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Abstract—This study develops an adaptive multilevel predic-
tion (AMLP) method to detect and track multiple global optima
over time. First, it formulates a multilevel prediction approach
in which a higher-level prediction improves the accuracy of the
lower-level prediction to reduce the prediction error, enabling
it to capture more complex patterns in the changes. However,
a higher-level prediction is more sensitive to input errors and
the randomness in the pattern of the change. To overcome this
challenge, this study employs an adaptive mechanism which
can determine the near-optimal prediction level at each time
step. At the same time, AMLP calculates the strength of the
diversity introduced after a change based on the estimated
prediction error. A successful static multimodal optimizer is
augmented with AMLP, for which AMLP determines the location
and the mutation strength of the initialized subpopulations. An
existing dynamic benchmark generator is improved so that it can
generate dynamic test problems with more complex patterns in
their changes. In particular, this dynamic benchmark generator
allows for controlling the randomness of the pattern in the
change to simulate dynamic problems with different degrees of
predictability. A few controlled experiments are first performed
to provide insight into different components of AMLP. Then,
AMLP is compared with some of the most successful prediction
methods when they are incorporated into the developed dynamic
multimodal optimization method. Eleven dynamic cases with dif-
ferent change severity, change frequency, predictability, problem
dimensionality, and the number of global minima are considered.
The numerical results show the superiority of AMLP over other
prediction methods.

Index Terms—Evolutionary algorithm, changing environment,
niching, dynamic test problem, change pattern

I. INTRODUCTION

MANY real-world problems change over time. This
change often occurs in the relationship between the

objective function(s) and decision parameters; however, other
aspects of the problem, such as constraints [1], [2], number
of decision parameters [3], or even the number of objectives
[4] may change over time. Hence, the optimal solution(s) to a
dynamic problem change(s) over time. Dynamic optimization
aims to detect and track the global optimum of dynamic
problems. There has been a growing number of studies on the
application of different search methods to practical dynamic
optimization problems. Some recent examples are the optimal
control of time-varying systems [5], [6], [7], communication
systems [8], and vehicle routing scenarios [9], [10], [11].
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The simplest approach to optimize a dynamic problem is
restarting the optimization process from scratch after a change.
This approach is a reasonable choice when the change is
so radical that the problem landscape after the change does
not correlate with the problem landscape before it. However,
in many classes of dynamic problems, the changes are not
radical [12], and the problem landscape after the change
resembles the one before it. Steadily changing problems [13]
are good examples of dynamic problems in this class. The
change in these problems is continual but smooth and gradual.
For example, the demand for electricity changes with time
and temperature, which gradually changes the load on the
electricity grid during the day. Ideally, these problems should
be optimized on-line; however, they are generally formulated
as series of problem snapshots which are separated by a short
time interval [13]. There are two main reasons for using this
type of formulation [13], [14]:

• The optimized solution should be implemented in the
system for an interval, which is referred to as the im-
plementing window [13]. The length of this interval is
application-dependent. For example, for power systems,
the response time interval can be from a few seconds (for
short-term operational flexibility) to several months (for
long-term planning flexibility)[15].

• Most optimization algorithms require some time to pro-
vide an approximation of the optimal solution(s), during
which they assume the problem does not change [13].

The formulated problem is thus stationary at each interval
while the changes occur between two successive intervals.
Shorter intervals (and thus less severe changes) makes the
formulated problem a closer approximation of the actual
one [13]. The formulated problem should be re-optimized in
the limited time between two successive changes, the length
of which is determined by the change frequency. Methods
tailored for dynamic optimization may achieve this goal by
exploiting information available from historical solutions, e.g.
how the optimal solution has previously relocated in two
successive time steps.

A dynamic optimization method can be developed by re-
inforcing a static search method with a dynamic mechanism.
A variety of such strategies exist in the literature, such as
memory-based methods [16], [17], which maintain diversity
during the optimization process [18], [19] by introducing
diversity after the change (e.g., by hypermutation [13] or
random immigrants [20], [21]), multi-population methods [22],
[23], [24], [25], and prediction methods [26]. A detailed
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analysis of each strategy can be found in [27]. Prediction
methods, in particular, have gained much interest in the realm
of dynamic optimization [26]. They can be interpreted as a
more robust variant of memory-based strategies that intend to
predict the location of a global optimum, or the Pareto-optimal
solutions in the case of dynamic multi-objective optimization.
When compared with other types of strategies for handling
dynamic aspects of a dynamic problem, prediction methods
enjoy one prominent advantage: they are separate modules that
only get activated when a change is detected. This modularity
results in several benefits. First, they do not interfere with the
static optimizer. Second, they can be easily combined with
other static optimizers, for which there are already many well-
developed methods. Third, they are activated only when a
change is detected.

When the problem is multimodal, even small changes in the
problem landscape can result in a substantial change in the
global optimum because the depth of the optima varies over
time, and thus, a previous global minimum may become a local
one at a later time [28]. This will result in a huge movement
of the global optimum from one step to the next one, which
causes difficulties for a prediction method. Such a challenge
can be effectively addressed if all the candidate local minima,
which may potentially become a global one in future time
steps, are tracked. This goal can be reached by multimodal
optimization [29], [30], which aims to detect all good optima
of the problem. Multimodal optimization is, therefore, an
indispensable component of dynamic optimization, especially
if prediction methods are to be used.

A more recent perspective to dynamic multimodal optimiza-
tion (DMMO) aims at tracking not only one global optimum
but all global and near-global ones over time [31], [32], [33].
This class of problems relates more closely to the concept
of multimodal optimization. The dynamic multipath routing
problem [32] is a good example: The problem of finding
the best route to the destination may change because of an
accident, heavy rain, or road maintenance. At the same time,
there may be multiple (almost-) equally good paths to the
destination in the new problem. If multiple of these paths are
available, the user may select any of them based on some
preferences that were not included in the formulation of the
problem. Other examples of relevant real-world problems are
solving a time-dependent system of equations [34], dynamic
tracking of multiple targets [32], and Adaptive Information
Filtering (AIF) [35]. These problems have been discussed in
their corresponding publications in detail.

In spite of its practical importance, studies on DMMO
are comparatively scarce, at least when compared to the
number of studies on dynamic multi-objective optimization
and dynamic constrained optimization. For example, several
methods for dynamic multi-objective optimization have been
recently developed by augmentation of a static multi-objective
optimizer with a prediction method. This prediction method
may track and predict the centroid of the non-dominated set
[12], [36], [37], specific points of the non-dominated set [18],
[38], [39], or even each Pareto optimal solution independently
[40], [41]. Some of these predictions methods can be applied
to DMMO problems as well.

A major drawback of most existing prediction methods is
the fixed and limited utilization of past information. Thus, they
can capture only simple patterns in the movement of global
optima, such as a translation with fixed length and fixed direc-
tion. On the other hand, more complicated prediction models
may capture more complicated patterns in the movement of
the global optimum but they are more sensitive to input error
randomness in the movement of the global optimum since they
rely on older information.

This study intends to develop an approach which over-
comes these drawbacks of existing techniques. This prediction
method is expected to make the most out of hidden information
in the pattern of each change and remains robust against
potential randomness in those patterns. The contributions of
this study are as follows:
• It proposes an adaptive multilevel prediction (AMLP)

method in which a higher prediction level can approxi-
mate complex patterns more accurately but becomes more
sensitive to the random movement of the global optimum.
ALMP can learn the near-optimal prediction level at each
time step.

• It develops a dynamic variant of the covariance matrix
self-adaptation evolution strategy with repelling subpop-
ulation (RS-DCMSA-ES) [42], [43] for DMMO. This
method can accept an arbitrary prediction method as an
independent module.

• It improves an existing test suite for DMMO so that it can
simulate complex patterns in the movement of the global
optimum that cannot be easily identified by a human
observer. The test suite also allows for controlling the
randomness in the change pattern.

The remainder of this paper is organized as follows:
Section II discusses the previous related work. Section III
formulates the adaptive multilevel prediction method. RS-
DCMSA-ES and the improved dynamic benchmark generator
are developed in Section V. Section VI shows some descriptive
experiments that aim to provide insights on different aspects
of AMLP. Section VII compares the performance of AMLP
with some successful prediction methods in different dynamic
settings. Finally, our conclusions are drawn in Section VIII.

II. RELATED WORK

This section briefly reviews prediction methods for dynamic
optimization as well as relevant test suites for DMMO.

A. Prediction Methods

Prediction methods can be very efficient for dynamic prob-
lems in which the movement of the global optimum follows
some patterns [44][38]. They exploit the past information
gathered during the optimization process to predict the location
of the global minimum in the new time step. This information
is generally the location of the global best in the previous time
steps. Using this information, a prediction method approxi-
mates the location of the global optimum in the new time step
(C + 1):

x̂C+1 = ?(x0, x1, x2, . . . , xC ) (1)
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in which ? is the prediction function and xC is the location of
the global optimum at time step C. Many prediction methods
utilize information from a few recent locations of global
optima, enabling them to capture simple patterns. For example,
a simple but effective prediction method predicts the new
translation vector first, which is then added to the previous
location of the global optimum:

x̂C+1 = xC + v̂C+1, v̂C+1 = xC − xC−1 (2)

in which v̂C+1 is the prediction translation vector for time step
C + 1 and x̂C+1 is the predicted global minimum for time step
(C + 1). This prediction method has been used in many studies
with minor variations [38], [45], [41], [18], [19]. Despite
its simplicity, it is an effective prediction model which can
partially capture more complex but smooth change patterns.

Generally, there is a difference between the predicted and
actual global minimum. This difference is the prediction error
eC+1 = xC+1 − x̂C+1, the norm of which is generally greater than
zero. There are two sources for this error [44]:
• Model error, which is the inability of the prediction model

to capture the pattern underlying the movement of the
global optimum.

• Input error, which is the inaccuracy of the data provided
for the prediction function. For example, the optimization
method could not detect the accurate location of the
global optimum in the previous time steps.

Besides, there might be some randomness in the movement
of the global optimum, which makes its movement at least
partially unpredictable. In such problems, even the most so-
phisticated prediction method cannot accurately predict the
new global optimum even though the exact global optima
of the previous time steps are known. Consequently, each
prediction method should also introduce some diversity to
sample the seed population around x̂C+1. The strength of this
introduced variation should be determined by the prediction
method. If it is too strong, the optimization algorithm will
take a long time to converge. Conversely, if it is too weak, the
method should spend some time to diversify first, which will
again take a long time to converge. Most existing prediction
methods set the strength of this diversity proportional to the
length of the predicted translation vector [41], [46], [47], [48].

More sophisticated prediction methods, such as Autore-
gression (AR) [49], may utilize more hidden information
gathered during the optimization process, which enables them
to capture more complex patterns in the movement of the
global optimum. On the downside, it makes the prediction
method more sensitive to input error, as well as the randomness
in the change patterns.

As discussed earlier, prediction methods use the history
of the optimum in the previous time steps. Another valuable
element is the prediction error, which, surprisingly, has been
ignored in most existing prediction methods. There are only
a few studies that have used prediction error in previous time
steps for prediction of x̂C+1. For example, Chen et al. [48]
used the previous prediction error to predict the new efficient
set for dynamic multi-objective optimization. The prediction
error can be used to quantify accuracy of each prediction

method when an ensemble of prediction methods is used
[50]. Besides these two applications of the prediction error,
this study demonstrates its importance for determining the
strength of the introduced diversity after the change, as a more
reasonable alternative to existing methods which define the
strength of the introduced diversity proportionally to the length
of the translation vector [41], [46], [47], [48].

B. Test Suites for DMMO

There are several recently proposed test suites for dynamic
multi-objective optimization [3], [51], [52] and Dynamic con-
strained optimization [1], [53], [54]. In contrast, the most
commonly used test suite for DMMO is a two-decade old
moving peak benchmark (MPB) [55], [16]. This test suite
forms peaks by superposition of spherical functions, where the
depths, widths, and heights of the peaks change randomly over
time. It is generally employed when the objective is to track
only the best solution [56][28][33][57], which may jump from
one peak to another. Later variants of this test suite allow for
varying the number of optima over time [58], the inclusion
of dynamic constraints [53], or the generation of problems
with multiple equally good global maxima [31]. Nevertheless,
the number of optima is limited because the simulation of
each peak requires an independent function for superposition,
which would increase the computational time proportionally.
More importantly, the problem landscape consists of isolated
spherical peaks. Therefore, these problems may not simulate
the presence of a global structure in the problem nor ill-
conditioned problems, which are two common features of
global optimization [59].

The dynamic benchmark generator [DBG], developed by
Li et al. [60], can simulate two different types of dynamic
landscapes. In real rotation DBG (RRDBG), the problem
landscape is similar to that of MPB; however, the dynamic
change is simulated by a time-dependent rigid rotation of the
search space. The more interesting variant, Real Composition
DBG (RCDBG), superposes different types of basic functions
borrowed from the global optimization literature instead of
the simple spherical function. This change allows for the
simulation of more diverse types of challenges, such as many
undesirable local peaks and ill-conditioned problems. How-
ever, the dynamic behavior is simulated by a time-dependent
shift vector per basic function. This benchmark generator was
also used to create test problems for the CEC 2009 competition
on dynamic optimization [61].

III. ADAPTIVE MULTILEVEL PREDICTION METHOD

This section elaborates the proposed multilevel prediction
method. First, the concept of prediction level is defined, and
then, a simple strategy is developed to find the best prediction
level at each time step.

A. Multilevel prediction

At this time, the (approximate) optimal solutions of the prob-
lem at time steps 0, 1, 2, . . . , C are known, which are denoted
by x0, x1, . . . , xC . The objectives of the multilevel prediction
method are:
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• to predict xC+1 accurately so that the population seed for
time step C + 1 is generated close to xC+1. This prediction
is denoted by x̂C+1.

• to define a proper strength for the introduced diversity for
the seed population at the onset of time step C + 1.

In the proposed multilevel prediction, each prediction level
provides a prediction for xC+1, which is denoted by x̂ (!)

C+1 , in
which ‘!’ refers to the level of prediction. Besides, each pre-
diction level has its own prediction error e (!)

C+1 = xC+1 − x̂ (!)C+1 .
The level one prediction is the simplest possible prediction

method. It considers the last detected optimum (xC ) as an
estimate for the global optimum at time step C + 1:

x̂ (1)
C+1 = xC , e

(1)
C+1 = xC+1 − x̂ (1)C+1 = xC+1 − xC . (3)

Note that if e (1)
C+1 is known, then xC+1 can be easily calculated

as follows:
xC+1 = x̂ (1)

C+1 + e
(1)
C+1. (4)

However, the calculation of e (1)
C+1 requires xC+1, which is not

known at this time of the optimization process (at the onset
of time step C + 1). Instead, an estimate for e (1)

C+1 can be made
using e (1)C , e (1)

C−1, . . . , e
(1)
1 , which are available at the onset of

time step C +1. There are a variety of possible ways to use this
information; however, we adopt the simplest one which only
uses e (1)C :

ê (1)
C+1 = e (1)C , (5)

in which ê (1)
C+1 is the estimated level one prediction error. Using

this estimate for e (1)
C+1 in equation 4, the Level 2 prediction for

the optimum and the corresponding prediction error can be
calculated:

x̂ (2)
C+1 = x̂ (1)

C+1 + ê
(1)
C+1; e (2)

C+1 = xC+1 − x̂ (2)C+1 (6)

It is worth noting that x̂ (2)
C+1 is equivalent to the commonly

used prediction method described in equation 2. This can be
easily concluded by combining equations 6 and 3:

x̂ (2)
C+1 = x̂ (1)

C+1 + ê
(1)
C+1 = xC + e (1)C = xC + (xC − xC−1) (7)

This procedure can be easily employed to calculate higher-
level predictions for the optimum x̂ (!)

C+1 and the estimated
prediction error ê (!)

C+1 :

ê (!−1)
C+1 = e (!−1)

C ; x̂ (!)
C+1 = x̂ (!−1)

C + ê (!−1)
C+1 (8)

For example, Figure 1 illustrates how these vectors are
calculated when ! = 3. Figure 1a shows that Level 2 prediction
has exploited the pattern in the prediction error of Level 1 to
improve its prediction accuracy. Similarly, Figure 1b illustrates
that Level 3 has learned and used the pattern in the prediction
error of Level 2. Comparing the prediction error at different
levels reveals that for this example, ‖e (1)

C+1‖>‖e
(2)
C+1‖>‖e

(3)
C+1‖,

indicating that Level 3 prediction is more accurate than level
2, which, in turn, is more accurate than Level 1 prediction.

Consequently, a higher-level prediction can capture complex
patterns more accurately. However, we speculate that it is more
sensitive to noise in the movement pattern of the optimum.
Such noise can be caused by the dynamic problem itself or
by the inability of the employed static search method to find
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Fig. 1: The predicted optimum and the corresponding predic-
tion error at time step C + 1 using a) Level 1 and Level 2
predictions, and b) Level 3 prediction

the accurate location of the optimum in the previous time
steps. Therefore, it is also important to explore the robustness
of a prediction method against randomness in the movement
pattern of the optimum. Another limitation of higher level
predictions is that they can be calculated after a longer time.
x̂ (!)C and e (!)C can only be calculated if C ≥ !.

B. A Simple Simulation

The following prediction problem is considered to investi-
gate this hypothesis:

xC = 0 (C) RC0 x0 + frr

0 (C) = 1 + 0.5sin
( cC
10

)
, x0 =

1
√
�
,

(9)

in which r is a vector of independent and isotropic random
numbers sampled from the standard normal distribution, fr
specifies the strength of randomness in the movement pattern,
R0 is a rigid rotation matrix which rotates x0 by the angle of
U0 = cC

30 . Figure 2 illustrates the location of the optimum for
60 time steps (x0, x1, . . . , x59).

When fr = 0 (Figure 2a), the pattern in the movement of the
optimum is smooth but not simple enough to be fully captured.
The length of the translation vector and the rotation angle
changes with time. Figure 2b depicts the movement pattern
when fr = 0.1. For this case, the randomness is too high to
capture any useful pattern for prediction. Figure 3 illustrates
the norm of the prediction error of different levels for different
values of fr when � = 10. It reveals that:
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Fig. 2: Movement of the optimum over time in the simple test
problem when a) fr = 0, and b) fr = 0.1

• The higher levels of prediction are more accurate when
there is a smooth pattern in the movement of the opti-
mum (fr= 0), even though this pattern is not simple to
formulate.

• For moderate randomness in the movement of the opti-
mum (fr= 0.001), prediction levels 3 and 5 can provide
the most accurate prediction, rather than higher (levels 7,
9) and lower levels (level 1). For fr= 0.1, the lower the
prediction level, the less the prediction error.

• Level L prediction can be used from time step L, since
it requires the previous L-locations of the optimum. One
simple strategy to address this issue is to use a lower level
prediction for early time steps.

These observations reveal that a higher-level prediction
can capture more complex patterns in the movement of the
optimum, whereas a lower level prediction is more robust to
irregular change patterns. Consequently, the optimal prediction
level is problem-dependent. A single-level prediction method
may not be a robust approach because it can be efficient only
for specific types of dynamic problems. Furthermore, it is
possible that a prediction level could be the optimal choice
only for specific time steps of a dynamic problem. In such
problems, an adaptive strategy that reliably determines the
most promising level for each time step will surpass any fixed-
level prediction method.

C. Adaptation Mechanism

The proposed strategy to overcome the limitation of a fixed
level prediction is to use an adaptation strategy that selects
the near-optimal level for prediction at the current time step
(C + 1). The best prediction level is not known at the onset of
the current time step; however, the prediction error of each
level can now be calculated for the previous time step. The
prediction level with the least prediction error in time step C
is deemed as the most reliable one for time step C + 1.

Algorithm 1 presents the proposed adaptive multilevel
prediction (AMLP) method. Line 2 determines the highest
prediction level that can be used, which is bounded by the
size of data (C + 1) and the user-defined parameter !max. Line
3 calculates Crecent. Locations of the solution x before time
step Crecent are not needed for prediction; therefore, e (!)g and
x (!)g are not calculated for g < Crecent. This can eliminate

unnecessary calculations and improve time-complexity when
C � !max. Lines 4-9 calculate e (!)g and x (!)g for level 1
prediction. Lines 10-19 calculate these values for higher level
predictions (up to level ! ′max). It is worth mentioning that if
(! ′max = C+1) and C > 0 (Line 20), the x

(!′max)
C+1 can be calculated

and used for prediction; however, no estimation for prediction
error can be provided since e

(!′max)
C cannot be calculated. In

this specific case, e (!
′
max)

C is set equal to e
(!′max−1)
C (Line 21).

The adaptation mechanisms triggers from line 20. If C = 0
(Only one time step has been finished), only x (!)1 can be
calculated, which is used for prediction (Lines 20-24). In this
case, there is no estimate for the prediction error. For the
general case of C > 0, the best prediction level is the one with
the smallest prediction error norm at time step C (Line 25).
Furthermore, if !∗ = ! ′max − 1 and ! ′max = C + 1, then knowing
that e

(!′max−1)
C = e

(!′max)
C , the prediction level ! ′max is equally

good. In this case, AMLP favors the higher level prediction;
therefore, it sets !∗ ← !∗ + 1 (Line 30). This preference can
be helpful in early time steps when the predicted solution
from level ! ′max is available but there is no indicator for its
accuracy; therefore, it will be always ignored if Line 30 is
omitted. Finally, Lines 32 and 33 calculate the best predicted
solution and the estimated error for this prediction given !∗.

To explore the importance of such an adaptive strategy,
the previous example is extended to simulate time-dependent
randomness in the movement of the optimum:

fr (C) = 0.001 exp
(
5 sin

( cC
30

))
. (10)

For this problem, the randomness in the moving pattern
varies over time. It is negligible for certain time steps but dom-
inant for some other time steps. For this example, !max = 6.
Figure 4 shows the prediction error for each level when using
a fixed level prediction (FLP) as well as the prediction error
when an adaptive multilevel prediction (AMLP) is employed.
This figure shows that the prediction error of the adaptive
multilevel strategy is identical or very close to the smallest
of all six levels. This example demonstrates that the adaptive
strategy can detect the near-optimal prediction level on-the-fly.
The code of AMLP in MATLAB R© is provided in Supplemen-
tary Material S1.

D. Strength of the Introduced Diversity

The strength of the introduced diversity (BID) plays a critical
role in the convergence process at each time step. As discussed
in Section II, most existing prediction methods set BIDC+1 ∝
‖vC+1‖. However, this setting suffers from some theoretical
issues. Figure 5a illustrated an example in which the prediction
is relatively accurate (the norm of the prediction error is small).
For this case, BID should be small since the center of the seed
population (̂xC+1) is close to the new global optimum (xC+1).
However, it will be large if BID is proportional to ‖ v̂C+1‖.
In contrast, BID should be large for the case illustrated in
Figure 5b, since the population center is far from the global
optimum. For this case, the introduced diversity will be too
weak.

Consequently, BID should be proportional to the norm of the
prediction error, not to the length of the translation vector. The
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Fig. 3: Norm of the prediction error of different prediction levels (!) for the sample prediction problem with three different
values of fr
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Fig. 4: Prediction error of the adaptive multilevel prediction
(AMLP) and the fixed level prediction (FLP) method with
different levels (!) for the defined test problem with variable
randomness in the change pattern

proposed heuristic in this study sets BID proportionally to the
norm of the estimated prediction error:

BIDC+1 ∝ ‖ êC+1‖ = ‖eC ‖ (11)

E. Time Complexity
AMLP does not require any additional function evaluations,

nor does it involve any computationally expensive operators.
Figure 6 shows the required computational time by AMLP for
predicting the new location of a point given its locations in
previous time steps. This figure shows that the time required
by AMLP is proportional to the problem’s dimension (�) and
!2

max. For typical values of � = 10 and !max = 20, the required
time is only 0.0027 second. This simulation was performed in
a MATLAB R2017b environment using a personal laptop with
8 GB RAM and i7-8550U CPU (only one core was used for
the simulation).
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Algorithm 1: Adaptive Multilevel Prediction (AMLP)
method.

Data: Maximum prediction level (!max); A time
histroy of the solution x denoted by
(Sx = {x0, x1, ...xC }).

Result: The best prediction level (!∗), predicted
solution for time step C+1 (̂xC+1), estimated
prediction error for this prediction (̂eC+1)

1 Initialization
2 ! ′max ← min{!max, C + 1}
3 Crecent = max{0, C − !max}
4 for g = Crecent to C do
5 x̂ (1)

g+1 ← xg
6 if g < C then
7 e (1)

g+1 ← xg+1 − x̂ (1)g+1
8 end
9 end

10 for ! = 2 to ! ′max do
11 for g = Crecent to C do
12 if g ≥ ! − 1 then
13 x̂ (!)

g+1 ← x̂ (!−1)
g+1 + e (!−1)

g

14 if g < C then
15 e (!)

g+1 ← xg+1 − x̂ (!)g+1
16 end
17 end
18 end
19 end
20 if (! ′max = C + 1) and (C > 0) then
21 e

(!′max)
C ← e

(!′max−1)
C

22 end
23 if C = 0 then
24 !∗ ← 1
25 x̂C+1 ← x̂ (!

∗)
C+1

26 êC+1 ← {}
27 else
28 !∗ ← argmin!{‖e

(!)
C ‖}

29 if (!∗ = ! ′max − 1) then
30 !∗ ← !∗ + 1
31 end
32 x̂C+1 ← x̂ (!

∗)
C+1

33 êC+1 ← e (!
∗)

C

34 end

IV. RS-DCMSA WITH AMLP

This section integrates AMLP into the covariance matrix
self-adaptation evolution strategy with repelling subpopula-
tions (RS-CMSA), one of the most recent successful methods
for static multimodal optimization [42], [43].

A. Brief description of RS-CMSA-ES

In RS-CMSA-ES, #s subpopulations (P: , : = 1, 2, . . . , #s)
search for the global optima in parallel. Those solutions
that are deemed global minima are stored in an external
archive denoted by Archive. RS-CMSA-ES encourages each

subpopulation to converge to a different global minimum
by defining taboo regions for each subpopulation and each
archived solution. These taboo distances are adapted after each
restart, and a new restart is performed when the subpopulation
size is multiplied by 2popSize. This process continues until the
evaluation budget is depleted.

B. Input Data for Prediction

Data provided for the prediction method is the solutions stored
at Archive at the end of each time step (ARCHIVE =

{Archive (0) ,Archive (1) , . . . ,Archive(C)}). To be usable for
prediction methods, the archived solutions in previous time
steps that correspond to each solution in Archive (C) (y (C)< , < =

1, 2, . . . , ") should be determined, in which " specifies the
number of solutions in Archive (C). This is required to form
a history of locations of a specific optimum. This corre-
spondence is determined based on the minimum Euclidean
distance in the decision variable space, a strategy that has also
been used for prediction for dynamic multi-objective problems
[42]. Accordingly, for each y (C)< , the corresponding solution
in Archive (C − 1) is the nearest one to y (C)< . Similarly, the
nearest solution in Archive (C − 2) is the one that corresponds
to y (C−1)

< . This process continues until a time history of y (C)<
is identified and stored in a series denoted by S<, which
ideally, but not necessarily, represents the movement of a
specific optimum over time. This series is determined for
each y (C)< ∈ Archive (C), resulting in " series of solutions
(S= {S1, S2, . . . , S" }), which are provided for the prediction
method.

C. Initialization using AMLP

In dynamic problems, the evaluation budget may be very
limited; therefore, for RS-DCMSA-ES, #s = 1. This means
that at each restart, only one subpopulation evolves until it
terminates. The seed population at each restart in time step
C+1 may be initialized quasi-randomly or using AMLP, which
are discussed in this section.

For the first " restarts in time step C + 1, the parameters
of the initial population are defined using AMLP. First, the
predicted location of the optimum at time step C + 1 and the
estimate for the prediction error are calculated:(

x̂<,C+1, ê<,C+1
)
= �"!%(S<)

Then, these two vectors are used to initialize the seed subpop-
ulation:

xmean< = x̂<,C+1, C< = I�

Bmean< =


:Bmean

̂e<,C+1�� if C = 0

0.125
�

�∑
8=1

(
-U
8 − -L

8

)
if C > 0

< = 1, 2, . . . , ",

(12)

in which :Bmean is a fixed number and I� is the identity
matrix of size �.-U

8
and -L

8
are the upper and lower limit

of the 8Cℎ decision parameter. xmean< , Bmean< , and C< are
the center, mutation strength, and covariance matrix of the
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initialized subpopulation, respectively. When C = 0, ê<,C+1 is
not available; therefore, for this specific time step, the mutation
strength is determined using an alternative approach.

For the next " restarts in time step C +1, the subpopulation
P = {xmean< , Bmean< ,C<} is initialized using the default quasi-
random initialization strategy of RS-CMSA (no prediction is
used in this case). For the subsequent restarts, the realization
strategy switches after " restarts alternately. Therefore, the
initialization process is prediction-based for restarts in the
range [2:" + 1, (2: + 1) "] , (: = 0, 2, 4, . . . ), which aims
to maximize the exploitation of past information. In contrast,
for : = 1, 3, 5, . . . , the initialization process is quasi-random
which intends to maximize exploration. The latter goal is of
particular importance if the dynamic optimization could not
have detected some of the global minima in the previous time
steps. The only exceptions are for time steps zero and one.
For C = 0, there is no past information to use, and thus,
the subpopulation is always initialized using the quasi-random
method. For C = 1, the prediction based initialization is used
only to generate xmean< while Bmean< and C< are still de-
termined using the quasi-random method since the prediction
error cannot be estimated. The flowchart of RS-DCMSA, when
augmented with a prediction method, is provided in Fig. 7.

V. DYNAMIC MULTIMODAL BENCHMARK GENERATOR

This section extends RCDBG [60] to explore the potential
of different prediction methods. In particular, this extension
combines simple dynamic shift of the global optima with
the rigid rotation of RRDBG [60]. Besides, it introduces
a parameter for controlling the randomness in the change
pattern.

A. General formulation

The formulation of the developed dynamic benchmark gener-
ator is as follow:

� (x, C) = min
8

{
5

(
R(C) x − U8 (C)

_8

)}
+ ℎ(C)

8 = 1, 2, . . . , #gmin.

(13)

In this equation, 5 (x) is a basic unimodal or multimodal
function whose global minimum is 0, R(C) is a time dependent
rigid rotation matrix, U8 is the dynamic shift vector for the
8Cℎ global minimum, _8 are the scaling factors, ℎ(C) shifts the
global minimum value, and #gmin defines the number of global
minima in the problem. The global minima of � (x, C) are

x∗(C) = R)(C) U8 (C), 8 = 1, 2, . . . , #gmin (14)

The search range is symmetric about the origin. To make
sure that they remain within the search range after rotation,
U8 (C) must remain inside the sphere inscribed by the search
space.

The dynamic shift vectors are determined as follows: First,
for each global minimum, two random points p81 and p82 are
generated on the sphere inscribed in the search space. Then,
U8 (C) is calculated as follows:

U8 (C) = U8 (0) + 0.5 sin
(
2cC + A
=C8

)
u8 , A ∼ N

(
0, f2

r (C)
)

(15)

in which U8 (0) = 0.5
(
p82 + p81

)
and u8 = 0.5

(
p82 − p81

)
are

the shift vector at time step zero and the shift range vector
for the 8Cℎ global minima, respectively (see Figure 8 for an
example). fr (C) is the standard deviation of randomness in
the change pattern. A is sampled anew for each time step, and
=C8 is the severity of the change of U8 (C). A reasonable choice
is =C8 = =C . However, in this study, a slightly different =C8 is
used for each global minimum so that the relative locations of
global minima do not return to the same distribution after =C
time steps:

=C8 = =C exp
(

8 − 1
#gmin − 1

− 0.5
)
, (16)

in which =C is the average change severity. _8 are selected
using the same idea:

r0 = randperm
(
#gmin

)
_8 = exp

(
g_

�

(
A08 − 1
#gmin − 1

− 0.5
))
,

(17)

in which g_ controls the ratio of the largest to the small-
est scaling factor, and A0=3?4A<(#gmin) returns a random
permutation of natural numbers from 1 to #gmin (inclusive).
Performing this random permutation is recommended since
otherwise the smallest basin will always be the one with the
smallest =C8 .

To allow the test suite to simulate dynamic problems with
variable randomness in the change pattern, fr (C) is defined as
follows:

fr (C) = fr exp
(
ffr sin

(
cC

=C

))
, (18)

in which fr and ffr are the mean and standard deviation for
the randomness in the movement of the minima. Finally, the
offset in the objective value and the dynamic rotation matrix
are defined as follows:

ℎ(C) = 100 sin
(
3cC
=C

)
; R(C) = RC0, (19)

in which R0 is a randomly generated rigid rotation matrix
which rotates the search space by the angle of 2c/=C .

Remarkably, the movement of the global minima consists
of oscillation along a randomly selected chord of the sphere
plus a rigid rotation. This simulates relatively complex change
patterns.

B. Test problems

The considered test problems are summarized in Table I.
The small number of test problems allows for studying the
effect of decisive factors, such as problem’s dimensionality and
#gmin on the whole test suite. The definitions of the employed
basic functions are provided in the Supplementary Material
S2.

C. Performance Indicator

For multimodal optimization, the peak ratio (PR) is a
commonly used indicator, which can be calculated at the end
or during the optimization process. A reasonable approach to
employ this indicator for dynamic problems is to average the
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Fig. 7: Flowchart of RS-DCMSA

TABLE I: Description of the considered test problem. For all
these problems, the search range is [−5, 5]� .

Dynamic Function Basic Function
�1 (x, C) Rotated Rastrigin
�2 (x, C) Rotated Ackley
�3 (x, C) Rotated Zakharov
�4 (x, C) Rotated Rosenbrock
�5 (x, C) Rotated Elliptic
�6 (x, C) Rotated Levy

PR at the end of each time step, as employed in [31]; however,
this definition ignores when in the time steps the optima were
detected. An optimization method that can identify optima
faster requires fewer function evaluations, which is particularly
essential for dynamic optimization because the time between
two changes is limited.

Another performance indicator for multimodal dynamic
optimization in this paper is as follows: For time step t,
%' (C, ��) denotes the peak ratio after �� solution evalu-
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x2 

Fig. 8: Shift vector at time step zero (U8 (0)) and the change
extent vector (u8) for an exemplary problem with two global
minima.

ations in that time step, given the target function tolerance of
n 5 = 0.001. Then, for time step C, the dynamic peak ratio
(0 ≤ �%'(C) ≤ 1) is calculated as follows:

DPR(C) = 1
gC

gC∑
FE=1

PR(C,FE). (20)

A higher DPR denotes that the optimization method could
detect more optima faster. The mean DPR is calculated by
averaging DPR of each time step:

MDPR =

(
1

Cmax − C0 + 1

) Cmax∑
C=C0

DPR(C). (21)

The initial time steps (time steps 0, 1, ..., C0−1) were excluded
in the calculation of MDPR as they were deemed the training
period for the prediction method. MDPR with C0 = 20 is then
employed to compare the performance of different methods.

VI. DESCRIPTIVE EXPERIMENTS

Two descriptive experiments are performed in this section
to provide insights into different components of AMLP. In
this case, an ideal scenario is considered, in which the global
optima and their correct correspondence in the previous time
steps (time steps 0, 1, . . . , C) are provided for the prediction
method. The prediction method is then used to initialize the
subpopulation(s) for time step C + 1. The ideal scenario allows
for a more reliable comparison of different prediction methods
when there is no input error. For the rest of this article,
the default setting of !max = 20 is used for AMLP unless
mentioned otherwise. For the experiments in this section, a
maximum of 60 time steps are considered for each problem
(Cmax = 59).

A. Strength of the Introduced Diversity

The introduced diversity after a change plays a significant
role in the convergence rate towards the global optimum. As
argued in Section III-D, the strength of this diversity should be
proportional to the prediction error norm, and not to the length
of the predicted translation vector. To check the importance of
this issue, AMLP is employed with the following strategies:
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Fig. 9: MDPR as a function of :Bmean using two different
strategies for setting the introduced diversity after the change.
Results are for three dynamic problems with different amounts
of randomness in the changes.

• Introduced diversity proportional to the norm of the
predicted translation vector (IDPNPTV): Bmean =

:Bmean ‖ v̂C+1‖
• Introduced diversity proportional to the norm of the esti-

mated prediction error (IDPNEPE): Bmean = :Bmean ‖ êC+1‖
Figure 9 shows MDPR for these two strategies versus :Bmean

for three selected values of fr, representing dynamic problems
with no, moderate and severe patternless changes. This figure
shows that the optimal value of :Bmean strongly depends on
the randomness in the movement pattern if IDPNPTV is
employed. For a greater fr, :Bmean should be greater. Therefore,
there is no unique :Bmean that can work efficiently for IDP-
NPTV. In contrast, any :Bmean ∈ [0.4, 1.6] is a (near-) optimal
choice for all values of fr if IDPNEPE is employed.

B. Adaptation Capability of AMLP

The performance of the fixed level prediction (FLP) with
different levels is compared with that of AMLP. The objective
is to explore whether AMLP can find the optimal prediction
level, which depends on the randomness. For this experiment,
�1 (x, C) is considered with � = 10, gC = 40000, =C = 40. Two
cases are studied:

• Fixed randomness: ffr = 0, fr = 0, 10−4, 0.1
• Variable randomness: ffr = 10, fr = 10−2, 10−4, 10−6

Figure 10 illustrates MDPR as a function of the prediction
level when FLP is used, as well as MDPR of AMLP. Results
for both cases are provided. This figure reveals that:

• For a fixed amount of randomness, the optimal prediction
level depends on the randomness in the movement pattern
of the global minima. When the randomness intensifies,
the lower levels are more successful.
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Fig. 10: MDPR for the fixed level prediction (FLP) method
with different prediction levels (!) as well as AMLP for
�1 (x, C) in the ideal scenario

• When randomness is fixed, the performance of AMLP is
similar to the performance of FLP with the optimal level
for all the tested values of fr.

• When the randomness varies over time, AMLP outper-
forms FLP with any value for the prediction level.

Consequently, a fixed level prediction method can be neither
robust nor efficient when dynamic problems with different
randomness in the movements of the global optima are con-
sidered. The AMLP method can learn the optimal prediction
level on-the-fly and choose its outcome for prediction and
determining the strength of the introduced diversity.

VII. NUMERICAL COMPARISON

This section compares the performance of AMLP with some
of the most successful prediction methods in the literature. All
these prediction methods are incorporated into RS-DCMSA to
suppress the effect of the static optimizer. Besides, for all the
prediction methods, the introduced diversity is proportional to
the estimated prediction error (IDPNEPE), which was moti-
vated by findings in Section VI-A. The changes are assumed
to be informed in order to suppress the difference that may be
caused by the change detection mechanism. This means that
the optimization process is notified when a change occurs.
Consequently, the gap between the performance of the tested
methods solely originates from the difference in the prediction
methods. All the test problems are optimized in real scenarios,
which means that the prediction method has access only to the
archive at previous time steps.

A. Selected Methods

The following prediction methods were selected for com-
parison:
• PRE: This prediction method was originally developed for

dynamic multi-objective optimization [41]. The same idea

has been employed in a recent study [40] as well. PRE
simply calculates the translation vector as the difference
between a global optimum in the two last time steps:

x̂C+1 = xC + v̂C+1, v̂C+1 = xC − xC−1,

PRE is equivalent to the prediction level being fixed at
level two.

• Autoregression (AR): The autoregressive (AR) model, de-
veloped by Schneider and Neumaier [49], is a well-known
prediction method. It has been successfully employed
in the feed-forward prediction strategy [44], as well
as in several subsequent prediction methods [45], [46].
The univariate AR model, which assigns an independent
model to each variable, is selected for comparison. This
preference is based on its advantages over the multivariate
vector autoregressive model [44].

• Decomposition-based difference model (D-DM) [12]:
This prediction method utilizes the location of the global
optimum in the last three time steps:

x̂C+1 = xC + v̂C+1
v̂C+1 = 2 (xC − xC−1) − (xC−1 − xC−2)

None of these predictions methods require additional func-
tion evaluations nor involve any time-consuming operators.
Therefore, the time required for prediction is negligible when
compared with the whole optimization process.

B. Settings for the Test Problems

Different aspects of the generated test problems can be
controlled by tuning parameters of the test suite such as �,
#gmin, =C , fr, ffr . Except for �, these aspects are not known
a priori. Therefore, the overall performance of a DMMO
method in all the settings should be regarded when comparing
different strategies or methods. In this study, a base case is
defined, and the effect of each aspect is studied by changing
one tunable parameter at a time, resulting in eleven cases of
six test problems. Table II presents the settings used for each
case. For all cases, ffr = 0, Cmax = 100, and the first change
occurs after 10000�#gmin evaluations.

C. Results and Discussion

Since the test problems have some randomness, each prob-
lem is instantiated 20 times with seeds 1-20. Each prediction
method is tested once on each instantiated problem, and the
performance indicator is averaged over these 20 runs.

Table III presents the average MDPR, which is obtained by
calculating the average MDPR of the six test problems in each
case. The standard error of the average MDPR is also provided.
MDPR and the corresponding standard error for individual test
problems are provided in the supplementary material S3. For
Case I, the history of DPR for each problem is provided in
Figure 11. The obtained results are summarized below:
• Figure 11 shows that DPR gradually improves over time

when AMLP is used for prediction. This trend is par-
ticularly observable for �1. Two factors account for this
improvement: First, a higher prediction level can be used
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TABLE II: Settings for the parameters of the dynamic multimodal test problems

Case D #gmin =C fr gC/(�#gmin) Problem Aspect Studied
I 10 10 40 0 1000 Base setting
II 5 10 40 0 1000 Problem Dimension
III 20 10 40 0 1000 Problem Dimension
IV 10 5 40 0 1000 No. of global minima
V 10 20 40 0 1000 No. of global minima
VI 10 10 20 0 1000 Change severity
VII 10 10 80 0 1000 Change severity
VIII 10 10 40 0.0001 1000 Randomness in the pattern of the change
IX 10 10 40 0.1 1000 Randomness in the pattern of the change
X 10 10 40 0 200 Change Frequency
XI 10 10 40 0 5000 Change Frequency
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Fig. 11: DPR of the tested prediction method when incorporated to RS-DCMSA-ES for each problem in Case I.

TABLE III: MDPR ± standard error for the tested prediction methods. The values were calculated over six test problems in
each case.

Case Employed Prediction Method
AMLP PRE AR D-DM

I 0.852 ± 0.0040 0.695 ± 0.0042 0.603 ± 0.0069 0.635 ± 0.0050
II 0.757 ± 0.0044 0.589 ± 0.0034 0.548 ± 0.0066 0.547 ± 0.0042
III 0.873 ± 0.0040 0.733 ± 0.0040 0.624 ± 0.0075 0.647 ± 0.0055
IV 0.849 ± 0.0042 0.680 ± 0.0047 0.622 ± 0.0087 0.636 ± 0.0064
V 0.802 ± 0.0037 0.658 ± 0.0051 0.537 ± 0.0072 0.564 ± 0.0058
VI 0.867 ± 0.0021 0.715 ± 0.0025 0.673 ± 0.0062 0.677 ± 0.0050
VII 0.829 ± 0.0033 0.707 ± 0.0026 0.550 ± 0.0062 0.608 ± 0.0045
VIII 0.748 ± 0.0032 0.636 ± 0.0026 0.564 ± 0.0060 0.593 ± 0.0048
IX 0.717 ± 0.0038 0.690 ± 0.0033 0.528 ± 0.0053 0.622 ± 0.0051
X 0.370 ± 0.0033 0.190 ± 0.0026 0.200 ± 0.0037 0.189 ± 0.0035
XI 0.969 ± 0.0016 0.936 ± 0.0021 0.848 ± 0.0060 0.886 ± 0.0038

Avg. 0.785 ± 0.0011 0.657 ± 0.0011 0.572 ± 0.0020 0.600 ± 0.0015
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when the time step increases. Second, the prediction can
be more effective when more global minima have been
identified in previous time steps since the location of more
global minima in the new time step can be predicted. This
trend is observable for other prediction methods to some
extent, but it is not as significant as in the case of AMLP.
As a result, the superiority of AMLP intensifies for later
time steps.

• In case I (Figure 11), AMLP outperforms all the predic-
tion methods in all six test problems by a clear margin.
The second-best prediction method is problem-dependent.
For example, for �5, it is AR, while the second most
successful prediction method is PRE for �1 and �4

• Table III shows that AMLP is the dominant approach in
all cases. In Case IX, PRE is a close competitor. When
all cases are considered, MDPR of AMLP is 0.128 higher
than PRE, which is its closest competitor.

• Comparing the results of an arbitrary prediction method in
Cases I, X, and XI (Table III) reveals that the performance
of all the prediction methods substantially improve when
the change frequency is increased. All variants of RS-
DCMSA have DMPR > 0.84 in case XI (compared
with Case X, in which the problem changes faster).
Nevertheless, a better method is the one that can detect
more optimal solutions faster. This is particularly impor-
tant for fast changing or steadily changing environments
[13]. Besides, in practice, the solution from dynamic
optimization should be implemented for a time-window.
The faster the optimal solution(s) are found, the longer
they can be implemented in the actual problem. The
practical importance of this issue has been discussed in
detail by Deb et al. [13].

VIII. SUMMARY AND CONCLUSION

This study proposed an adaptive multilevel prediction
(AMLP) method which utilizes not only the pattern in the
movement of the global optima but also the pattern in the
prediction error. A higher level makes more use of past
information, and thus, can capture more complex change
patterns, whereas a lower prediction level is more robust to
input error. The proposed adaptation strategy helps the multi-
level prediction method to learn the near-optimal prediction
level on-the-fly by checking the success of each level of
prediction in the previous time step. The drawback of con-
ventional approaches that set the introduced diversity strength
proportionally to the norm of the translation of the global
optimum was demonstrated. Alternatively, AMLP determines
the introduced diversity strength proportionally to the norm of
the estimated prediction error.

This study also extended an existing dynamic benchmark
generator to enable it to simulate complex and partially
random patterns in the movement of their global minima. The
dynamic covariance matrix self-adaptation evolution strategy
with repelling subpopulation (RS-DCMSA-ES) was also de-
veloped by modification of RS-CMSA-ES. This modification
enables it to use the outcome of an arbitrary prediction method
to set the center and mutation strength of the initialized

subpopulation. AMLP was evaluated and compared with some
of the most successful prediction methods when they were
all incorporated into RS-DCMSA-ES. Eleven cases of six dy-
namic test problems were tested to form a comprehensive test
suite with different values for the problem’s dimensionality,
number of global minima, change severity, change frequency,
and randomness in the change pattern. Our comparison of
results showed the superiority of AMLP, especially when there
is a complex but smooth change in the problem.

The current study highlighted the importance of the pre-
diction error in previous time steps as valuable information
which has been generally overlooked in existing prediction
methods. In particular, the prediction error was used in AMLP
in three places: First, it was used to formulate the multilevel
prediction method by learning the pattern in the past prediction
errors. Second, AMLP sets the introduced diversity strength
proportionally to the norm of the prediction error. Third, the
prediction error in the latest time step was used to identify the
near-optimal prediction level at each time step.

Multimodal optimization is an indispensable component
of dynamic optimization, especially if a prediction method
is to be used, because the size and depths of the minima
may change over time, resulting in a significant change in
the global minimum, even if the change in the landscape is
small. This phenomenon may also occur for multi-objective
problems, e.g. a local Pareto optimal solution may become
a global Pareto-optimal solution after a change. There are
shared challenges and benefits between prediction methods for
dynamic multimodal and dynamic multi-objective problems.
A prediction method which is successful for one is likely
to be successful for the other, at least when some minor
adjustments are made. This is another reason that encourages
more research on dynamic multimodal optimization. Besides,
the proposed methodology in this study paves the way towards
a more complicated class of (dynamic) multimodal multi-
objective problems. For example, it is possible to direct each
subpopulation to a distinct subregion of the Pareto set. If
the problem is dynamic, AMLP can be used to provide a
reasonably good seed population for the new time step by
tracking the centers of these subregions over time.

IX. ACKNOWLEDGMENTS

This study was funded by Australian Research Council Dis-
covery Project DP190102637. The last author acknowledges
support from CONACyT project no. 2016-01-1920 and from a
2018 SEP-Cinvestav grant (application no. 4). Computational
work in this study was supported by National Computational
Infrastructure of Australia.

REFERENCES

[1] R. Azzouz, S. Bechikh, L. B. Said, and W. Trabelsi, “Handling
time-varying constraints and objectives in dynamic evolutionary multi-
objective optimization,” Swarm and evolutionary computation, vol. 39,
pp. 222–248, 2018.

[2] C. Bu, W. Luo, and L. Yue, “Continuous dynamic constrained optimiza-
tion with ensemble of locating and tracking feasible regions strategies,”
IEEE Transactions on Evolutionary Computation, vol. 21, no. 1, pp.
14–33, 2016.



14

[3] S. Jiang, M. Kaiser, S. Yang, S. Kollias, and N. Krasnogor, “A scalable
test suite for continuous dynamic multiobjective optimization,” IEEE
transactions on cybernetics, 2019.

[4] R. Chen, K. Li, and X. Yao, “Dynamic multiobjectives optimization with
a changing number of objectives,” IEEE Transactions on Evolutionary
Computation, vol. 22, no. 1, pp. 157–171, 2017.

[5] S. Scolan, S. Serra, S. Sochard, P. Delmas, and J.-M. Reneaume,
“Dynamic optimization of the operation of a solar thermal plant,” Solar
Energy, vol. 198, pp. 643–657, 2020.

[6] D. Rohde, B. R. Knudsen, T. Andresen, and N. Nord, “Dynamic
optimization of control setpoints for an integrated heating and cooling
system with thermal energy storages,” Energy, vol. 193, p. 116771, 2020.

[7] M. Lucio and L. A. Ricardez-Sandoval, “Dynamic modelling and opti-
mal control strategies for chemical-looping combustion in an industrial-
scale packed bed reactor,” Fuel, vol. 262, p. 116544, 2020.

[8] Z. Wang and M. Gong, “Dynamic deployment optimization of near
space communication system using a novel estimation of distribution
algorithm,” Applied Soft Computing, vol. 78, pp. 569–582, 2019.

[9] Y. Liu, “An optimization-driven dynamic vehicle routing algorithm
for on-demand meal delivery using drones,” Computers & Operations
Research, vol. 111, pp. 1–20, 2019.

[10] N. R. Sabar, A. Bhaskar, E. Chung, A. Turky, and A. Song, “A self-
adaptive evolutionary algorithm for dynamic vehicle routing problems
with traffic congestion,” Swarm and evolutionary computation, vol. 44,
pp. 1018–1027, 2019.

[11] C. Yin, Z. Xiao, X. Cao, X. Xi, P. Yang, and D. Wu, “Offline and
online search: Uav multiobjective path planning under dynamic urban
environment,” IEEE Internet of Things Journal, vol. 5, no. 2, pp. 546–
558, 2017.

[12] L. Cao, L. Xu, E. D. Goodman, and H. Li, “Decomposition-based
evolutionary dynamic multiobjective optimization using a difference
model,” Applied Soft Computing, vol. 76, pp. 473–490, 2019.

[13] K. Deb, S. Karthik et al., “Dynamic multi-objective optimization and
decision-making using modified nsga-ii: a case study on hydro-thermal
power scheduling,” in International conference on evolutionary multi-
criterion optimization. Springer, 2007, pp. 803–817.

[14] W. T. Koo, C. K. Goh, and K. C. Tan, “A predictive gradient strategy for
multiobjective evolutionary algorithms in a fast changing environment,”
Memetic Computing, vol. 2, no. 2, pp. 87–110, 2010.

[15] A. Akrami, M. Doostizadeh, and F. Aminifar, “Power system flexibility:
an overview of emergence to evolution,” Journal of Modern Power
Systems and Clean Energy, vol. 7, no. 5, pp. 987–1007, 2019.

[16] J. Branke, “Memory enhanced evolutionary algorithms for changing
optimization problems,” in Proceedings of the 1999 Congress on Evo-
lutionary Computation-CEC99 (Cat. No. 99TH8406), vol. 3. IEEE,
1999, pp. 1875–1882.

[17] Z. Peng, J. Zheng, J. Zou, and M. Liu, “Novel prediction and memory
strategies for dynamic multiobjective optimization,” Soft Computing,
vol. 19, no. 9, pp. 2633–2653, 2015.

[18] Q. Li, J. Zou, S. Yang, J. Zheng, and G. Ruan, “A predictive strategy
based on special points for evolutionary dynamic multi-objective opti-
mization,” Soft Computing, pp. 1–17, 2018.

[19] G. Ruan, G. Yu, J. Zheng, J. Zou, and S. Yang, “The effect of diversity
maintenance on prediction in dynamic multi-objective optimization,”
Applied Soft Computing, vol. 58, pp. 631–647, 2017.

[20] R. Liu, J. Li, C. Mu, L. Jiao et al., “A coevolutionary technique based on
multi-swarm particle swarm optimization for dynamic multi-objective
optimization,” European Journal of Operational Research, vol. 261,
no. 3, pp. 1028–1051, 2017.

[21] L. Shi, Y. Wu, and Y. Zhou, “A hybrid immigrants strategy for dynamic
multi-objective optimization,” in 2018 Tenth International Conference
on Advanced Computational Intelligence (ICACI). IEEE, 2018, pp.
589–593.

[22] C. Li and S. Yang, “A general framework of multipopulation methods
with clustering in undetectable dynamic environments,” IEEE Transac-
tions on Evolutionary Computation, vol. 16, no. 4, pp. 556–577, 2012.

[23] R. Vafashoar and M. R. Meybodi, “A multi-population differential
evolution algorithm based on cellular learning automata and evolutionary
context information for optimization in dynamic environments,” Applied
Soft Computing, vol. 88, p. 106009, 2020.

[24] R. Liu, J. Li, J. Fan, and L. Jiao, “A dynamic multiple populations
particle swarm optimization algorithm based on decomposition and
prediction,” Applied Soft Computing, vol. 73, pp. 434–459, 2018.

[25] X.-W. Luo, Z.-J. Wang, R.-C. Guan, Z.-H. Zhan, and Y. Gao, “A
distributed multiple populations framework for evolutionary algorithm
in solving dynamic optimization problems,” IEEE Access, vol. 7, pp.
44 372–44 390, 2019.

[26] A. Meier and O. Kramer, “Prediction in nature-inspired dynamic op-
timization,” in Frontier Applications of Nature Inspired Computation.
Springer, 2020, pp. 34–52.

[27] T. T. Nguyen, S. Yang, and J. Branke, “Evolutionary dynamic opti-
mization: A survey of the state of the art,” Swarm and Evolutionary
Computation, vol. 6, pp. 1–24, 2012.

[28] T. Blackwell and J. Branke, “Multi-swarm optimization in dynamic envi-
ronments,” in Workshops on Applications of Evolutionary Computation.
Springer, 2004, pp. 489–500.

[29] X. Li, M. G. Epitropakis, K. Deb, and A. Engelbrecht, “Seeking multiple
solutions: an updated survey on niching methods and their applications,”
IEEE Transactions on Evolutionary Computation, vol. 21, no. 4, pp.
518–538, 2016.

[30] S. Das, S. Maity, B.-Y. Qu, and P. N. Suganthan, “Real-parameter
evolutionary multimodal optimization-a survey of the state-of-the-art,”
Swarm and Evolutionary Computation, vol. 1, no. 2, pp. 71–88, 2011.

[31] W. Luo, X. Lin, T. Zhu, and P. Xu, “A clonal selection algorithm for
dynamic multimodal function optimization,” Swarm and Evolutionary
Computation, vol. 50, p. 100459, 2019.

[32] S. Cheng, H. Lu, Y.-n. Guo, X. Lei, J. Liang, J. Chen, and Y. Shi,
“Dynamic multimodal optimization: A preliminary study,” in 2019 IEEE
Congress on Evolutionary Computation (CEC). IEEE, 2019, pp. 279–
285.

[33] S. Kundu, S. Biswas, S. Das, and P. N. Suganthan, “Crowding-based
local differential evolution with speciation-based memory archive for
dynamic multimodal optimization,” in Proceedings of the 15th annual
conference on Genetic and evolutionary computation. ACM, 2013, pp.
33–40.

[34] S. Cheng, H. Lu, W. Song, J. Chen, and Y. Shi, “Dynamic multimodal
optimization using brain storm optimization algorithms,” in International
Conference on Bio-Inspired Computing: Theories and Applications.
Springer, 2018, pp. 236–245.

[35] N. Nanas and A. De Roeck, “Multimodal dynamic optimization: from
evolutionary algorithms to artificial immune systems,” in International
Conference on Artificial Immune Systems. Springer, 2007, pp. 13–24.

[36] Z. Liang, S. Zheng, Z. Zhu, and S. Yang, “Hybrid of memory and pre-
diction strategies for dynamic multiobjective optimization,” Information
Sciences, vol. 485, pp. 200–218, 2019.

[37] A. Ahrari, S. Elsayed, R. Sarker, and D. Essam, “A new prediction
approach for dynamic multiobjective optimization,” in Proceedings of
the Congress on Evolutionary Computation. IEEE, 2019, p. in press.

[38] M. Rong, D. Gong, Y. Zhang, Y. Jin, and W. Pedrycz, “Multidirectional
prediction approach for dynamic multiobjective optimization problems,”
IEEE transactions on cybernetics, vol. 49, no. 9, pp. 3362–3374, 2018.

[39] X.-F. Liu, Y.-R. Zhou, and X. Yu, “Cooperative particle swarm optimiza-
tion with reference-point-based prediction strategy for dynamic multi-
objective optimization,” Applied Soft Computing, vol. 87, p. 105988,
2020.

[40] J. Ou, J. Zheng, G. Ruan, Y. Hu, J. Zou, M. Li, S. Yang, and X. Tan, “A
pareto-based evolutionary algorithm using decomposition and truncation
for dynamic multi-objective optimization,” Applied Soft Computing, p.
105673, 2019.

[41] A. Zhou, Y. Jin, Q. Zhang, B. Sendhoff, and E. Tsang, “Prediction-based
population re-initialization for evolutionary dynamic multi-objective op-
timization,” in International Conference on Evolutionary Multi-Criterion
Optimization. Springer, 2007, pp. 832–846.

[42] A. Ahrari, K. Deb, and M. Preuss, “Multimodal optimization by covari-
ance matrix self-adaptation evolution strategy with repelling subpopula-
tions,” Evolutionary Computation, vol. 25, no. 3, pp. 439–471, 2017.

[43] A. Ahrari and K. Deb, “A novel class of test problems for performance
evaluation of niching methods,” IEEE Transactions on Evolutionary
Computation, vol. 22, no. 6, pp. 909–919, 2017.

[44] I. Hatzakis and D. Wallace, “Dynamic multi-objective optimization with
evolutionary algorithms: a forward-looking approach,” in Proceedings
of the 8th annual conference on Genetic and evolutionary computation.
ACM, 2006, pp. 1201–1208.

[45] J. Zou, Q. Li, S. Yang, H. Bai, and J. Zheng, “A prediction strategy
based on center points and knee points for evolutionary dynamic multi-
objective optimization,” Applied Soft Computing, vol. 61, pp. 806–818,
2017.

[46] A. Zhou, Y. Jin, and Q. Zhang, “A population prediction strategy for
evolutionary dynamic multiobjective optimization,” IEEE transactions
on cybernetics, vol. 44, no. 1, pp. 40–53, 2013.

[47] S. Jiang and S. Yang, “A steady-state and generational evolutionary
algorithm for dynamic multiobjective optimization,” IEEE Transactions
on Evolutionary Computation, vol. 21, no. 1, pp. 65–82, 2017.



15

[48] D. Chen, F. Zou, R. Lu, and X. Wang, “A hybrid fuzzy inference
prediction strategy for dynamic multi-objective optimization,” Swarm
and evolutionary computation, vol. 43, pp. 147–165, 2018.

[49] T. Schneider and A. Neumaier, “Algorithm 808: Arfit—a matlab pack-
age for the estimation of parameters and eigenmodes of multivariate
autoregressive models,” ACM Transactions on Mathematical Software
(TOMS), vol. 27, no. 1, pp. 58–65, 2001.

[50] R. Rambabu, P. Vadakkepat, K. C. Tan, and M. Jiang, “A mixture-of-
experts prediction framework for evolutionary dynamic multiobjective
optimization,” IEEE transactions on cybernetics, 2019.

[51] S. B. Gee, K. C. Tan, and H. A. Abbass, “A benchmark test suite for
dynamic evolutionary multiobjective optimization,” IEEE transactions
on cybernetics, vol. 47, no. 2, pp. 461–472, 2017.

[52] S. Jiang and S. Yang, “Evolutionary dynamic multiobjective optimiza-
tion: Benchmarks and algorithm comparisons,” IEEE transactions on
cybernetics, vol. 47, no. 1, pp. 198–211, 2017.

[53] Y. Wang, J. Yu, S. Yang, S. Jiang, and S. Zhao, “Evolutionary dynamic
constrained optimization: Test suite construction and algorithm compar-
isons,” Swarm and Evolutionary Computation, vol. 50, p. 100559, 2019.

[54] S. Zeng, R. Jiao, C. Li, X. Li, and J. S. Alkasassbeh, “A general frame-
work of dynamic constrained multiobjective evolutionary algorithms for
constrained optimization,” IEEE transactions on cybernetics, vol. 47,
no. 9, pp. 2678–2688, 2017.

[55] I. Moser and R. Chiong, “Dynamic function optimization: the mov-
ing peaks benchmark,” in Metaheuristics for Dynamic Optimization.
Springer, 2013, pp. 35–59.

[56] R. Mukherjee, G. R. Patra, R. Kundu, and S. Das, “Cluster-based
differential evolution with crowding archive for niching in dynamic
environments,” Information Sciences, vol. 267, pp. 58–82, 2014.

[57] F. B. Ozsoydan and A. Baykasoğlu, “Quantum firefly swarms for
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