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Abstract

A reinitialization approach is an effective way of generalizing a static multi-

objective optimization method to a dynamic one. It is usually comprised of a

prediction operator for predicting the approximate location(s) of the optimal

solution(s) and a variation operator for enhancing the diversity of the reini-

tialized solution(s) after a change. While many recent studies have focused

on prediction methods, the importance of the variation operator has usually

been overlooked. This study systematically explores the effects of the accu-

racy of the prediction method employed as well as the frequency and severity

of the change on the optimal strength of the variation used for reinitialization.

Subsequently, it introduces an adaptive variation operator for dynamic multi-

objective optimization which can learn the optimal variation strength on-the-fly.

To develop this method, firstly, a heredity measure for evolutionary algorithms

is formulated to quantify the contribution of each reinitialized solution to the

optimization process by measuring the presence of its traits in the final popula-

tion. Some carefully designed descriptive simulations are performed to explore

the capability of the proposed method to learn the optimal variation strength

and its sensitivity to the change severity, initial variation strength, and accuracy
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of the employed prediction method. Finally, the performance of this variation

operator on 42 dynamic multi-objective test problems is compared with those

of five other popular ones, with numerical comparisons revealing its superior

learning capability.

Keywords: Dynamic problem, multiobjective optimization, prediction

method, adaptation, random variation

1. Introduction

A dynamic problem has some features that vary over time because of a

change in the search space or objective landscape [1], depth of the minima

[2, 3], constraints [4, 5], or even the number of objectives or decision variables

[6, 7]. Since many practical problems have multiple objectives and undergo5

some disruptions or changes, dynamic multi-objective optimization (DMOO)

has been applied to many classes of practical problems, such as time-varying

control systems [8, 9, 10], vehicle routing [11, 12, 13, 14], communication systems

[15], and mission planning [16].

A dynamic multi-objective problem (DMOP) can be optimized by indepen-10

dent restarts of a static multi-objective optimization (SMOO) method when-

ever an environmental change is detected. However, this is only a reasonable

approach if the changes are radical [17]. As the changes are generally not fun-

damental in many applications, the problem landscape after a change resembles

the one before it. This is particularly true for continually changing problems,15

such as optimal dynamic economic dispatch [18] in which the actual problem is

assumed to remain unchanged over a short interval [19, 8] called a time step.

Furthermore, there may be some patterns in the changes [20, 17] and learning

them can be helpful. Consequently, a DMOO method can and should use in-

formation from the past, especially when the available evaluation budget per20

change is limited.

A change in a dynamic problem may or may not be informed [17]. If it is not,

it can be detected by analyzing the algorithm’s behavior or simply reevaluation
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of a fraction of the population in each generation [21]. However, neither of these

methods can guarantee that changes are always detected correctly.25

A DMOO method is usually developed by the augmentation or specialization

of a SMOO one. Population-based methods, such as evolutionary algorithms

(EAs) and swarm-based techniques, have been commonly employed as SMOO

methods for DMOO [21, 22, 23, 24] because of their global search capabilities

and flexible formulations. The strategies used to augment a SMOO method for30

DMOPs can be classified into two groups [17]. The first one reformulates the

operators of the SMOO method to mainly maintain high diversity during the

optimization process [21]. Some examples of this are the use of multiple popu-

lations [25, 26, 27] and the incorporation of an additional local search procedure

for some of the solutions [28]. The second group exploits past information to35

mainly reinitialize the population after each change; therefore, they are referred

to as reinitialization methods in this study. They can utilize the history of the

optimization process to reinitialize the population as close as possible to the

Pareto optimal set (POS) in the new time step. Memory-based and prediction

methods [21] are remarkable examples of approaches in this group.40

The primary limitation of techniques in the first group is that such refor-

mulations may not be easily applied to another SMOO method as each may

have its own operators. In contrast, the reinitialization components in the sec-

ond group act as separate modules that are activated only when a change is

detected. This modularity of reinitialization methods enables their generaliza-45

tion, that is, a single initialization method can be easily combined with different

SMOO ones. Besides, a better reinitialized population for a particular EA is

also likely to be a better one for other EAs. Because of these advantages, there

has been an increasing number of reinitialization methods developed for DMOO

[29, 30, 31, 20].50

A reinitialization method consists of two operators: a prediction one and a

variation one. When a change occurs, firstly, the prediction operator generates

a set of temporary solutions close to the predicted POS in the new time step.

Many prediction operators define a global translation vector based on the change
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in the centroid of POS in the previous time steps [32, 33, 34] , although it is55

also possible to determine it based on other specific points (such as the knee

point if the problem has more than one objective [35]). A more general method

defines a distinct translation vector for each solution [36, 37, 38, 39], or cluster

of solutions [20, 29, 40, 41]. Besides translation vectors, some studies adopted

other strategies for prediction, such as Kalman filter [42], transfer learning [43],60

auto-regression [44, 17], and ensembles of different prediction methods [45, 46].

After predicting the new POS, the prediction operator generates a set of

evenly distributed temporary solutions around it. The variation operator is

then applied to these temporary solutions to increases their diversity, which

can be advantageous because the prediction operator is generally inaccurate65

[17]. However, this extra diversity comes at the cost of the loss of previous

information, including that provided by the prediction operator. Therefore, a

robust variation operator should be capable of identifying the optimal trade-off

between the advantages of both strong and weak variations. Although there

are many reinitialization methods for DMOO, most of the presented ones in70

the literature focused on predicting POS while the importance of the variation

operator and its optimal strength was not adequately considered. In one notable

study [8], the effect of the random variation strength was systematically studied

using the Dynamic Non-dominated Sorting Genetic Algorithm-II (DNSGA-II)

but no prediction method for reinitialization was adopted.75

This research aims to advance our knowledge of the factors that affect the

optimal variation strength. It also introduces a novel variation operator that

can learn this optimal variation strength on-the-fly. The contributions of this

study are as follows.

• It conducts a systematic analysis of the factors impacting the optimal80

variation strength for a reinitialization method.

• It proposes and formulates a measure based on heredity to quantify the

contribution of each reinitialized solution to the optimization process in

each time step. Using this measure, Heredity-based Adaptive Variation
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(HBAV), which is a method for adapting the random variation strength85

of a reinitialization method, is developed.

• It demonstrates the capability of HBAV to learn the optimal random vari-

ation strength and its compatibility with different prediction methods.

• It demonstrates the superiority of HBAV over existing random variation

operators using 14 test problems in three different settings in terms of the90

severity and frequency of changes.

The remainder of this article is organized as follows: Section 2 reviews the

variation operators presented in the literature; factors impacting the optimal

variation strength are analyzed in Section 3; Section 4 introduces a measure

based on the concept of heredity and HBAV technique for adjusting the variation95

strength; Section 5 provides some controlled experiments to illustrate the effect

of each component of HBAV; Section 6 compares HBAV with some of the most

well-known variation operators; and finally, the conclusions drawn are discussed

in Section 7.

2. Related Work100

The DMOPs considered in this study can be formulated as follows:

min f(x, C) = ( 51 (x, C), 52 (x, C), . . . , 5" (x, C)))

s.t. XL 4 x 4 XU.

(1)

In this formulation, f (x, C) ∈ R" is the vector of objective values for solution

x, t is the time step number, and XL, XU ∈ R� specify the search range. A

problem’s dimension in the variable and objective spaces are denoted by � and

", respectively. The notations for numbering the time steps and changes are105

illustrated in Fig. 1. The initial and final populations at time step #t are

denoted by X(C)IP = {x (C)IP,1, x
(C)
IP,2, . . . , x

(C)
IP,# } and X(C)FP = {x (C)FP,1, x

(C)
FP,2, . . . , x

(C)
FP,# },

respectively, where N is the size of the parent population.
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Figure 1: Numbering notations for changes, time steps, and initial and final populations at

each time step for a typical dynamic problem with three changes
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Figure 2: Reinitialization process for change #C. The prediction operator is applied to X
(C )
FP

to

form temporary population X
(C+1)
TP

. Then, the variation operator is applied to X
(C+1)
TP

to form

reinitialized population X
(C+1)
IP

.

The operators of a reinitialization method are presented in Fig. 2. When

change #(t+1) occurs, firstly, the prediction operator is applied to X(C)FP to110

form a temporary population (X(C+1)TP = {x (C+1)TP,1, x
(C+1)
TP,2, . . . , x

(C+1)
TP,# }) and then, the

variation operator is applied to X(C+1)TP to generate X(C+1)IP .

Because of the disruptive effects of the random variation on the exploitation

of previous information, some studies applied it conservatively; for example,

no random variation is used in Differential Prediction (DP) [33]. Some other115

variation operators perturb X(C+1)TP along a specific direction; therefore, they can

be called directional variations; for example, the Directed Search Strategy (DSS)

[47] calculates the centroid translation vector (v (C)) and diversifies one half of the

solutions along sgn(v (C) ) and the other half along the directions perpendicular

to it, where ‘sgn’ is the sign function. Also, a variation along sgn(v (C) ) is120

followed in the Hybrid Immigrants Strategy (HIS) [48] for a fraction of solutions.

Controlled Translation with Random and Directional Variation (CTRDV) [34]

employs both directional and random variations. Nevertheless, the algorithm is

more successful when only the directional variation operator is active.
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Most variation operators increase diversity by applying a Gaussian noise,125

the variation strength of which is denoted by fr in this study. Although fr is

set to a fixed value in some methods [37], a value proportional to ‖E (C) ‖, where

‖.‖ calculates the Euclidean norm, is often preferred; for example, the reinitial-

ization method developed for the Steady-state and Generational Evolutionary

Algorithm (SGEA) [32] sets fr = ‖E (C) ‖/(2
√
�). Multi-directional Prediction130

(MDP) [20] classifies solutions into multiple clusters, defines a translation vec-

tor for each cluster and calculates fr as the average length of the translation

vectors.

Some variation operators calculate fr over pairwise distances between all

or some selected solutions in X(C)FP and X(C−1)FP . Population Prediction Strategy135

(PPS) [44] defines a manifold matrix for X(C)FP and calculates fr as the distance

between the two latest manifolds. CTRDV [34] calculates the average pairwise

distance (3pw) after relocating the centroid of X(C−1)FP such that it coincides with

the centroid of X(C)FP, and then sets fr = 2r3pw, where 2r is the proportionality

constant controlled by the user. The purpose of this relocation is to suppress140

that part of the change that can be captured by a pure translation. While this

idea is different, the outcome will be similar to that of PPS [44], except that

CTRDV enforces a one-to-one correspondence when calculating 3pw and defines

a different proportionality constant.

A more detailed random variation strategy was proposed by Zhou et al. [36].145

Firstly, it calculates an individual translation vector for each solution (E (C)
8

) and

then determines an individual random variation strength proportional to ‖E (C)
8
‖.

Therefore, it uses a distinct variation strength for each solution in X(C+1)TP .

Some variation operators introduce random solutions or immigrants after

each change, which can be perceived as special cases of fr→∞. As the aim of150

generating such solutions is to maximize diversity in return for ignoring previ-

ous information, only a fraction of solutions is usually generated this way. For

example, a reinitialization of 20-40% of solutions using this strategy was bene-

ficial for DNSGA-II-A [8]. Similarly, HIS [48] generates 15% of solutions using

random immigrants.155
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Hypermutation [49] is another strategy which applies a mutation operator to

the final solutions with an increased probability and/or strength. In the case of

DNSGA-II-B [8], polynomial-based mutation is applied to a fraction (0 ≤ b ≤1)

of final solutions with a mutation probability twice the default value while the

mutation index is one-fifth of the default value, which results in a stronger160

diversification. In this particular case, any value of b could be beneficial, but if

the worst-case scenario is considered, b = 0.7 was the optimal choice.

In summary, most existing variation operators set fr proportionally to the

size of the predicted change in the location of the optimal solution(s). Although

the idea of a larger random variation when the change is more significant sounds165

intuitive, there is little theoretical or experimental evidence in the literature that

supports its aptness. Defining a robust variation operator that can cope with

diverse types of dynamic problems requires a good understanding of the effects

of the intervening factors.

As a preliminary step, the next section analyzes two features of dynamic170

problems and one of prediction methods that affect the optimal variation strength.

It also performs controlled numerical simulations to explore how these features

influence the optimal variation strength. In the subsequent section, an adaptive

method which can learn the optimal variation strength during the optimization

process is introduced.175

3. Analyzing the Effect of the Variation Strength

The strength of the random variation affects the performance of a reinitial-

ization method, which, in turn, influences that of the entire DMOO method. As

previously discussed, the benefits of random variations come at the cost of the

loss of valuable previous information. It is believed that the optimal fr is cor-180

related with the inaccuracy of the prediction operator which can be caused by

two main sources [17]. Firstly, a prediction model cannot theoretically capture

all aspects of the change (prediction model error), and secondly, the information

provided to the prediction operator is not accurate because it has access to an
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approximate finite set of Pareto optimal solutions instead of the actual POS185

(inaccuracy of the provided data).

3.1. Experimental Setup

The experimental setup for analyzing the effect of the variation strength is

briefly discussed in this section.

3.1.1. Real versus Ideal Scenario190

In an interesting approach for studying the limitations of a reinitialization

method in isolation suggested in [34], a reinitialization method is provided with

a set of uniformly distributed solutions on the true Pareto front (PF) of previous

time steps (0, 1, 2, ..., C). Each set is determined by generating a large number

(2000 or more) of Pareto optimal solutions in a grid in the sub-space defined195

by the POS (given its theoretical equation) and then selecting # solutions uni-

formly in the objective space using the concept of reference directions [50]. A

reinitialization method then uses these data to initialize the population for time

step C + 1. This scenario, called the ideal scenario, enables the potential of a

reinitialization method to be studied after the inaccuracy of the data provided200

is minimized. In the real scenario, which simulates a more practical case, the

reinitialization method uses the final population at each time step as an ap-

proximate for the POS. Its performance, when compared with that of the ideal

scenario, can reveal its robustness to the inaccuracy of the data provided.

3.1.2. Reinitialization Method205

We employ a simple but meaningful reinitialization method to avoid un-

necessary complexity. It consists of a simple prediction operator and a simple

random variation one, with the former using an intuitive center-based model

which has been commonly employed in previous studies [32, 33, 34]. It defines

a translation vector (v (C)) using the centroid of the final populations in the last

two time steps: (I (C) and I (C−1)) as

v (C) = I (C) − I (C−1) . (2)
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The prediction model relocates each final solution in the previous time step

using this vector to generate a set of temporary solutions as

x (C+1)TP,8 = x (C)FP,8 + 2Ev
(C) , 8 = 1, 2, . . . , #, (3)

in which parameter 2E controls how far the final solutions are translated along

v (C) . If x (C+1)TP,8 is outside the search space, it is relocated to the closest point in it.

Subsequently, the variation operator is applied to achieve enhanced diversity as

x (C+1)IP,8 ∼ N(x
(C+1)
TP,8 , f

2
r , X

L, XU), 8 = 1, 2, . . . , #. (4)

This equation shows that the random variation follows a truncated normal dis-

tribution with a mean of x (C+1)TP,8 and standard deviation of fr. Using a truncated210

distribution ensures that the reinitialized solutions fall within the search limits

(XL and XU).

3.1.3. Test Problem

A simple DMO test problem, called the DF0 problem, is considered in this

sub-section, which is 
51 (x, C) = G1,

52 (x, C) = 6(x)
(
1 − G1

6 (x)

)
6 (x) = 1 +

�∑
8=2

|G8 − � (C) |

� (C) =


mod(C, 2) if mod(C, 2) ≤ 1

2 −mod(C, 2) otherwise

XL = 0, XU = 1

(5)

in which ‘mod′ denotes the modulo operation. The time step (C) is calculated

similarly to the CEC’2018 test problems [51] as

C =
1

=C

⌊
max{0, 64=#> + gC − 51}

gC

⌋
, (6)

in which 64=#>, gC , and =C are the generation number, the change frequency,

and the change severity parameter, respectively. The first change occurs after215
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Figure 3: POS and PF of DF0 for each time step when =C =5. The change pattern in the POS

can be fully captured by a fixed translation vector except when the POS reaches the bounds.

50 generations. The POS and PF of this problem at different time steps are

illustrated in Fig. 3 for =C = 5. In DF0, the change in the location of the POS

can be fully captured by a translation vector with a fixed length. Also, as the

direction of the translation vector remains unchanged, the prediction operator

adopted in (3) with 2E = 1 can accurately predict the new POS. Furthermore,220

the optimal fr remains almost constant. The only exception is for time steps

in which the POS lies on the boundary of the search space, when the direction

of the translation vector is reversed. �=10 is considered in this study.

3.1.4. Performance Indicator

The Mean Hypervolume Ratio (MHVR) and Mean Inverted Generational

Distance (MIGD) are two of the most common indicators used for performance

evaluation of DMO methods [8, 51]. Both can measure the combined effect of

convergence and diversity. This study favors MHVR because it is a Pareto-

compliant indicator [52, 53], which is defined as

"�+' =

#c∑
C=1

�+

(
X(C)FP

)
�+

(
POS(C)

) , (7)
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in which #c is the maximum number of changes. The first time step (C = 0)225

is excluded from the calculation of the MHVR, and for each experiment, 30

independent runs are performed with their MHVRs averaged.

3.1.5. Static Multi-Objective Optimization Method

For all the numerical experiments, the SMOO method is a modified NSGA-

III [54] in which the reference values for normalization are selected in a different230

way. Firstly, all the solutions ranked higher than the critical rank (i.e., the

rank from which the last solution will be selected) are discarded. Then, the

remaining minimum and maximum values are used as the reference ones for

normalizing the objective values. The reason for this modification is that the

default hyperplane-based normalization method of NSGA-III may result in un-235

reasonable reference values in problems with three or more objectives [55]. The

other control parameters of the modified NSGA-III are set to # = 100, SBX with

%cross = 0.9 and [cross = 20, and polynomial-based mutation with %mut = 1/�

and [mut = 20.

3.2. Controlled Numerical Simulations240

In this section, some controlled experiments are conducted to study the

effects of the prediction accuracy, change severity, and change frequency on

the optimal random variation strength. Each experiment is performed with 16

different values of fr in the range [0, 0.3], with the maximum number of changes

set to 80. By default, =C = gC = 10 and 2E = 0 unless mentioned otherwise. Both245

ideal and real scenarios are considered, and to suppress the effect of the change

detection mechanism, which is not investigated in this study, it is assumed that

the changes are informed.

3.2.1. Effect of Prediction Accuracy

One way to test the effect of the prediction accuracy on the optimal fr is250

to try different test problems with controlled levels of predictability regarding

their change patterns. An alternative and easier approach is to control the

accuracy of the prediction operator. For our simple prediction operator, this
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can be achieved using smaller or greater values for 2E than the near-optimal

value (2E = 1) in (3), which is the main advantage of having 2E as a controllable255

parameter.

Fig. 4 illustrates the MHVR (mean and 95% confidence interval) as a func-

tion of fr for five selected values of 2E in the ideal and real scenarios when

#2 =80 and gC = =C = 10. The following facts can be observed.

• Of the tested values, 2E = 1 is the best choice. A smaller or greater260

one indicates a worse prediction operator or equivalently, problems with

irregular or hard-to-capture change patterns.

• In the ideal scenario, the optimal value of fr depends strongly on the ac-

curacy of the prediction model. More importantly, a stronger variation is

helpful when this model is less reliable because the diversity in the reini-265

tialized population determines the exploration-exploitation trade-off in the

early iterations after a change. The optimal trade-off is strongly correlated

with the distance between the predicted and actual POSs. A more accu-

rate prediction method means a smaller distance between these two and

consequently, a smaller optimal diversity in the reinitialized population.270

• The same trends can be observed in the real scenario, except that even

for the best prediction model (2E =1), some random variation can still be

helpful.

3.2.2. Effect of Change Severity

The change severity is another potential factor that may affect the optimal275

variation strength. For a fixed prediction model, the prediction error intensifies

as changes become more radical, and thus, a stronger random variation becomes

helpful. To investigate this factor, we try different values of =C when #c = 80,

gC =10 and 2E =0 which represents a mediocre prediction method.

Fig. 5 illustrates the MHVR (mean and 95% confidence interval) as a func-280

tion of fr for four selected values of change severity (a smaller =C means a more

13
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Figure 4: Effects of fr and 2E on performance of the simple reinitialization method on DF0 in

ideal and real scenarios. The markers denote the mean values of MHVR and the lines represent

the 95% confidence interval (upper and lower bounds may overlap). The results have been

calculated over 30 independent runs for each setting when #2 = 80 and gC = =C = 10.

severe change) in the ideal and real scenarios. The following observations can

be made from this figure.

• The optimal value of fr increases when the changes become more severe

because severe changes result in a large distance between the POSs of two285

successive time steps. As discussed in sub-Section 3.2.1, the optimal fr

is directly related to this distance, which explains its dependency on the

change severity; For example, for =C =40 (the least severe changes) in the

ideal scenario, the optimal fr is zero, whereas it is approximately 0.2 for

=C = 5. The same trend can be observed in the real scenario, except that290

the optimal fr is slightly larger.

• For =C ≤5, the DMOO method may reach a higher MHVR in the real than

ideal scenario if fr ≤0.06. This implies that when the changes are radical

and the prediction operator fails to learn the change pattern, over-reliance

on previous information can be more detrimental than beneficial.295
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Figure 5: Effects of fr and change severity (=C) on performance of simple reinitialization

method on DF0 in ideal and real scenarios. (The Markers denote the mean values and the

lines represent the 95% confidence interval (upper and lower bounds may overlap in plots).

Results have been calculated over 30 independent runs for each setting when #2 = 80, gC = 10,

and 2E = 0

3.2.3. Effect of Change Frequency

The change frequency may affect the optimal variation strength. As a greater

gC (more generations per time step) can provide more time for exploration, it

favors a stronger variation. To explore this factor, four different values of gC are

tried, and the MHVR (mean and 95% confidence interval) is plotted against300

fr for each value of gC in Fig. 6, form which the following observations can be

made.

• The optimal fr is not strongly affected by the change frequency as for all

the problems tested in the ideal scenario, it is almost independent of gC .

The reason for this is that the distance between the actual and predicted305

POSs is independent of gC because the data provided for prediction is also.

• In the real scenario, the optimal fr increases slightly when gC increases

because the accuracy of the data available for prediction is less for a smaller

gC as there is less time for optimization in each time step.
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• The gap between the performance in the ideal and real scenarios increases310

when gC decreases. This gap can illustrate the sensitivity of a reinitializa-

tion method to the inaccuracy of the data provided because they become

less accurate only in the real scenario.
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(b) Real scenario

Figure 6: Effects of fr and change frequency (gC) on the performance of the simple reinitial-

ization method on DF0 in the ideal and real scenarios. The markers denote the mean values

while the lines represent the 95% confidence interval (the upper and lower bounds may overlap

in the plot). The results have been calculated over 30 independent runs for each setting when

#2 = 80, =C = 10, and 2E = 0.

4. Heredity-Based Adaptive Variation

The controlled experiments conducted in the previous section revealed that315

the optimal variation strength (f∗r ) is negatively correlated with the accuracy

of the prediction operator, which, in turn, depends on different factors. Not

all DMOPs follow a pattern in their changes, and not all these patterns can

be easily captured. This suggests the need for an on-the-fly adjustment of fr,

which is not a trivial task. Although the severity of the change in the location320
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of the POS, as used in many reinitialization methods [44, 32, 36], affects the

predictability of the change pattern, it is not the only intervening factor. In

fact, it is possible that f∗r is small even though the changes are severe. This

section develops a method for on-the-fly adaptation of fr. A measure based on

the concept of heredity is introduced and formulated for EAs to adapt fr.325

4.1. Proposed Heredity-Based Measure

The proposed measure quantifies the contribution of each initial solution

to the optimization process by measuring the presence of its traits in the final

population. The following two rules are used to determine this contribution.

1. If a descendant is generated by a recombination of = parents, that solution330

inherits 1/= of each parent’s traits. This is valid even if mutation is applied

after recombination.

2. If a descendant is generated by the mutation of a single parent, it inherits

all its traits from that parent.

Starting from the initial population, the contribution of each initial solution335

to the next generation can be easily calculated using these two rules. The

heredity of solution x is denoted by ℎ(x), a vector of size # in which the 8Cℎ

element shows the fraction of traits inherited from the 8Cℎ initial solution. Fig. 7

illustrates this calculation for a simple case with a population of three. For the

initial population at time step C, ℎ(x8) = [X18 , X28 , X38], in which 8 = 1, 2, 3 and340

X8 9 is the Kronecker delta. In the next generation, x4 and x5 are generated

by the recombination and mutation of x1 and x2; therefore, ℎ(x4) = ℎ(x5) =

0.5(ℎ(x1) + ℎ(x2)). In contrast, x6 is obtained by only the mutation of x3,

and thus, ℎ(x6) = ℎ(x3). The selection is made from the union of parents and

offspring, and in this case, x1, x4, and x6 have survived to the next generation.345

Then, the heredity of the solutions sampled in the subsequent generation has

been calculated using these two rules.
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Figure 7: Calculation of the heredity (ℎ (x)) for each sampled solution by averaging heredity

of its parent(s). The boxes with continuous borders specify the parents selected for each

generation. The three solutions on the right-hand side are the elite ones which were directly

preserved from the previous generation.

4.2. Formulation

The proposed strategy for adapting fr is inspired by the adaptation mecha-

nism used in evolution strategies [56]. When change #t occurs, the reinitializa-350

tion method allocates an individual variation strength (f (C)r8 ) for the generation
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of each solution, which is slightly different from the average one, as

f
(C)
r8 = f (C)r exp (gfrN(0, 1)), (8)

in which f (C)r is the mean variation strength for change #t ; gfr is the learning

rate for the variation strength, and N(0, 1) is a random number sampled from

the standard normal distribution. The initial solutions for time step #t are355

then generated as

x (C)IP,8 ∼ N
(
x (C)FP,8 ,

(
f
(C)
r8

)2
, XL, XU

)
, 8 = 1, 2, ..., #, (9)

which is similar to (4), except that a distinct variation strength is allocated for

generating each initial solution from the temporary population.

The SMOO method uses ^ (C)IP as the initial population for optimization in

time step #C. It is expected that an initial solution generated with a more360

appropriate fr8 will provide a more significant contribution to the optimiza-

tion process. Although it is reasonable to perceive the objective values of the

reinitialized solutions as indicators of their usefulness, such a measure can only

indicate immediate benefits. This will encourage small short-term rather than

probably significant long-term success. It should be noted that a higher diver-365

sity, which is associated with stronger exploration, can be generally advanta-

geous only in the long term, e.g., after several generations. This highlights the

merits of the concept of heredity which enables the long-term contribution of

each initial solution to the optimization process to be quantified by measuring

the presence of its traits in the final population.370

After performing static optimization in time step #C, the heredity measure

is calculated for each x (C)FP,8. Then, the utility of each x (C)IP,8, which is the presence

of its traits in the final population, is quantified as

D8 = D

(
x (C)IP,8

)
= �8

(
1

#

#∑
9=1

ℎ

(
x (C)FP, 9

))
, 8 = 1, 2, . . . , #, (10)

in which D8 represents the utility of x (C)IP,8 and function �8 (x) returns the 8Cℎ

element of vector x ; for example, for the case illustrated in Fig. 7, D1 = 7/12,
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D2 = 3/12, and D3 = 2/12.

After calculating the utility of each initial solution, the mean variation

strength for the next change (f (C+1)r ) is adjusted using the weighted average

of f (C)r8 , in which the weights are the utilities calculated in (10). Both the ge-

ometric and arithmetic averages can be used. As the latter slightly favors a

higher variation strength, it is preferred in this study, which is formulated as

f (C+1)r =

#∑
8=1

D8f
(C)
r8 . (11)

Starting from a default value, the mean variation strength is adapted for

each change. For the first change, it is set to

f (1)r =
2r

10�

�∑
:=1

(
'U
: − '

L
:

)
, (12)

which means that for the default value of 2r ≈ 1, f (1)r is one-tenth of the average

search range.375

Algorithm (1) explains how f (C+1)r is calculated from the history of static

optimization in time step C.

5. Descriptive Experiments

In this section, some carefully designed experiments for demonstrating the

effect and importance of each component of the HBAV technique are conducted.380

DF0 and two variants of our simple prediction operator with 2E = 0 and 2E = 1

are considered, which represent a poor and an excellent prediction operator for

this specific problem, respectively.

To monitor the performance of each method over time, we calculate the

MHVR for an interval of B4 time steps, called an epoch, and define the truncated

MHVR (TMHVR) as

)"�+' (=4; B4) =
1

B4

B4=4∑
8=80

�+

(
X(C)FP

)
�+

(
POS(C)

) ,
80 = 1 + B4 (=4 − 1) ,

(13)
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Algorithm 1: Adaptation of the mean variation strength in time step

C using HBAV

Data: f (C)r , population size (#), X(C)FP, a prediction method

Result: f (C+1)r

1 Calculate the temporary population (X(C)TP) using the prediction method

(e.g. (3)).

2 Calculate the individual variation strength (f (C)r8 ) by the mutation of

f (C)r according to (8)

3 Generate the initial population (X(C)IP ) from X(C)TP using (9)

4 while problem has not changed do

5 Generate # solutions (x8 , 8 = 1, 2, . . . , #) using crossover and

mutation

6 Calcuate the heredity function (ℎ(x8)) for each generated solution as

explained in sub-section 4.1

7 Perform selection

8 end

9 Let X(C)FP be the current population.

10 Calculate the utility function for each member of X(C)FP according to (10)

11 Calculate f (C+1)r using (11)

in which =4 is the epoch number. For the special case of B4= #c, the TMHVR

and conventional MHVR become identical.385

5.1. Adaptation Efficiency and Robustness

In this sub-section, a descriptive experiment is conducted to investigate the

efficiency and robustness of HBAV and its robustness especially when its sensi-

tivity to f (1)r is considered. Starting with different initial values, which may be

much higher or lower than the optimal one, DF0 is dynamically optimized for390

120 changes in the real and ideal scenarios when gfr=0.2. Fig. 8 illustrates f (C)r

(the mean and 95% confidence interval) over time, calculated for 30 independent

runs, from which the following observations can be made.
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(b) 2E =0, Real scenario
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(d) 2E =1, Real scenario

Figure 8: On-the-fly adjustment of f
(C )
r by HBAV when a good prediction method (2E = 1)

and a mediocre one (2E = 0) are employed in the real and ideal scenarios. Each sub-figure

shows the effects of the initial value of f
(C )
r . The plots show the mean (markers) and the 95%

confidence interval (upper and lower lines), calculated using 30 independent runs for each

setting.

• HBAV always adapts f (C)r to a specific value even if f (1)r is much smaller

or larger than it. The only exception is when f (1)r is too high (e.g., ten395

times as high as the recommended value in (12)). This specific value is

affected greatly by the accuracy of the prediction operator and slightly by
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the inaccuracy of the information provided (real versus ideal scenario).

• Comparing these specific values with the optimal fr for the ideal scenario,

it can be seen in Fig. 4) that they are (near-) optimal variation strengths.400

When 2E = 0, HBAV adjusts f (C)r → 0.09, which is the (near-) optimal

variation strength. When 2E = 1, it reduces f (C)r over time as the optimal

variation strength is approximately zero in this case.

• When comparing the ideal and real scenarios, the adaptation speed is

less in the latter. Furthermore, the specific value to which HBAV adapts405

f (C)r is slightly greater in the latter. As illustrated in Fig. 4, the optimal

variation strength is slightly higher in the real scenario, at least when a

fixed variation strength is used.

This experiment indicates that HBAV can reliably adapt f (C)r in both sce-

narios. The inaccuracy of the data provided, as expected, lowers the adaptation410

rate but does not stop it as HBAV is not sensitive to f (1)r unless it is too high.

5.2. Effect of Learning Rate

Equation (8) indicates that the adaptation rate can be controlled by gfr.

To check the effect of gfr on performance, we use different values of it when

2E = 0 and f (1)r is too small or too large. Fig. 9 illustrates the means and 95%415

confidence intervals of f (C)r and TMHVR calculated for 30 independent runs

in the real scenario when B4=10, from which the following observations can be

made.

• The gradual increase in the TMHVR shows that HBAV correctly adapts

f (C)r even when gfr = 0.1, although the adaptation rate is low in this case420

especially when f (1)r is too small.

• Although a high learning rate (gfr = 0.3) is beneficial in the early epochs,

a more moderate one (gfr = 0.2) can be advantageous in later epochs. One

reason for this is that a high gf means a higher spread of fr8 values, and

thus, even if f (C)r is adjusted to the optimal value, the individual fr8 values425
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Figure 9: Effects of the learning rate (gfr) on the adaptation of mean variation strength

(f
(C )
r ) and performance of TMHVR with B4 = 10. For each setting, the mean value (markers)

and the 95% confidence interval (continuous lines) are shown. A too large (2r =3) and a too

small (2r=0.1) for f
(1)
r have intentionally been selected to check whether HBAV can gradually

find the optimal fr. These results are for the real scenario.

are farther from f∗r . Another reason could be the noise in the adaptation

rate, caused by a high gfr.

• The considerable performance gap between gfr = 0 and gfr ≥ 0.2 in later

epochs confirms the importance of the adaptation of f (C)r .
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Table 1: Experimental settings for the numerical comparison, with the first change occurring

after 50 generations

Set. No. gC =C #2 Max. Gen.

1 5 20 240 1250

2 10 10 240 2450

3 20 5 240 4850

6. Numerical Comparison430

This section compares the performance of the HBAV with those of some of

the most successful and commonly used existing variation operators, each of

which has a proportionality constant set based on the researchers’ experience

with the test problems. To enable fair comparisons, one additional control

parameter is introduced to adjust this proportionality constant of each method.435

6.1. Test Problems

Recently, several studies developed new test problems for DMOO [57, 7, 58].

This study uses the CEC’2018 test suite for DMOO [51], which includes a variety

of test problems with both simple and complicated patterns. To assess the

long-term success and learning capabilities of all the variation methods, the440

optimization process continues for 240 changes. Three settings for the change

severity and change frequency are considered, which are summarized in Table 1.

Since in practice, a less severe change is expected in a more frequently changing

environment [8], we set gC ∝1/=C .

445

6.2. Variation Operators for Comparison

Based on our literature survey, the following variation operators are selected

for comparison.
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• Fixed Strength (FS) simply defines a fixed random variation strength,

which will be used for all solutions in all time steps as

f
(C+1)
r =

( 2r
10

) XU − XL
 , (14)

where 2r is a user-defined control parameter.

• Centroid Translation Distance (CTD) was used in SGEA [32] and a similar

one in MDP [20]. It simply adapts the random variation strength based

on the length of the recent global translation vector (v (C)) as

f
(C+1)
r = 2r

v (C)
2
√
�

(15)

• Individual Translation Distance (ITD), which was developed in PRE [36],

calculates an individual translation vector (v (C)
8

) for each solution in the

final population, and then allocates an independent random variation

strength (f (C)r8 ) to it as

f
(C+1)
r8 = 2r

v (C)8 
2
√
�

(16)

• Mean Pairwise Translation Distances after Relocation (MPTDaR) is based

on the variation operator introduced in the PPS [44]. The outcome of the

variation operator developed in CTRDV [34] would be similar. Using this

strategy, the variation operator determines f (C+1)r proportionally to the

difference between the two recent manifolds (C̃
(C)

and C̃
(C−1)

) of the final

populations as

f
(C+1)
r = 2r

3
(
C̃
(C)
, C̃
(C−1) )

2
√
�

, (17)

where 3 (C̃(C) , C̃(C−1) ) calculates the Euclidean distance between each solu-450

tion in C̃
(C)

to the closest solution in C̃
(C−1)

.

• Hypermutation (HM) is based on the variation operator developed for

DNSGA-II-B [8]. It applies polynomial-based mutation with a probability

of 2/� (instead of the default value of 1/�) to 70% of the solutions, with
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Table 2: Calculated 2∗r for each method

Method CTD ITD FS HBAV MPTDaR HM

2∗r 2 2 0.6 1 2.5 2

the mutation index controlled as

[
(C+1)
mut = 42r. (18)

2r = 1 results in the default setting of DNSGA-II-B.

A truncated normal distribution for all the random variation operators is

used to ensure that the sampled solutions always fall inside the search range.

To suppress the effect of the prediction operator, these variation operators are455

used with our simple prediction operator with 2E =1 to form six different reini-

tialization methods.

6.3. Parameter Tuning

To ensure fair comparisons, all the methods are tested with their correspond-

ing near-optimal 2r. To find 2∗r for each, we use 10 different values of 0≤ 2r ≤3.5.460

For each value and each problem, 15 independent runs are conducted for a max-

imum of 120 changes, and 2r that maximizes TMHVR (2; 40) + TMHVR (3; 40)

is deemed as 2∗r. The calculated 2∗r for each method is presented in Table 2,

which is used in the next experiment to compare the methods.

6.4. Results and Discussion465

After finding its near-optimal setting, each reinitialization method is em-

ployed to optimize 42 problems for 240 changes. Each simulation is repeated 30

times with 30 different random seeds, and TMHVR is calculated when the epoch

length is 40 iterations (B4 = 40). The mean TMHVR and corresponding 95%

confidence interval for each variation method are plotted in Fig. 10. Also, for470

each epoch, the Friedman test is performed to check the statistical significance

of the difference between the variation operators. Table 3 presents the average
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rank of each variation operator. Since 30 measurements are provided for each

problem and method, the minimum and maximum ranks are 1
30

∑30
8=1 8 = 15.5

and 1
30

∑180
8=151 8 = 165.5. The p-value for all the epochs is less than 10−72, which475

confirms that the difference is statistically significant. The results obtained

demonstrate the following.

• HBAV is the most successful method except for the first epoch, which

is statistically confirmed by the confidence intervals (Fig. 10). Table 3

shows that the relative rank of HBAV improves up to the third epoch,480

which indicates that it can reliably learn the optimal random variation

strength.

• Figure 10 illustrates that for the first epoch, the CTD, ITD, and HM are

the best options, with the CTD and ITD also the next best ones after

HBAV for other epochs.485

• Unexpectedly, MPTDaR is not promising. This method isolates that part

of a change that cannot be captured by translation and sets fr accordingly.

It implicitly assumes that the prediction operator used can accurately pre-

dict that part of a change that fits in a translation. One reason for the in-

ferior results obtained by this method can be attributed to the limitations490

of this assumption: The prediction operator can capture the translation

part if the direction and length of the translation vector do not change

over time. Furthermore, the final population should accurately represent

the POS. Since some or all of these conditions are not met in the test

problems, this method will adjust fr to a sub-optimal value.495

7. Summary and Conclusions

In this article, an adaptive method for adjusting the variation strengths of

initialization methods, which is a critically important module for dynamic multi-

objective optimization (DMOO), was proposed. The method, called heredity-

based adaptive variation (HBAV), introduced a measure based on the concept of500
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Figure 10: TMRVRs of different methods (B4 = 40) in different epochs. The results have been

calculated over 14 × 3 = 42 test problems, when each problem was optimized 30 independent

times by each method. The markers represent the mean values and the lines delineate the

95% confidence interval for the calculated means.

heredity. It can quantify the contributions of reinitialized solutions to the opti-

mization process by measuring the presence of their traits in the final population.

Its efficacy for learning the near-optimal variation strength and its robustness

were studied using some controlled experiments. It was then compared with five

other commonly used strategies for adapting the variation strength on 14 test505

problems in three different settings. Our results revealed that except for early

changes, HBAV outperforms the other variation operators.

Our descriptive experiments examined the negative correlation between the

variation strength and accuracy of the prediction operator used. This highlights

the dependency of the optimal variation strength on not only the predictability510

of the change patterns but also the prediction operator, which HBAV takes into

account when adjusting the variation strength. This was concluded from our

descriptive experiments in which HBAV adjusted the variation strength to a

higher value when a worse prediction operator is used for the same problem.

None of the five other variation methods tested in this study could exhibit this515

behavior.
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Table 3: Average rank of each variation operator for 3× 14 = 42 problems in each epoch when

B4 = 40. The ranks were calculated using the Friedman test. For each epoch, the p-value is

less than 10−72. The minimum rank for each epoch is shown in boldface.

Epoch CTD ITD FS HBAV MPTDaR HM

1 77.2 76.4 100.7 93.7 106.6 88.4

2 86.8 80.3 99.6 71.8 107.3 97.2

3 84.7 82.1 103.3 67.3 108.2 97.5

4 87.9 82.3 98.3 68.4 104.5 101.7

5 86.2 82.1 102.8 67.5 104.5 100.0

6 86.3 83.3 96.9 69.5 103.6 103.3

The huge impact of the variation operator on the performance of a DMOO

method and the challenges faced when adapting it encourage further research

in this field. The limited number of studies that have concentrated on the

variation operator, compared with those that have scrutinized the prediction520

operator, implies that the importance of former has been underrated.

The findings in this study highlight the need for future research on analyz-

ing existing variation operator and developing new ones; For example, intro-

ducing parametric test problems with controllable degrees of predictability in

their change patterns can contribute to the development of robust heuristics for525

adapting the random variation strength. Such problems can be employed as a

baseline to analyze the efficacy of a reinitialization method.
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[2] F. B. Ozsoydan, A. Baykasoğlu, Quantum firefly swarms for multimodal540

dynamic optimization problems, Expert Systems with Applications 115

(2019) 189–199.

[3] W. Luo, X. Lin, T. Zhu, P. Xu, A clonal selection algorithm for dynamic

multimodal function optimization, Swarm and Evolutionary Computation

50 (2019) 100459.545

[4] R. Azzouz, S. Bechikh, L. B. Said, W. Trabelsi, Handling time-varying

constraints and objectives in dynamic evolutionary multi-objective opti-

mization, Swarm and evolutionary computation 39 (2018) 222–248.

[5] C. Bu, W. Luo, L. Yue, Continuous dynamic constrained optimization with

ensemble of locating and tracking feasible regions strategies, IEEE Trans-550

actions on Evolutionary Computation 21 (1) (2017) 14–33.

[6] R. Chen, K. Li, X. Yao, Dynamic multiobjectives optimization with a

changing number of objectives, IEEE Transactions on Evolutionary Com-

putation 22 (1) (2018) 157–171.

[7] S. Jiang, M. Kaiser, S. Yang, S. Kollias, N. Krasnogor, A scalable test suite555

for continuous dynamic multiobjective optimization, IEEE transactions on

cybernetics 50 (6) (2019) 2814–2826.

[8] K. Deb, S. Karthik, et al., Dynamic multi-objective optimization and

decision-making using modified nsga-ii: a case study on hydro-thermal

power scheduling, in: International conference on evolutionary multi-560

criterion optimization, Springer, 2007, pp. 803–817.

31



[9] Z. Deng, M. Liu, Y. Ouyang, S. Lin, M. Xie, Multi-objective mixed-integer

dynamic optimization method applied to optimal allocation of dynamic

var sources of power systems, IEEE Transactions on Power Systems 33 (2)

(2018) 1683–1697.565

[10] B. Qu, J. J. Liang, Y. Zhu, P. N. Suganthan, Solving dynamic economic

emission dispatch problem considering wind power by multi-objective dif-

ferential evolution with ensemble of selection method, Natural Computing

18 (4) (2019) 695–703.

[11] Y.-N. Guo, J. Cheng, S. Luo, D. Gong, Y. Xue, Robust dynamic multi-570

objective vehicle routing optimization method, IEEE/ACM transactions

on computational biology and bioinformatics 15 (6) (2017) 1891–1903.

[12] C. Yin, Z. Xiao, X. Cao, X. Xi, P. Yang, D. Wu, Offline and online search:

Uav multiobjective path planning under dynamic urban environment, IEEE

Internet of Things Journal 5 (2) (2018) 546–558.575
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[14] M. Okulewicz, J. Mańdziuk, The impact of particular components of the580

pso-based algorithm solving the dynamic vehicle routing problem, Applied

Soft Computing 58 (2017) 586–604.

[15] Z. Wang, M. Gong, Dynamic deployment optimization of near space com-

munication system using a novel estimation of distribution algorithm, Ap-

plied Soft Computing 78 (2019) 569–582.585

[16] L. T. Bui, Z. Michalewicz, E. Parkinson, M. B. Abello, Adaptation in dy-

namic environments: A case study in mission planning, IEEE Transactions

on Evolutionary Computation 16 (2) (2012) 190–209.

32



[17] I. Hatzakis, D. Wallace, Dynamic multi-objective optimization with evolu-

tionary algorithms: a forward-looking approach, in: Proceedings of the 8th590

annual conference on Genetic and evolutionary computation, ACM, 2006,

pp. 1201–1208.

[18] X. Xia, A. Elaiw, Optimal dynamic economic dispatch of generation: A

review, Electric power systems research 80 (8) (2010) 975–986.

[19] W. T. Koo, C. K. Goh, K. C. Tan, A predictive gradient strategy for multi-595

objective evolutionary algorithms in a fast changing environment, Memetic

Computing 2 (2) (2010) 87–110.

[20] M. Rong, D. Gong, Y. Zhang, Y. Jin, W. Pedrycz, Multidirectional pre-

diction approach for dynamic multiobjective optimization problems, IEEE

transactions on cybernetics 49 (9) (2018) 3362–3374.600

[21] T. T. Nguyen, S. Yang, J. Branke, Evolutionary dynamic optimization: A

survey of the state of the art, Swarm and Evolutionary Computation 6

(2012) 1–24.

[22] R. Azzouz, S. Bechikh, L. B. Said, Dynamic multi-objective optimization

using evolutionary algorithms: A survey, in: Recent advances in evolution-605

ary multi-objective optimization, Springer, 2017, pp. 31–70.

[23] M. Mavrovouniotis, C. Li, S. Yang, A survey of swarm intelligence for dy-

namic optimization: Algorithms and applications, Swarm and Evolutionary

Computation 33 (2017) 1–17.

[24] M. Helbig, A. P. Engelbrecht, Population-based metaheuristics for continu-610

ous boundary-constrained dynamic multi-objective optimisation problems,

Swarm and Evolutionary computation 14 (2014) 31–47.

[25] R. Vafashoar, M. R. Meybodi, A multi-population differential evolution

algorithm based on cellular learning automata and evolutionary context

information for optimization in dynamic environments, Applied Soft Com-615

puting 88 (2020) 106009.

33



[26] R. Liu, J. Li, J. Fan, L. Jiao, A dynamic multiple populations particle

swarm optimization algorithm based on decomposition and prediction, Ap-

plied Soft Computing 73 (2018) 434–459.

[27] C. Li, S. Yang, A general framework of multipopulation methods with620

clustering in undetectable dynamic environments, IEEE Transactions on

Evolutionary Computation 16 (4) (2012) 556–577.

[28] S. Qian, Y. Ye, B. Jiang, G. Xu, A micro-cloning dynamic multiobjec-

tive algorithm with an adaptive change reaction strategy, Soft Computing

21 (13) (2017) 3781–3801.625

[29] Q. Li, J. Zou, S. Yang, J. Zheng, G. Ruan, A predictive strategy based on

special points for evolutionary dynamic multi-objective optimization, Soft

Computing 23 (11) (2019) 3723–3739.

[30] L. Cao, L. Xu, E. D. Goodman, H. Li, Decomposition-based evolutionary

dynamic multiobjective optimization using a difference model, Applied Soft630

Computing 76 (2019) 473–490.

[31] Z. Peng, J. Zheng, J. Zou, M. Liu, Novel prediction and memory strategies

for dynamic multiobjective optimization, Soft Computing 19 (9) (2015)

2633–2653.

[32] S. Jiang, S. Yang, A steady-state and generational evolutionary algorithm635

for dynamic multiobjective optimization, IEEE Transactions on Evolution-

ary Computation 21 (1) (2017) 65–82.

[33] L. Cao, L. Xu, E. D. Goodman, S. Zhu, H. Li, A differential prediction

model for evolutionary dynamic multiobjective optimization, in: Proceed-

ings of the Genetic and Evolutionary Computation Conference, ACM, 2018,640

pp. 601–608.

[34] A. Ahrari, S. Elsayed, R. Sarker, D. Essam, A new prediction approach for

dynamic multiobjective optimization, in: 2019 IEEE Congress on Evolu-

tionary Computation (CEC), IEEE, 2019, pp. 2268–2275.

34



[35] F. Zou, G. G. Yen, L. Tang, A knee-guided prediction approach for dynamic645

multi-objective optimization, Information Sciences 509 (2020) 193–209.

[36] A. Zhou, Y. Jin, Q. Zhang, B. Sendhoff, E. Tsang, Prediction-based popu-

lation re-initialization for evolutionary dynamic multi-objective optimiza-

tion, in: International Conference on Evolutionary Multi-Criterion Opti-

mization, Springer, 2007, pp. 832–846.650

[37] X.-F. Liu, Y.-R. Zhou, X. Yu, Cooperative particle swarm optimization

with reference-point-based prediction strategy for dynamic multiobjective

optimization, Applied Soft Computing 87 (2020) 105988.

[38] J. Ou, J. Zheng, G. Ruan, Y. Hu, J. Zou, M. Li, S. Yang, X. Tan, A pareto-

based evolutionary algorithm using decomposition and truncation for dy-655

namic multi-objective optimization, Applied Soft Computing 85 (2019)

105673.

[39] A. Ahrari, S. Elsayed, R. Sarker, D. Essam, C. A. C. Coello, Weighted

pointwise prediction method for dynamic multiobjective optimization, In-

formation Sciences (2020) doi:10.1016/j.ins.2020.08.015.660

[40] G. Ruan, G. Yu, J. Zheng, J. Zou, S. Yang, The effect of diversity mainte-

nance on prediction in dynamic multi-objective optimization, Applied Soft

Computing 58 (2017) 631–647.

[41] J. Zou, Q. Li, S. Yang, H. Bai, J. Zheng, A prediction strategy based

on center points and knee points for evolutionary dynamic multi-objective665

optimization, Applied Soft Computing 61 (2017) 806–818.

[42] A. Muruganantham, K. C. Tan, P. Vadakkepat, Evolutionary dynamic mul-

tiobjective optimization via kalman filter prediction, IEEE transactions on

cybernetics 46 (12) (2015) 2862–2873.

[43] M. Jiang, Z. Huang, L. Qiu, W. Huang, G. G. Yen, Transfer learning-670

based dynamic multiobjective optimization algorithms, IEEE Transactions

on Evolutionary Computation 22 (4) (2018) 501–514.

35



[44] A. Zhou, Y. Jin, Q. Zhang, A population prediction strategy for evolution-

ary dynamic multiobjective optimization, IEEE transactions on cybernetics

44 (1) (2013) 40–53.675

[45] R. Rambabu, P. Vadakkepat, K. C. Tan, M. Jiang, A mixture-

of-experts prediction framework for evolutionary dynamic multiob-

jective optimization, IEEE transactions on cybernetics (2019) doi:

10.1109/TCYB.2019.2909806.

[46] Y. Guo, H. Yang, M. Chen, J. Cheng, D. Gong, Ensemble prediction-680

based dynamic robust multi-objective optimization methods, Swarm and

Evolutionary Computation 48 (2019) 156–171.

[47] Y. Wu, Y. Jin, X. Liu, A directed search strategy for evolutionary dynamic

multiobjective optimization, Soft Computing 19 (11) (2015) 3221–3235.

[48] L. Shi, Y. Wu, Y. Zhou, A hybrid immigrants strategy for dynamic multi-685

objective optimization, in: 2018 Tenth International Conference on Ad-

vanced Computational Intelligence (ICACI), IEEE, 2018, pp. 589–593.

[49] H. G. Cobb, An investigation into the use of hypermutation as an adap-

tive operator in genetic algorithms having continuous, time-dependent non-

stationary environments, Tech. rep., Naval Research lab Washington DC690

(1990).

[50] K. Deb, A. Kumar, Interactive evolutionary multi-objective optimization

and decision-making using reference direction method, in: Proceedings of

the 9th annual conference on Genetic and evolutionary computation, ACM,

2007, pp. 781–788.695

[51] S. Jiang, S. Yang, X. Yao, K. C. Tan, M. Kaiser, N. Krasnogor, Benchmark

problems for cec2018 competition on dynamic multiobjective optimisation,

Tech. rep., Newcastle University (2017).

[52] H. Ishibuchi, H. Masuda, Y. Tanigaki, Y. Nojima, Modified distance cal-

culation in generational distance and inverted generational distance, in:700

36



International Conference on Evolutionary Multi-Criterion Optimization,

Springer, 2015, pp. 110–125.

[53] H. Ishibuchi, R. Imada, N. Masuyama, Y. Nojima, Comparison of hypervol-

ume, igd and igd+ from the viewpoint of optimal distributions of solutions,

in: International Conference on Evolutionary Multi-Criterion Optimiza-705

tion, Springer, 2019, pp. 332–345.

[54] K. Deb, H. Jain, An evolutionary many-objective optimization algorithm

using reference-point-based nondominated sorting approach, part i: solving

problems with box constraints, IEEE Transactions on Evolutionary Com-

putation 18 (4) (2014) 577–601.710

[55] J. Blank, K. Deb, P. C. Roy, Investigating the normalization procedure

of nsga-iii, in: International Conference on Evolutionary Multi-Criterion

Optimization, Springer, 2019, pp. 229–240.

[56] H.-G. Beyer, H.-P. Schwefel, Evolution strategies–a comprehensive intro-

duction, Natural computing 1 (1) (2002) 3–52.715

[57] S. B. Gee, K. C. Tan, H. A. Abbass, A benchmark test suite for dynamic

evolutionary multiobjective optimization, IEEE transactions on cybernetics

47 (2) (2017) 461–472.

[58] S. Jiang, S. Yang, Evolutionary dynamic multiobjective optimization:

Benchmarks and algorithm comparisons, IEEE transactions on cybernetics720

47 (1) (2017) 198–211.

37


	Introduction
	 Related Work 
	Analyzing the Effect of the Variation Strength
	Experimental Setup
	Real versus Ideal Scenario
	Reinitialization Method
	Test Problem
	Performance Indicator
	Static Multi-Objective Optimization Method

	Controlled Numerical Simulations
	 Effect of Prediction Accuracy
	 Effect of Change Severity
	 Effect of Change Frequency


	 Heredity-Based Adaptive Variation
	Proposed Heredity-Based Measure
	 Formulation 

	 Descriptive Experiments
	 Adaptation Efficiency and Robustness
	 Effect of Learning Rate

	 Numerical Comparison 
	 Test Problems
	Variation Operators for Comparison
	Parameter Tuning
	 Results and Discussion 

	Summary and Conclusions

