MaPSO, (f) MOEA/D, (g) DBEA, (h) NSGA-III, (i) RVEA and (j) ARMOEA on problem WFG5-10, respectively.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

FIGURE 13: The parallel coordinates of Pareto fronts produced by (a) MOPSO-HGLSS, (b) SMPSO, (c) dMOPSO, (d)
MOPSOhv, (e) MaPSO, (f) MOEA/D, (g) DBEA, (h) NSGA-III, (i) RVEA and (j) ARMOEA on problem WFG6-10, respectively.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

FIGURE 14: The parallel coordinates of Pareto fronts produced by (a) MOPSO-HGLSS, (b) SMPSO, (c) dMOPSO, (d)
MOPSOhv, (e) MaPSO, (f) MOEA/D, (g) DBEA, (h) NSGA-III, (i) RVEA and (j) ARMOEA on problem WFG7-10, respectively.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

FIGURE 15: The parallel coordinates of Pareto fronts produced by (a) MOPSO-HGLSS, (b) SMPSO, (c) dMOPSO, (d)
MOPSOhv, (e) MaPSO, (f) MOEA/D, (g) DBEA, (h) NSGA-III, (i) RVEA and (j) ARMOEA on problem WFG8-10, respectively.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

FIGURE 16: The parallel coordinates of Pareto fronts produced by (a) MOPSO-HGLSS, (b) SMPSO, (c) dMOPSO, (d)
MOPSOhv, (e) MaPSO, (f) MOEA/D, (g) DBEA, (h) NSGA-III, (i) RVEA and (j) ARMOEA on problem WFG9-10, respectively.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

FIGURE 17: The parallel coordinates of Pareto fronts produced by (a) MOPSO-HGLSS, (b) SMPSO, (c) dMOPSO, (d)
MOPSOhv, (e) MaPSO, (f) MOEA/D, (g) DBEA, (h) NSGA-III, (i) RVEA and (j) ARMOEA on problem DTLZ1-10, respectively.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

FIGURE 18: The parallel coordinates of Pareto fronts produced by (a) MOPSO-HGLSS, (b) SMPSO, (c) dMOPSO, (d)
MOPSOhv, (e) MaPSO, (f) MOEA/D, (g) DBEA, (h) NSGA-III, (i) RVEA and (j) ARMOEA on problem DTLZ2-10, respectively.

inverted Pareto optimal front which is linear. Regarding the
mean IGD+ value, our proposed algorithm performs better
than SMPSO, dMOPSO, MOPSOhv, MOEA/D, DBEA and
RVEA when the problem is scaled from 3 to 10 objectives,
while MaPSO outperforms our proposed algorithm. Regard-
ing NSGA-III, its performance is worse than that of our
proposed algorithm when the problem has 3 and 5 objectives.
For ARMOEA, it outperforms our proposed algorithm when
the problem has 3 and 10 objectives.

MaF2 is a modified version of DTLZ2 which has a con-
cave Pareto optimal front. Regarding the mean IGD+ value,
MaPSO is the winner in this test problem as it obtains
the smallest IGD+ values when the problem is scaled from
3 to 10 objectives. Our proposed algorithm outperforms
SMPSO and MOPSOhv for MaF2-3 but it is outperformed
when the number of objectives is 5, 8 and 10. Although
dMOPSO, MOEA/D, DBEA, NSGA-III and RVEA outper-
form the proposed algorithm for MaF2-3, the performance
of the proposed algorithm improves when the problem has

10 objectives. For ARMOEA, it outperforms the proposed
algorithm when the problem has 3, 5 and 8 objectives, while
the two algorithms have a similar performance when the
problem has 10 objectives.

MaF3 is multimodal. It is a modified version of DTLZ3
but with a convex Pareto optimal front. Regarding the mean
IGD+ value, MOPSO-HGLSS performs better than SMPSO,
dMOPSO, MOPSOhv, DBEA and NSGA-III when it was
scaled from 3 to 10 objectives. Although the performance of
MOPSO-HGLSS is worse than that of MaPSO for MaF3-
3, it outperforms them when the problem has 5, 8 and 10
objectives. Furthermore, it should be noticed that MOEA/D,
RVEA and ARMOEA perform better for MaF3-10.

MaF4 is multimodal. It is a modified of DTLZ3. Its Pareto
optimal front is inverted and badly scaled. Regarding the
mean IGD+ value, our proposed algorithm outperforms the
others when the problem has 3, 5, 8 and 10 objectives.

MaF5 is modified from DTLZ4. Its Pareto optimal front
is convex and badly scaled. Similar to MaF4, our proposed
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TABLE 3: Performance comparisons of different algorithms in terms of the mean IGD+ value for DTLZ1, DTLZ2, and WFG1 to
WFG9

M MOPSO-HGLSS SMPSO dMOPSO MOPSOhv MaPSO MOEA/D DBEA NSGA-III RVEA ARMOEA

W
FG

1

3 4.73E-1(3.8E-2) 6.06E-1(7.2E-3)† 5.29E-1(5.8E-3)† 6.81E-1(4.2E-2)† 2.21E-1(8.2E-2)‡ 4.30E-1(1.3E-2)‡ 3.91E-1(2.0E-2)‡ 4.36E-1(2.6E-2)‡ 4.68E-1(4.6E-2)= 1.47E-1(9.0E-4)‡
5 5.52E-1(3.6E-2) 7.44E-1(6.0E-3)† 6.85E-1(8.1E-3)† 7.02E-1(1.8E-1)† 3.55E-1(8.8E-2)‡ 5.90E-1(1.1E-2)† 5.43E-1(7.4E-2)= 7.68E-1(3.2E-2)† 6.10E-1(1.9E-2)† 4.74E-1(5.2E-3)‡
8 1.31E+0(3.7E-2) 1.62E+0(1.0E-2)† 1.73E+0(3.8E-2)† 1.50E+0(5.6E-2)† 7.03E-1(2.6E-1)‡ 1.43E+0(3.5E-2)† 9.96E-1(5.7E-2)‡ 1.70E+0(5.9E-2)† 1.42E+0(6.0E-2)† 1.06E+0(2.9E-2)‡
10 3.53E+0(5.9E-2) 4.20E+0(2.0E-2)† 4.25E+0(6.1E-2)† 3.68E+0(1.9E-1)† 8.09E-1(2.4E-1)‡ 3.86E+0(2.3E-1)† 4.27E+0(2.4E+0)† 4.18E+0(1.7E-1)† 3.67E+0(1.8E-1)† 1.59E+0(4.7E-2)‡

W
FG

2

3 2.22E-2(3.3E-3) 5.11E-2(8.3E-3)† 2.69E-2(3.3E-3)† 3.29E-2(8.6E-3)† 1.28E-1(7.9E-3)† 2.18E-2(2.7E-3)= 3.45E-2(3.1E-3)† 2.87E-2(3.0E-3)† 3.37E-2(3.2E-3)† 1.65E-1(8.7E-4)†
5 5.41E-2(5.9E-3) 1.71E-1(2.6E-2)† 5.50E-2(3.6E-3)= 4.42E-2(1.3E-2)‡ 3.44E-1(1.1E-2)† 5.09E-2(1.2E-2)‡ 1.12E-1(3.7E-2)† 9.75E-2(3.5E-2)† 5.50E-2(8.4E-3)= 5.04E-1(2.7E-3)†
8 7.78E-2(8.2E-3) 2.04E-1(4.0E-2)† 1.14E-1(2.0E-2)† 8.39E-2(2.1E-2)† 4.01E-1(9.0E-3)† 1.20E-1(3.5E-2)† 2.99E-1(9.2E-2)† 1.48E-1(4.9E-2)† 1.74E-1(5.4E-2)† 1.09E+0(2.7E-2)†
10 1.36E-1(2.9E-2) 5.16E-1(1.1E-1)† 1.75E-1(4.5E-2)† 1.49E-1(2.1E-2)† 4.94E-1(9.2E-3)† 3.46E-1(1.3E-1)† 3.41E-1(7.0E-2)† 1.77E-1(6.5E-2)† 6.65E-1(2.2E-1)† 1.37E+0(2.8E-2)†

W
FG

3

3 3.87E-2(4.8E-3) 7.39E-2(1.6E-2)† 3.37E-2(5.1E-3)‡ 1.56E-2(8.8E-3)‡ 1.01E-1(3.2E-3)† 1.29E-2(1.2E-3)‡ 4.38E-2(7.0E-3)† 3.87E-2(6.0E-3)= 8.14E-2(9.0E-3)† 1.11E-1(8.0E-3)†
5 2.28E-1(4.8E-2) 4.99E-1(3.7E-2)† 2.27E-1(2.5E-2)= 2.41E-2(5.0E-3)‡ 4.62E-1(1.2E-2)† 1.06E-1(2.7E-2)‡ 5.00E-1(2.6E-4)† 1.70E-1(2.7E-2)‡ 1.89E-1(3.6E-2)‡ 6.83E-1(4.9E-2)†
8 4.60E-1(6.3E-2) 4.50E+0(6.2E-1)† 7.06E-1(2.0E-1)† 1.33E+0(4.0E-1)† 9.18E-1(1.4E-2)† 5.25E-1(9.5E-2)† 5.13E-1(1.7E-2)† 2.19E+0(8.2E-1)† 1.75E+1(6.1E+0)† 2.27E+0(1.7E-1)†
10 5.51E-1(8.2E-2) 1.80E+1(3.2E+0)† 2.66E+0(1.4E+0)† 7.08E+0(1.8E+0)† 1.17E+0(1.0E-2)† 8.77E+0(3.9E+0)† 7.38E-1(1.7E-1)† 8.75E+0(2.9E+0)† 1.36E+2(3.9E+1)† 3.32E+0(1.6E-1)†

W
FG

4

3 3.01E-2(5.8E-3) 5.52E-2(1.9E-3)† 4.73E-2(1.3E-3)† 4.97E-2(1.0E-2)† 2.02E-1(2.8E-3)† 4.44E-2(4.0E-3)† 2.78E-2(1.2E-3)‡ 2.10E-2(2.8E-4)‡ 2.36E-2(8.6E-4)‡ 2.21E-1(3.5E-5))†
5 9.98E-2(8.3E-3) 9.31E-2(6.5E-3)‡ 1.05E-1(5.0E-3)= 3.51E-1(2.8E-1)† 1.03E+0(1.9E-2)† 8.69E-2(9.8E-3)= 4.90E-2(1.3E-2)‡ 1.55E-1(3.7E-2)† 5.98E-2(7.5E-3)‡ 1.23E+0(6.4E-4)†
8 1.26E-1(1.0E-2) 1.29E-1(9.0E-3)= 4.26E-1(1.4E-1)† 3.79E-1(2.5E-1)† 2.49E+0(3.3E-2)† 2.04E-1(9.7E-2)† 1.52E-1(7.2E-2)† 2.76E-1(1.0E-1)† 4.15E-1(1.5E-1)† 3.54E+0(7.2E-3)†
10 1.51E-1(1.3E-2) 1.56E-1(1.4E-2)= 5.75E-1(1.4E-1)† 4.36E-1(2.2E-1)† 3.42E+0(3.3E-2)† 1.86E-1(5.2E-2)† 1.80E-1(6.7E-2)† 5.27E-1(1.1E-1)† 6.88E-1(3.0E-1)† 5.88E+0(1.3E-2)†

W
FG

5

3 4.38E-2(1.8E-3) 6.01E-2(3.9E-3)† 5.70E-2(2.4E-4)† 8.44E-2(1.6E-2)† 1.98E-1(7.6E-3)† 5.81E-2(2.2E-3)† 4.29E-2(1.1E-3)= 4.16E-2(1.7E-4)‡ 4.43E-2(1.9E-4)= 4.20E-2(1.1E-5)‡
5 1.11E-1(4.9E-3) 1.46E-1(5.5E-3)† 1.23E-1(3.7E-3)† 2.05E-1(1.1E-1)† 9.96E-1(2.2E-2)† 1.17E-1(6.4E-3)† 3.86E-1(1.1E-3)† 1.28E-1(1.6E-2)† 6.97E-2(6.8E-4)‡ 1.22E+0(1.3E-4)†
8 1.53E-1(6.9E-3) 1.73E-1(1.2E-2)† 2.08E-1(4.2E-2)† 2.58E-1(1.4E-1)† 2.28E+0(2.7E-2)† 2.69E-1(9.7E-2)† 1.05E-1(5.2E-3)‡ 1.88E-1(3.9E-2)† 1.23E-1(1.8E-3)‡ 3.53E+0(7.4E-3)†
10 1.91E-1(9.1E-3) 2.02E-1(8.7E-3)† 2.34E-1(6.1E-2)† 2.58E-1(1.1E-1)† 3.12E+0(1.6E-2)† 3.05E-1(1.1E-1)† 3.87E-1(1.7E-8)† 3.73E-1(9.5E-2)† 1.99E-1(8.5E-3)= 5.81E+0(2.5E-2)†

W
FG

6

3 5.72E-2(2.1E-3) 5.28E-2(4.4E-3)‡ 4.11E-2(1.0E-3)‡ 4.00E-2(3.7E-3)‡ 6.96E-2(5.9E-3)† 5.23E-2(5.7E-3)‡ 4.32E-2(1.8E-3)‡ 3.60E-2(2.3E-3)‡ 3.87E-2(3.7E-3)‡ 4.38E-2(3.5E-3)‡
5 1.20E-1(1.1E-2) 1.31E-1(6.0E-3)† 1.22E-1(5.8E-3)= 2.21E-1(1.2E-1)† 1.05E+0(2.1E-2)† 1.15E-1(9.8E-3)= 1.09E-1(2.6E-2)‡ 1.42E-1(1.9E-2)† 6.59E-2(2.6E-3)‡ 1.21E+0(7.6E-4)†
8 1.52E-1(9.6E-3) 1.60E-1(6.6E-3)= 2.37E-1(7.8E-2)† 2.51E-1(1.3E-1)† 2.39E+0(3.3E-2)† 1.78E-1(6.0E-2)= 1.72E-1(1.1E-1)= 2.48E-1(1.1E-1)† 1.61E-1(5.2E-2)= 3.53E+0(9.9E-3)†
10 1.66E-1(9.8E-3) 1.73E-1(6.5E-3)† 2.53E-1(1.0E-1)† 2.85E-1(1.4E-1)† 3.36E+0(3.3E-2)† 3.27E-1(1.3E-1)† 3.49E-1(1.0E-1)† 6.18E-1(9.5E-2)† 2.07E-1(1.0E-1)† 5.80E+0(3.3E-2)†

W
FG

7

3 2.88E-2(8.7E-4) 7.41E-2(5.4E-3)† 4.94E-2(1.2E-3)† 4.05E-2(3.3E-3)† 1.92E-1(5.2E-3)† 4.10E-2(1.6E-3)† 3.18E-2(1.0E-3)† 2.91E-2(8.6E-4)= 2.99E-2(8.4E-4)= 2.21E-1(3.9E-5)†
5 9.92E-2(8.3E-3) 1.67E-1(5.2E-3)† 1.45E-1(4.7E-3)† 2.40E-1(1.3E-1)† 1.01E+0(1.9E-2)† 1.16E-1(7.1E-3)† 1.36E-1(2.7E-2)† 1.40E-1(2.4E-2)† 9.95E-2(6.4E-3)= 1.23E+0(1.3E-3)†
8 1.66E-1(9.8E-3) 2.02E-1(5.4E-3)† 2.50E-1(4.0E-2)† 2.48E-1(1.1E-1)† 2.41E+0(3.4E-2)† 1.89E-1(3.4E-2)† 3.15E-1(9.7E-2)† 1.83E-1(1.9E-2)† 1.71E-1(1.9E-2)† 3.55E+0(1.7E-2)†
10 1.78E-1(9.3E-3) 2.17E-1(8.2E-3)† 2.52E-1(3.3E-2)† 2.16E-1(7.1E-2)† 3.35E+0(2.4E-2)† 2.91E-1(8.5E-2)† 3.40E-1(8.4E-2)† 3.06E-1(4.9E-2)† 1.89E-1(2.4E-2)† 5.91E+0(9.4E-2)†

W
FG

8

3 6.48E-2(4.1E-3) 9.98E-2(5.7E-3)† 7.96E-2(3.0E-3)† 7.53E-2(4.5E-3)† 1.94E-1(4.6E-3)† 5.96E-2(2.5E-3)‡ 6.26E-2(1.4E-3)= 5.55E-2(2.0E-3)‡ 6.42E-2(4.6E-3)= 2.69E-1(2.8E-3)†
5 1.18E-1(9.8E-3) 1.67E-1(8.0E-3)† 1.60E-1(6.0E-3)† 1.31E-1(1.4E-2)† 1.05E+0(2.4E-2)† 1.08E-1(7.5E-3)‡ 2.86E-1(2.0E-1)† 2.03E-1(1.7E-2)† 9.79E-2(1.7E-2)‡ 1.22E+0(8.0E-4)†
8 1.71E-1(7.6E-3) 1.88E-1(1.0E-2)† 2.08E-1(2.5E-2)† 2.01E-1(1.1E-1)† 2.56E+0(3.3E-2)† 1.28E-1(1.2E-2)‡ 3.98E-1(6.6E-2)† 4.27E-1(1.4E-1)† 6.08E-1(1.8E-1)† 3.61E+0(2.2E-2)†
10 2.02E-1(9.2E-3) 2.06E-1(1.4E-2)= 2.05E-1(2.1E-2)= 2.03E-1(7.6E-2)= 3.52E+0(2.1E-2)† 2.14E-1(2.3E-2)= 3.77E-1(4.2E-2)† 8.34E-1(3.1E-2)† 9.19E-1(1.8E-1)† 5.98E+0(1.4E-1)†

W
FG

9

3 4.39E-2(3.1E-3) 3.59E-2(4.4E-3)‡ 4.28E-2(7.3E-4)‡ 7.16E-2(2.0E-2)† 2.03E-1(9.4E-3)† 5.78E-2(1.0E-2)† 2.95E-2(9.6E-3)‡ 3.58E-2(9.9E-3)‡ 3.18E-2(9.6E-3)‡ 2.21E-1(6.6E-4)†
5 1.08E-1(9.8E-3) 1.05E-1(1.3E-2)= 1.14E-1(7.7E-3)† 2.69E-1(2.4E-1)† 9.76E-1(2.0E-2)† 1.07E-1(1.8E-2)= 2.19E-1(7.9E-3)† 1.62E-1(3.3E-2)† 1.07E-1(1.3E-2)= 1.21E+0(3.9E-3)†
8 5.46E-1(2.1E-2) 3.29E-1(9.8E-2)‡ 4.11E-1(1.4E-1)‡ 5.23E-1(1.9E-1)= 2.31E+0(2.7E-2)† 4.32E-1(1.8E-1)‡ 5.29E-1(1.3E-1)= 7.84E-1(6.7E-2)† 8.97E-1(1.4E-1)† 3.53E+0(2.4E-2)†
10 1.38E+0(1.5E-2) 4.24E-1(1.4E-1)‡ 5.45E-1(2.3E-1)‡ 1.06E+0(3.6E-1)‡ 3.16E+0(2.5E-2)† 1.50E+0(2.3E-2)† 1.19E+0(5.4E-1)‡ 1.96E+0(2.5E-1)† 2.71E+0(7.2E-1)† 5.78E+0(2.4E-2)†

D
T

L
Z

1

3 3.29E-2(7.9E-4) 5.19E-2(2.3E-3)† 3.81E-2(8.2E-4)† 1.38E+0(1.2E-2)† 2.01E-2(4.8E-4)‡ 3.41E-2(6.1E-4)† 3.93E-2(2.9E-2)† 3.52E-2(1.1E-2)† 3.34E-2(2.5E-4)= 2.06E-2(1.1E-5)‡
5 9.13E-2(3.4E-3) 2.44E-1(5.3E-2)† 1.34E-1(7.1E-3)† 1.58E+0(1.0E-1)† 7.51E-2(5.2E-3)‡ 9.89E-2(2.7E-3)† 6.19E-1(4.1E-1)† 9.73E-2(2.6E-3)† 9.15E-2(2.4E-3)= 6.82E-2(8.1E-5)‡
8 1.54E-1(6.5E-3) 3.93E+0(8.7E+0)† 2.08E-1(1.1E-2)† 1.73E+0(1.4E-2)† 1.26E-1(6.5E-3)‡ 1.60E-1(7.5E-3)† 3.58E+0(3.1E+0)† 1.64E-1(7.3E-3)† 1.56E-1(6.5E-3)= 1.08E-1(1.1E-3)‡
10 1.86E-1(1.2E-2) 8.11E+0(1.5E+1)† 2.60E-1(1.5E-2)† 3.32E+0(1.4E+0)† 1.45E-1(5.9E-3)‡ 1.92E-1(1.2E-2)† 3.28E+0(2.5E+0)† 1.84E-1(1.1E-2) = 1.81E-1(1.2E-2)= 1.55E-1(6.8Ee-3)‡

D
T

L
Z

2

3 2.81E-2(3.1E-3) 4.24E-2(2.1E-3)† 3.58E-2(5.7E-4)† 2.20E-1(3.9E-2)† 4.94E-2(1.7E-3)† 3.42E-2(1.1E-3)† 2.38E-2(9.7E-4)‡ 2.25E-2(2.8E-4)‡ 2.26E-2(6.2E-6)‡ 5.45E-2(4.4E-6)†
5 1.35E-1(9.1E-3) 3.32E-1(3.2E-2)† 1.15E-1(2.1E-3)‡ 4.00E-1(2.0E-2)† 1.86E-1(4.2E-3)† 1.06E-1(3.6E-3)‡ 4.52E-1(4.2E-2)† 1.16E-1(5.5E-3)‡ 6.34E-2(3.2E-5)‡ 2.12E-1(3.3E-5)†
8 2.51E-1(2.1E-2) 7.68E-1(9.7E-2)† 2.01E-1(3.0E-3)‡ 5.52E-1(1.7E-2)† 3.20E-1(5.5E-3)† 1.86E-1(4.1E-3)‡ 2.38E-1(1.6E-1)= 1.92E-1(1.3E-2)‡ 1.41E-1(1.2E-4)‡ 3.87E-1(6.8E-4)†
10 3.49E-1(1.9E-2) 1.06E+0(1.5E-1)† 2.47E-1(8.1E-3)‡ 6.29E-1(1.9E-2)† 3.83E-1(3.8E-3)† 2.73E-1(1.9E-2)‡ 7.97E-1(5.6E-7)† 2.98E-1(1.7E-2)‡ 1.46E-1(2.4E-4)‡ 5.02E-1(4.7E-3)†

TABLE 4: Summary of Wilcoxon rank-sum test results for the selected algorithms with respect to the mean IGD+ value for
DTLZ1, DTLZ2, and WFG1 to WFG9

SMPSO dMOPSO MOPSOhv MaPSO MOEA/D DBEA NSGA-III RVEA ARMOEA

† 34 31 37 36 26 28 30 18 34
‡ 5 8 5 8 12 10 11 13 10
= 5 5 2 0 6 6 3 13 0

†, ‡ and = denote the number of times the performance of the corresponding algorithm is significantly better, worse or has no
significant difference with respect to that of the proposed algorithm, respectively.

algorithm outperforms the others when the problem has 3, 5,
8 and 10 objectives in terms of mean IGD+ value.

MaF6 has a degenerate Pareto optimal front. Regarding
the mean IGD+ value, our proposed algorithm outperforms
dMOPSO, while NSGA-III, RVEA and ARMOEA outper-
form our proposed algorithm. Although SMPSO, MOPSOhv,
MaPSO, MOEA/D and DBEA outperform our proposed
algorithm for MaF6-3 and MaF6-5, our proposed algorithm
outperforms them when the problem has 10 objectives.

MaF7 has a disconnected Pareto optimal front. Regarding
the mean IGD+ value, our proposed algorithm outperforms
the others when the problem has 3, 5, 8 and 10 objectives.

The Pareto optimal region of MaF8 in decision space is
a 2D manifold, which allows a direct observation of the
search behavior of a multi-objective optimization algorithm.
Regarding the mean IGD+ value, our proposed algorithm
outperforms the others when the problem has 3, 5, 8 and 10
objectives.

Table 4 summarizes the results of the comparisons per-
formed for DTLZ1, DTLZ2, and WFG1 to WFG9 in terms
of IGD+. With respect to IGD+, MOPSO-HGLSS obtained
better results in 275 out of 396 performance comparisons.
Table 6 summarizes the results of the comparisons performed
for MaF1 to MaF8 in terms of IGD+. With respect to IGD+,
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TABLE 5: Performance comparisons of different algorithms in terms of the mean IGD+ value for MaF1 to MaF8

M MOPSO-HGLSS SMPSO dMOPSO MOPSOhv MaPSO MOEA/D DBEA NSGA-III RVEA ARMOEA

M
aF

1

3 4.55E-2(1.1E-3) 6.10E-2(3.0E-3)† 1.09E-1(5.4E-3)† 6.54E-2(2.2E-3)† 3.53E-2(1.4E-3)‡ 7.04E-2(4.1E-7)† 6.99E-2(2.8E-4)† 6.28E-2(1.7E-3)† 8.19E-2(7.6E-4)† 4.34E-2(1.6E-4)‡
5 1.58E-1(1.0E-2) 1.89E-1(8.8E-3)† 3.42E-1(4.3E-2)† 1.94E-1(7.4E-3)† 1.12E-1(2.6E-3)‡ 2.25E-1(1.6E-3)† 2.28E-1(3.5E-6)† 2.53E-1(3.9E-2)† 3.54E-1(6.7E-2)† 1.59E-1(2.8E-3)=
8 2.86E-1(2.1E-2) 3.18E-1(1.1E-2)† 5.30E-1(4.4E-2)† 3.19E-1(1.2E-2)† 1.86E-1(1.2E-3)‡ 5.14E-1(1.3E-3)† 3.52E-1(4.1E-3)† 2.85E-1(9.0E-3)= 7.13E-1(5.5E-2)† 2.87E-1(1.4E-3)=
10 3.37E-1(2.3E-2) 3.63E-1(1.4E-2)† 5.73E-1(2.8E-2)† 3.94E-1(2.7E-2)† 2.22E-1(4.2E-3)‡ 5.34E-1(3.0E-4)† 4.01E-1(1.0E-2)† 3.41E-1(9.0E-3)= 6.69E-1(8.2E-2)† 3.11E-1(6.8E-4)‡

M
aF

2

3 5.14E-2(4.1E-3) 6.26E-2(3.6E-3)† 4.35E-2(8.7E-4)‡ 6.07E-2(3.9E-3)† 2.45E-2(8.8E-4)‡ 3.84E-2(3.5E-4)‡ 4.66E-2(1.1E-3)‡ 3.65E-2(5.6E-4)‡ 4.30E-2(1.5E-3)‡ 3.31E-2(8.6E-4)‡
5 1.72E-1(4.7E-3) 1.48E-1(7.8E-3)‡ 1.28E-1(2.2E-3)‡ 1.53E-1(6.6E-3)‡ 8.09E-2(7.2E-4)‡ 1.40E-1(1.2E-3)‡ 1.52E-1(6.1E-4)‡ 1.42E-1(3.3E-3)‡ 1.45E-1(1.3E-3)‡ 1.22E-1(1.6E-3)‡
8 2.33E-1(5.7E-3) 2.01E-1(4.1E-3)‡ 2.46E-1(9.8E-3)† 1.99E-1(4.0E-3)‡ 1.22E-1(4.1E-3)‡ 2.32E-1(4.2E-4)= 1.98E-1(9.1E-4)‡ 2.59E-1(6.3E-2)† 5.87E-1(2.1E-1)† 1.98E-1(3.9E-3)‡
10 2.43E-1(5.2E-3) 1.97E-1(4.3E-3)‡ 4.45E-1(2.8E-2)† 2.10E-1(2.3E-3)‡ 1.31E-1(1.9E-3)‡ 3.70E-1(3.7E-3)† 8.61E-1(5.7E-3)† 3.16E-1(4.7E-2)† 6.43E-1(1.3E-1)† 2.48E-1(1.2E-2)=

M
aF

3

3 2.99E-2(1.7E-3) 4.20E+3(5.1E+2)† 5.98E-1(1.7E-1)† 1.88E+4(6.7E+3)† 2.74E-2(1.7E-3)‡ 5.41E-2(5.5E-4)† 5.00E-2(2.6E-3)† 4.65E-2(2.7E-4)† 4.06E-2(7.2E-4)† 4.66E-2(2.6E-4)†
5 5.15E-2(5.5E-3) 2.86E+3(1.4E+3)† 5.41E-1(2.6E-2)† 3.33E+4(5.9E+3)† 1.21E-1(3.6E-2)† 1.24E-1(1.6E-3)† 1.37E+6(4.3E+6)† 9.88E-2(1.3E-3)† 7.97E-2(4.9E-3)† 9.88E-2(1.0E-3)†
8 1.51E-1(3.3E-3) 7.12E+4(1.2E+4)† 6.54E-1(1.9E-1)† 5.51E+4(3.7E+4)† 3.28E+0(7.0E-1)† 1.65E-1(1.7E-3)† 4.16E+0(8.9E+0)† 1.48E+0(2.7E+0)† 1.13E-1(7.0E-3)‡ 1.35E-1(3.8E-3)‡
10 2.64E-1(1.1E-3) 5.67E+7(9.4E+6)† 5.39E-1(1.8E-2)† 1.34E+5(1.3E+5)† 4.23E+2(5.4E+1)† 1.90E-1(5.2E-4)‡ 3.01E+2(5.8E+2)† 7.09E+1(1.6E+2)† 9.59E-2(4.2E-3)‡ 1.14E-1(6.6E-3)‡

M
aF

4

3 3.93E-2(2.8E-3) 2.76E+1(3.8E+1)† 3.93E+1(7.4E+1)† 3.97E+2(8.6E+1)† 2.27E-1(3.9E-3)† 6.66E-1(1.7E-2)† 8.66E-1(4.1E-1)† 3.52E-1(2.0E-2)† 3.95E-1(7.4E-2)† 3.40E-1(1.6E-3)†
5 1.81E-1(7.4E-3) 8.20E+1(1.4E+2)† 1.14E+3(1.1E+3)† 2.51E+3(2.8E+2)† 1.93E+0(5.1E-2)† 9.92E+0(2.9E-1)† 4.97E+0(2.8E+0)† 3.91E+0(6.8E-1)† 4.46E+0(7.4E-1)† 2.89E+0(1.1E-1)†
8 6.59E-1(2.7E-1) 1.08E+3(1.7E+3)† 1.70E+4(7.2E+3)† 1.86E+4(3.5E+3)† 1.63E+1(1.5E+0)† 1.18E+2(5.3E+0)† 3.80E+1(6.6E-1)† 3.45E+1(2.2E+0)† 7.50E+1(1.6E+1)† 3.17E+1(3.2E+0)†
10 2.37E+0(1.5E+0) 6.89E+2(6.6E+2)† 5.42E+4(3.8E+4)† 6.46E+4(1.9E+4)† 6.59E+1(6.5E+0)† 4.44E+2(9.6E+0)† 1.41E+2(7.9E-1)† 1.55E+2(1.6E+1)† 2.12E+2(5.1E+1)† 1.35E+2(1.3E+1)†

M
aF

5

3 1.04E-1(2.3E-2) 9.91E-1(1.3E+0)† 7.17E-1(1.7E-1)† 4.11E-1(4.0E-2)† 1.97E-1(6.9E-3)† 5.38E-1(5.0E-1)† 8.97E-1(8.5E-1)† 4.37E-1(5.6E-1)† 2.59E-1(6.4E-6)† 1.67E+0(1.3E+0)†
5 2.51E-1(2.1E-2) 3.56E+0(4.2E-1)† 1.13E+1(8.3E-2)† 4.07E+0(3.2E-1)† 1.47E+0(4.7E-2)† 9.39E+0(1.0E+0)† 6.00E+0(2.0E+0)† 2.73E+0(1.1E+0)† 2.54E+0(4.1E-1)† 2.40E+0(8.8E-2)†
8 1.03E+0(8.5E-1) 3.88E+1(6.4E+0)† 8.73E+1(4.8E-2)† 3.38E+1(4.5E+0)† 1.00E+1(5.3E-1)† 8.45E+1(6.4E-1)† 3.42E+1(7.8E+0)† 2.82E+1(3.3E-2)† 3.09E+1(4.3E+0)† 2.87E+1(5.5E-1)†
10 6.41E+0(1.9E+0) 1.30E+2(1.7E+1)† 3.06E+2(6.8E-1)† 1.17E+2(9.5E+0)† 3.28E+1(1.6E+0)† 3.03E+2(4.7E-1)† 1.40E+2(6.0E+1)† 1.37E+2(5.3E-1)† 1.29E+2(1.6E+1)† 1.62E+2(7.3E+0)†

M
aF

6

3 1.62E-1(6.1E-5) 5.31E-3(2.1E-4)‡ 4.54E-1(8.3E-2)† 4.65E-3(1.8E-4)‡ 2.29E-2(4.4E-3)‡ 3.39E-2(3.3E-7)‡ 1.82E-2(1.8E-3)‡ 1.69E-2(2.2E-3)‡ 3.65E-2(4.7E-3)‡ 5.10E-3(1.1E-4)‡
5 3.34E-1(5.7E-5) 5.70E-3(2.6E-4)‡ 4.83E-1(1.4E-1)† 5.06E-3(2.1E-4)‡ 5.12E-2(1.2E-2)‡ 1.13E-1(1.9E-1)‡ 1.14E-1(4.2E-3)‡ 6.33E-2(1.6E-2)‡ 8.18E-2(6.1E-3)‡ 5.11E-3(6.3E-5)‡
8 3.71E-1(4.4E-5) 7.28E-2(8.3E-2)‡ 5.00E-1(1.4E-1)† 9.40E-1(3.4E-1)† 5.49E-2(2.4E-2)‡ 6.35E-2(5.3E-2)‡ 7.42E-1(1.9E-7)† 1.03E-1(6.3E-2)‡ 3.90E-1(3.0E-1)‡ 6.34E-3(4.2E-4)‡
10 3.77E-1(3.4E-3) 4.07E-1(2.5E-1)† 5.15E-1(6.6E-2)† 1.59E+0(7.1E-1)† 1.50E+0(7.4E-1)† 4.50E-1(3.1E-1)† 7.42E-1(1.3E-7)† 3.25E-1(1.1E-2)‡ 1.65E-1(1.0E-2)‡ 1.39E-2(9.9E-3)‡

M
aF

7

3 2.46E-2(9.4E-4) 9.59E-2(1.1E-2)† 1.38E-1(5.3E-3)† 8.71E-2(3.6E-3)† 5.37E-2(1.4E-3)† 2.18E-1(2.0E-1)† 9.61E-2(4.2E-3)† 7.75E-2(4.3E-3)† 1.04E-1(1.0E-3)† 1.79E-1(1.4E-1)†
5 1.33E-1(6.0E-3) 5.04E-1(9.2E-3)† 6.74E-1(1.4E-1)† 4.17E-1(9.3E-3)† 2.34E-1(5.0E-3)† 1.00E+0(1.6E-1)† 4.23E-1(2.6E-2)† 3.78E-1(1.0E-2)† 5.03E-1(7.5E-3)† 3.49E-1(8.6E-3)†
8 2.68E-1(9.4E-3) 1.55E+0(5.7E-1)† 2.45E+0(7.7E-1)† 8.73E-1(9.0E-3)† 4.73E-1(2.8E-2)† 1.91E+0(1.8E-1)† 1.69E+0(9.8E-1)† 9.34E-1(7.3E-2)† 1.93E+0(6.6E-2)† 1.78E+0(1.1E-1)†
10 3.23E-1(8.1E-3) 1.93E+0(1.3E-1)† 3.20E+0(1.0E+0)† 1.15E+0(2.1E-2)† 5.20E-1(2.3E-2)† 1.90E+0(3.0E-1)† 6.68E+0(4.8E+0)† 1.72E+0(1.8E-1)† 3.47E+0(5.5E-1)† 3.46E+0(1.9E-1)†

M
aF

8

3 2.82E-2(9.8E-4) 7.89E-2(3.7E-3)† 1.12E-1(8.6E-4)† 8.04E-2(2.5E-3)† 5.96E-2(3.7E-3)† 1.10E-1(2.7E-3)† 1.41E-1(1.1E-3)† 1.09E-1(4.3E-3)† 1.38E-1(8.6E-3)† 7.74E-2(2.1E-3)†
5 4.39E-2(1.1E-3) 1.53E-1(8.7E-3)† 2.72E-1(6.0E-3)† 1.48E-1(4.8E-3)† 1.01E-1(2.8E-3)† 2.86E-1(7.5E-3)† 2.07E-1(8.3E-3)† 2.43E-1(2.1E-2)† 4.72E-1(4.2E-2)† 1.38E-1(5.2E-3)†
8 5.40E-2(4.3E-4) 2.05E-1(5.4E-3)† 7.01E-1(2.9E-3)† 2.08E-1(7.4E-3)† 1.29E-1(2.7E-3)† 7.67E-1(1.6E-2)† 6.48E-1(2.5E-2)† 4.39E-1(3.1E-2)† 9.52E-1(1.3E-1)† 2.19E-1(1.1E-2)†
10 6.16E-2(1.1E-3) 2.33E-1(7.2E-3)† 1.12E+0(2.4E-3)† 2.31E-1(6.1E-3)† 1.47E-1(6.9E-3)† 1.12E+0(5.5E-3)† 9.74E-1(1.0E-2)† 4.65E-1(7.0E-2)† 1.09E+0(9.3E-2)† 2.44E-1(6.1E-3)†

TABLE 6: Summary of the Wilcoxon rank-sum test results for the selected algorithms with respect to the mean IGD+ value for
MaF1 to MaF8

SMPSO dMOPSO MOPSOhv MaPSO MOEA/D DBEA NSGAIII RVEA ARMOEA

† 26 30 27 20 25 27 24 24 18
‡ 6 2 5 12 6 5 6 8 11
= 0 0 0 0 1 0 2 0 3

†, ‡ and = denote the number of times the performance of the corresponding algorithm is significantly better, worse or has no
significant difference with respect to that of the proposed algorithm, respectively.

MOPSO-HGLSS obtained better results in 221 out of 288
performance comparisons. From these results, we conclude
that MOPSO-HGLSS performed better that the other nine
algorithms in terms of convergence and diversity because the
two mechanisms included in HGLSS could properly balance
the convergence and diversity of the MOPSO, which are
two basic and very important issues in MOPs. In addition,
MOPSO-HGLSS showed a promising performance as the
number of objectives of the problems increased.

V. CONCLUSIONS AND FUTURE WORK
Most multi-objective particle swarm optimizers encounter
difficulties when solving problems with more than three
objectives. The reason is that the diluted selection pressure
caused by the single global leader selection strategy of MOP-
SOs as the number of objectives increases has a negative
effect on convergence and diversity, which are the two main
goals for generating a proper set of solutions. Based on
this observation, we proposed here a new algorithm called
multi-objective particle swarm optimizer with hybrid global
leader selection strategy (MOPSO-HGLSS). HGLSS has two

global leader selection mechanisms: one is called Euclidean
Distance Strategy (EDS) and the other one is called Space
Expanding Strategy (SES). These two mechanisms aims to
enhance the convergence and the diversity of the MOPSO,
respectively. Performance investigation is conducted to facil-
itate the use of HGLSS which aims at balancing the trade-
off between convergence and diversity of the MOPSO during
the search. In addition, four MOPSOs (SMPSO, dMOPSO,
MOPSOhv and MaPSO) and five popular MOEAs called
MOEA/D, NSGA-III, DBEA, RVEA and ARMOEA were
used to assess the performance of our proposed approach
in terms of IGD+. Supported by statistical tests, our per-
formance investigation shows that HGLSS can properly bal-
ance the trade-off between convergence and diversity of
our MOPSO. Thus, MOPSO-HGLSS outperforms the other
algorithms in 19 MOPs (with 3, 5, 8 and 10 objectives for
each selected problem) and has a promising performance in
many-objective optimization problems.

Our future work will focus on investigating the perfor-
mance of MOPSO-HGLSS in real-world many-objective
problems. We are also interested in studying the impact of
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both mutation operators and mutation rates on MOPSO-
HGLSS in greater depth.
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