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Abstract

Multi-objective evolutionary algorithms (MOEAs) have become an effective
choice to solve multi-objective optimization problems (MOPs). However, it
is well known that Pareto dominance-based MOEAs struggle in MOPs with
four or more objective functions due to a lack of selection pressure in high
dimensional spaces. The main choices for dealing with such problems are
decomposition-based and indicator-based MOEAs. In this work, we pro-
pose the use of Grammatical Evolution (an evolutionary computation search
technique) to generate functions that can improve decomposition-based and
indicator-based MOEAs. Namely, we propose a methodology to generate
new scalarizing functions, which are known to have a great impact in the
performance of decomposition-based MOEAs and in some indicator-based
MOEAs. Additionally, we propose another methodology to generate hy-
pervolume approximations, since the hypervolume is a popular performance
indicator used not only in indicator-based MOEAs but also to assess per-
formance of MOEAs. Using our first methodology, we generate two new
scalarizing functions and provide their corresponding experimental valida-
tion to show that they exhibit a competitive behavior when compared against
some well-known scalarizing functions such as ASF, PBI and the Tchebycheff
scalarizing function. Using our second methodology, we produce 4 differ-
ent hypervolume approximations and compare their performance against the
Monte Carlo method and against two other state-of-the-art hypervolume ap-
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proximations. The experimental results show that our functions exhibit a
good compromise in terms of quality and execution time.

Keywords: Grammatical evolution, Genetic programming, Evolutionary
algorithms, Multi-objective optimization

1. Introduction

Multi-objective optimization problems (MOPs) are those in which two
or more objective functions, usually in conflict, require to be simultaneously
optimized. Many real-world problems are indeed MOPs [1, 2]. A MOP is
formally defined as follows:

minimize f⃗(x⃗) := [f1(x⃗), f2(x⃗), . . . , fk(x⃗)] (1)

subject to:
gi(x⃗) ≤ 0 i = 1, 2, . . . , p (2)

hi(x⃗) = 0 i = 1, 2, . . . , q (3)

where x⃗ = [x1, x2, . . . , xn]
T is the vector of decision variables, fi : IR

n → IR,
i = 1, ..., k are the objective functions and gi, hj : IRn → IR, i = 1, ..., p,
j = 1, ..., q are the constraint functions of the problem.

Given that the objective functions are in conflict, there is no single so-
lution to a MOP. Instead of that, we attempt to generate a set of solutions
that represent the best possible trade-offs among the objectives. In order to
characterize such solutions, Pareto dominance is commonly used.
Definition 1. Given two vectors x⃗, y⃗ ∈ IRk, we say that x⃗ ≤ y⃗ if xi ≤ yi for
i = 1, ..., k, and that x⃗ dominates y⃗ (denoted by x⃗ ≺ y⃗) if x⃗ ≤ y⃗ and x⃗ ̸= y⃗.

Definition 2. We say that a vector of decision variables x⃗ ∈ X ⊂ IRn is
non-dominated with respect to X , if there does not exist another x⃗′ ∈ X
such that f⃗(x⃗′) ≺ f⃗(x⃗).

Definition 3. We say that a vector of decision variables x⃗∗ ∈ F ⊂ IRn (F is
the feasible region) is Pareto-optimal if it is non-dominated with respect
to F .

Definition 4. The Pareto Optimal Set P∗ is defined by:
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P∗ = {x⃗ ∈ F|x⃗ is Pareto-optimal}

Definition 5. The Pareto Front PF∗ is defined by:

PF∗ = {f⃗(x⃗) ∈ IRk|x⃗ ∈ P∗}

Then, the goal of solving a given MOP is to find the Pareto optimal set
(P∗) from the feasible region (F), defined by (2) and (3).

Some of the most popular techniques used to solve MOPs are the Multi-
objective Evolutionary Algorithms (MOEAs). These are population-based
methods, which allow to obtain a set of solutions in a single execution. This
represents a clear advantage with respect to traditional mathematical pro-
gramming techniques, which usually produce a single solution per execution.
MOEAs are also more general in the sense that they require little domain-
specific information and do not impose requirements on the objective func-
tions (e.g., they don’t need to be differentiable nor being defined in algebraic
form [3]).

There is a wide variety of MOEAs in the specialized literature, but
they can be broadly classified into 3 categories: Pareto dominance-based,
decomposition-based and indicator-based MOEAs [4]. In this work, we present
the generation of new elements which could improve the performance of
MOEAs in the last two of these categories. Because of that, we will briefly
discuss next both decomposition-based and indicator-based MOEAs.

Decomposition-based MOEAs work by transforming a MOP into two or
more single-objective optimization problems, which are solved simultane-
ously using neighborhood search [5]. One of the advantages of this tech-
nique is that they are not easily affected by selection pressure issues [6],
which makes them particularly useful in MOPs with many objectives (4 or
more). These MOEAs use scalarizing functions to aggregate the multiple ob-
jective functions into a single function. There are multiple scalarizing func-
tions with different properties, such as the optimality of the solutions found
(weak/strong Pareto optimality), as well as with different requirements (ref-
erence points, utopian/Nadir objective vector, aspiration levels or additional
classifications) [7].

The performance of a decomposition-based MOEA is closely related to
both, the scalarizing function adopted, which can determine the type of so-
lutions found [8], as well as the weight vectors used, since they strongly
determine the distribution of such solutions [9]. In this work, we propose
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a methodology to produce new scalarizing functions to improve the perfor-
mance of these MOEAs.1 It is important to mention that here, we extend the
methodology originally presented in [11], by using a different (improved) im-
plementation, as well as by including a comprehensive series of experiments
and a new application which is described next.

Indicator-based MOEAs adopt performance indicators to measure the
quality of a given individual with respect to the rest of the population and
uses this information to assign its fitness value. The individual with the
worst contribution is usually deleted from the population and replaced in
the next generation [12]. One of the most widely used indicators in these
algorithms is the hypervolume. This is due to the fact that the hypervolume
is Pareto compliant, which means that it preserves the order imposed by the
Pareto dominance relation [13]. Additionally, it provides both convergence
and (to some extent) diversity information, since a set with a better coverage
of the Pareto front will have a better hypervolume value. Nonetheless, the
main drawback of the hypervolume is that its computational cost increases
exponentially with the number of objectives. This has motivated a lot of
research aiming to find more efficient ways of calculating it [14, 15] or ways
of approximating it [16, 17, 18] to reduce its computational time. In this
paper, we propose the use of our methodology based on genetic programming
to produce hypervolume approximations with the same goal of decreasing its
computational time.

In order to generate new scalarizing functions as well as hypervolume
approximations, we use a variant of Genetic Programming (GP), which is
a well-known evolutionary computation technique that allows us to evolve
computer programs to solve a given problem. This is achieved by genetically
breeding a population of computer programs and applying genetic operators
iteratively until a certain termination criteria is met [19].

Grammatical Evolution (GE) is a grammar-based form of GP, which uti-
lizes a different genotype-phenotype mapping. Similar to GP, it also starts by
breeding a population of computer programs which are potential solutions to
a given optimization problem, which is encoded in a fitness function. Using
this fitness function, all individuals in the population are evaluated and are
assigned a corresponding fitness value, which allows a selection mechanism

1It is worth mentioning that indicator-based MOEAs based on R2 also use scalarizing
functions [10].
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to compare them and to choose which of them should be propagated across
the next generation of individuals. Then, they are recombined accordingly
using genetic operators, such as crossover and mutation, to create an off-
spring population. This process is repeated until the termination criteria is
met. However, whereas GP usually manipulates a tree data structure, GE
genotypes usually consist of integer or binary lists [20]. Consequently, one of
the main advantages of GE is that it can be easily applied to different prob-
lem domains, and all we need to adapt are two components: (1) a grammar
to define the syntax of potential solutions, usually given in a Backus-Naur
form, and (2) a fitness function to evaluate such solutions[21].

Our main motivation in this work is to propose an implementation that al-
lows the automatic generation of components that could potentially improve
the performance of MOEAs. Thus, we chose a Python-coded GE implemen-
tation that can be easily modified not only to generate the components that
we propose in this work, but also to generate different elements that can be
used in different MOEAs. Hence, we can summarize the contributions of this
work as follows:

• We propose a GE implementation to generate new scalarizing functions
in a relatively simple manner and with a great capability to adapt to
different training setups.

• Using the implementation mentioned in the previous point, we gener-
ated two new scalarizing functions and we performed their correspond-
ing experimental validation. Our experiments show that these two
scalarizing functions are able to outperform other scalarizing functions
such as the achievement scalarizing function, the Tchebycheff scalariz-
ing function and penalty-boundary intersection.

• We propose another variant of the GE implementation which allows to
produce new hypervolume approximations.

• Using the implementation indicated in the previous point, we describe
the methodology that we used to generate two different hypervolume
approximations for data in 2, 3, 4 and 5-dimensional spaces, producing
a total of 8 different hypervolume approximations.

The remainder of this paper is organized as follows. In Section 2, we
present some previous related work. In Section 3 we present the methodolo-
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gies used to automatically generate new scalarizing functions and hypervol-
ume approximations. Then, in Section 4 we provide the experimental setup
that we use to generate our scalarizing functions and hypervolume approxi-
mations, along with their definition. Next, we validate them experimentally
in Section 5. Finally, we present our conclusions and some possible paths for
future work in Section 6.

2. Previous Related Work

There are several works involving the use of GP to automatically generate
components that improve different Artificial Intelligence algorithms. For in-
stance, a GP based system (EvoCK) [22] has been combined with a Machine
Learning (ML) algorithm specialized in planning (Hamlet) [23], giving rise
to Hamlet-EvoCK [24], which alleviates some of the handicaps of the original
approach. One of these handicaps is that the ML technique can refine its be-
havior when being presented an appropriate set of examples. However, when
the example-space is large, it deteriorates its performance due to the com-
putational time required. Then, in Hamlet-EvoCK, the authors propose to
use the GP system to generate examples with certain characteristics, such as
simplicity, while also evolving the population of examples based on a fitness
function that measures the efficiency of such examples. Another example is
the use of GP to automatically develop Artificial Neural Networks (ANNs),
which can be done by evolution of the weights, by evolution of the architec-
tures or by evolution of the learning rules. In [25] and [26] two proposals are
made to achieve this automatic generation of ANNs requiring minimal to no
human intervention and obtaining either average or better results than other
automatic ANN generation techniques. More recently, a GP hyperheuristic
was proposed in [27] to evolve scheduling heuristics for dynamic flexible job-
scheduling problems. The generation of these heuristics is performed only
with the selected features determined by the GP, since feature selection is a
key part of this process.

In the context of automatic generation of scalarizing functions, to the best
of the authors’ knowledge, the only related work is the one presented in [11].
In that work, a hybrid implementation is presented combining EllenGP [28],
which is a GP implementation with local search used to generate scalarizing
functions, and MOMBI-II [29], which is a MOEA adopted to assess the per-
formance of the scalarizing functions generated. The search process of these
new scalarizing functions involves coding the new functions into MOMBI-II
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and use it to solve a given MOP. In this work, we use a very similar methodol-
ogy, but we extend the number of training MOPs solved in the search process
to 2 instead of only 1, along with some other modifications such as the ad-
dition of a threshold to reduce the number of function evaluations invested
in scalarizing functions which obtain bad results in a sample MOP. The in-
crease in the number of training MOPs is proposed to favor the generation
of scalarizing functions with a good performance in MOPs different from the
one used in the training process.

Regarding the generation of hypervolume approximations using a similar
technique, a GP-based methodology was recently proposed to approximate,
in an efficient way, the hypervolume value and the hypervolume contribution
(used for indicator-based MOEAs) in 3, 4 and 5 dimensional spaces [30].
Given a set of training data, they adopted statistical analysis to obtain cer-
tain statistical features used as the variables given to the GP. In this work,
we present a different variant to generate hypervolume approximations. In-
stead of obtaining information from the population as a whole, and building
approximation functions with such information, we consider point-wise infor-
mation. This means that we evaluate the approximation functions iteratively
with each of the points in the data. This increases the computational time
O(n), where n is the number of points in the data, but also improves the
quality of the approximation.

3. Proposed implementation

In this work, we decided to use PonyGE2, which is a grammatical evolution
implementation in Python [31]. Being a population-based evolutionary algo-
rithm, GE iterates during a search loop in which individuals are evaluated,
selected, recombined and mutated until a certain (given) criterion is satis-
fied. In our experiments, this termination criterion is a maximum number of
generations.

In this section, we describe the two main components needed to imple-
ment PonyGE2, which are the fitness function to guide the search process and
the grammar to generate the individuals. In the following subsections we de-
scribe each of these elements for the generation of new scalarizing functions
as well as for the generation of the hypervolume approximations.
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3.1. Scalarizing functions

The GE implementation that we adopted handles the creation and re-
production of individuals that encode certain functions defined by a given
grammar. Therefore, our main contribution is the methodology used to define
how well each of these automatically created functions works as a scalarizing
function. To do this, we adopted two components: a MOEA that uses scalar-
izing functions (MOMBI-II) and a performance indicator (hypervolume) to
measure the solutions generated. An overview of this process is shown in
Fig 1.

Figure 1: Diagram of grammatical evolution used to generate scalarizing functions.

MOMBI-II is a metaheuristic developed to solve many-objective optimiza-
tion problems [29]. We adopted MOMBI-II in our implementation because it
is a competitive algorithm which has shown a good performance when com-
pared against state-of-the-art MOEAs in benchmark problems with up to 10
objectives. Additionally, it uses scalarizing functions, since it is based on
the R2 indicator. By default, it uses the Achievement Scalarizing Function
(ASF) [32] which is defined as follows:

ASF (f⃗(x⃗), w⃗) := max
i∈1,...,m

(
fi(x⃗)

wi

)
(4)
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where f⃗(x⃗) is the image of x⃗ in objective space and w⃗ ∈ IRm is a weight vector.
However, other scalarizing functions can be used, such as the Tchebycheff
(TCH) scalarizing function [33], defined as follows:

TCH(f⃗(x⃗), w⃗) := max
i∈1,...,m

(wi|fi(x⃗)|) . (5)

Another commonly used scalarizing function in decomposition-based MOEAs
is the Penalty Boundary Intersection (PBI) [34], defined as follows:

PBI(f⃗(x⃗), w⃗) := θd2 − d1 (6)

where d1 :=
∣∣∣f⃗(x⃗) · w⃗/∥w⃗∥

∣∣∣ , d2 :=
∥∥∥f⃗(x⃗)− d1w⃗/∥w⃗∥

∥∥∥ and θ is a penalty

parameter, usually set by default as θ = 5.
We implemented each of the new scalarizing functions generated by PonyGE2,

replacing ASF. Then, we used this modified version of MOMBI-II to solve
multiple MOPs. Finally, we used the hypervolume to assess the quality of
the Pareto fronts obtained. The average hypervolume values obtained were
used to set the fitness of the new function.

The fitness function that we propose to guide the search process of PonyGE2
requires the following information:

• The parameters needed to define the training MOP. This includes the
MOP, the number of objectives, the number of executions and the max-
imum number of function evaluations. For example, we could define
that the training MOP is DTLZ4, with 2 objectives, considering 30 ex-
ecutions with a maximum number of 50,000 function evaluations each.

• The maximum hypervolume value for each of the MOPs defined, along
with the reference point used to obtain such hypervolume value. This
value is used to normalize hypervolume results. Following the previous
example, the maximum hypervolume for DTLZ4 with 2 objectives can
be set to 0.210 considering the reference point [1,1].

These parameters are enough for GE to generate new scalarizing functions.
However, we included a step where we solve the training MOP with a smaller
number of function evaluations and a lower number of executions to improve
the search speed, because the use of the hypervolume can make the process
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computationally expensive. Thus, we need the following additional parame-
ters:

• The parameters needed to define the sample MOP, which is the same
as the training MOP, but with a lower number of function evaluations
and a lower number of executions as well. This sample MOP is used to
determine if the current function is worth performing more evaluations.
Once again, following the previous example, we define the sample MOP
to be DTLZ4, with 2 objectives, but considering 15 executions with a
maximum number of 10,000 function evaluations.

• The maximum hypervolume value corresponding to the sample MOP.
We need this since a lower number of function evaluations results in a
different maximum hypervolume value.

• A hypervolume threshold that defines the percentage of the real maxi-
mum hypervolume that should be attained by the executions performed
using the sample MOP in order to perform the full executions of the
main training MOP. In case this threshold is not attained, no more
function evaluations are spent in the current individual.

In Algorithm 1, we show the fitness function in detail, given the decoded
phenotype of the individual (i.e., the scalarizing function) as well as the
aforementioned parameters. We start by initializing variables (lines 1-2).
Then, we use MOMBI-II with the new scalarizing function to solve the sample
MOP. Then, we obtain the hypervolume of the corresponding Pareto front
and we store this value. This process is repeated (lines 3-7) to obtain an
average hypervolume (line 8). If the average hypervolume is below some
percentage of the real hypervolume (defined by the threshold parameter)
we normalize the average hypervolume (line 10) and then we penalize this
value by dividing it by the number of MOPs (line 11). This penalty is
simply intended to significantly decrease the fitness of individuals that do
not reach the threshold in order to avoid the propagation of such individuals
in the population. We chose to divide the current fitness by the number of
MOPs as it is a simple way of decreasing the fitness while still keeping a
remainder of the original fitness in case that most of the population contains
bad individuals, which may occur in the first generations of the execution. In
the event that the average hypervolume is greater than the desired threshold,
we proceed to evaluate each of the desired MOPs using the new scalarizing
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function (lines 15-19). For each MOP, after averaging its hypervolume (line
20) and normalizing it (line 21), we cumulatively store this value to be the
individual’s final fitness (line 22).

Algorithm 1: Fitness function used to generate scalarizing func-
tions

Input : phenotype, ⃗MOP = {mop1, . . . ,mopj},
H⃗V = {hv1, . . . , hvj}, N⃗ =
{n1, . . . , nj}, sample mop, sample hv, sample n, threshold;

Output: fitness;
1 fitness← 0;
2 avg hv ← 0;
3 for i← 0 to sample n do
4 PFi ←MOMBI2(sample mop, phenotype);
5 aux hv ← compute hypervolume value of PFi;
6 avg hv ← avg hv + aux hv;

7 end
8 avg hv ← avg hv/sample n;
9 if avg hv < threshold ∗ sample hv then

10 fitness← avg hv/sample hv;

11 fitness← fitness/size( ⃗MOP );

12 else

13 foreach mop ∈ ⃗MOP do
14 avg hv ← 0;
15 for i← 0 to nj do
16 PFi ←MOMBI2(mopi, phenotype);
17 aux hv ← compute hypervolume value of PFi;
18 avg hv ← avg hv + aux hv;

19 end
20 avg hv ← avg hv/ni;
21 avg hv ← avg hv/hvi ;
22 fitness← fitness+ avg hv;

23 end

24 end
25 return fitness;

When incorporating the new scalarizing functions in MOMBI-II we used
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the max operator in the following way. Given the decoded phenotype to
be SF (fi(x⃗), wi), where f⃗(x⃗) is the objective functions vector and w⃗ is the
weight vector, we obtain the final Grammatical Evolution Scalarizing Func-
tion (GE SF) as follows:

GE SF (f⃗(x⃗), w⃗) := max
i∈1,...,m

(SF (fi(x⃗), wi)). (7)

The grammar used to generate the phenotypes consists of basic arithmetic
operations and the square root, as shown below. We deliberately chose not
to include more complex functions such as trigonometric functions, because
some previous experiments showed that such functions generate really specific
scalarizing functions which are not able to generalize a good performance in
problems different to the ones used in the training.

⟨e⟩ ::= ⟨e⟩ + ⟨e⟩ | ⟨e⟩ - ⟨e⟩ | ⟨e⟩ * ⟨e⟩ | ⟨e⟩ / ⟨e⟩
| sqrt(⟨e⟩) | ⟨c⟩⟨c⟩.⟨c⟩⟨c⟩ | fi(x⃗) | wi

⟨c⟩ ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

3.2. Hypervolume approximations

Let A = {x1, . . . , xn} ∈ IRm be a set of points in anm−dimensional space,
and let r ∈ IRm be a reference point which is dominated by every point in A.
Then, the set H(A, r) is formed by all the points that are dominated by at
least one element in A and which also dominate r:

H(A, r) = {z ∈ IRm | ∃ x ∈ A : x ≺ z ≺ r}. (8)

The hypervolume indicator IH(A, r) is defined as IH(A, r) =
λ(H(A, r)), where λ represents the Lebesgue measure [35]. In order to com-
pare the hypervolume values of two different sets, the calculation must be
made using the same reference point r.

3.2.1. Monte Carlo approximation

One of the most popular methods to approximate the hypervolume value
of a non-dominated set is the Monte Carlo approach [16]. Given a data set
X = {x1, . . . , xn}, xi ∈ IRm we can approximate its hypervolume by sampling
a given number of points in the region delimited by X. Then, for each sample
point we determine if it is dominated by any xi, counting the dominated
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sample points in variable hits. Then, the Monte Carlo approximation is
obtained using the following expression:

MC(X) = λ(X) ∗ hits

sample size
. (9)

The quality of the approximation depends on the sample size: the larger
the sample is, the better the approximation results. However, the computa-
tional cost increases proportionally to this value.

3.2.2. GP generated approximations

In the work presented in [30], 3 different approximations are proposed to
approximate the hypervolume value in 3, 4 and 5-dimensional spaces. For
each data set X ∈ IRn×m, there are some statistical features that need to be
computed to obtain its approximation. These features are shown in Table 1.
All of them are obtained for each of the m objectives in the data.

Table 1: Statistical features extracted from data to obtain its hypervolume approximation.

Notation Statistical feature

µ⃗ mean

σ⃗ standard deviation

Q⃗1 1st quartile

Q⃗2 2nd quartile

Q⃗3 3rd quartile

κ⃗ kurtosis

λ⃗ skewness

The hypervolume approximation functions for 3, 4 and 5 dimensions are
defined as shown in eqns (10), (11) and (12) respectively. These equations
were extracted from the source code provided in citesandoval22.
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M3
4,6(X) =

6236736683876353 ∗ µ⃗1 ∗ µ⃗2 ∗ Q⃗11
4503599627370496

− 3173082762593237 ∗ µ⃗2

2251799813685248
− 1771343023238655 ∗ µ⃗3

2251799813685248

− 5290754323525305 ∗ σ⃗1

4503599627370496
− 8680371570911475 ∗ Q⃗11

36028797018963968

− 2893457190303825 ∗ |γ⃗3|
36028797018963968

− 5906898887207671 ∗ log(κ⃗1)

36028797018963968

− 6829965597182259 ∗ log(σ⃗3)

9007199254740992 ∗ log(10)

− 2294397315973779 ∗ log(κ⃗2 + γ⃗2 + Q⃗22 ∗ γ⃗1)
18014398509481984 ∗ log(10)

− 2893457190303825 ∗ Q⃗23 ∗ γ⃗1
36028797018963968

− 6826873663546647 ∗ Q⃗23 ∗ γ⃗2
36028797018963968

− 6066879653575323 ∗ µ⃗1

4503599627370496
+

1215041356731309 ∗ Q⃗23 ∗ Q⃗11 ∗ γ⃗2
4503599627370496

+
5647080252797291

2251799813685248
(10)
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M4
5,6(X) =

3818342324243663 ∗ (σ⃗9
3)

1/2

17592186044416
− 8367714107802115 ∗ Q⃗14

9007199254740992

− 4684844483679697 ∗ sin(sin(µ⃗2 ∗ σ⃗4))

1125899906842624

− 4831284340333437 ∗ sin((σ⃗2
2 ∗ γ⃗2)/ cos(Q⃗13))

4503599627370496

− 3387877962052739 ∗ exp(exp(σ⃗3
3))

70368744177664
− 8649112683782109 ∗ Q⃗13

18014398509481984

+
2421873864284579

35184372088832 ∗ cos(σ⃗3)
+

188607530293811 ∗ 1/ tan(σ⃗4)
1/4

562949953421312

− 12795601803451 ∗ µ⃗1 ∗ σ⃗3

8796093022208

− 3714273495887619 ∗ Q⃗12 ∗ cos(Q⃗12) ∗ sin(γ⃗4)
18014398509481984

+
8842052222550475

140737488355328
(11)
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M5
1,5(X) =

226757085449091 ∗ µ⃗4

562949953421312
− 49212418854775 ∗ µ⃗1

140737488355328

+
316327101333597 ∗ Q⃗22

562949953421312
+

4208801459950455 ∗ Q⃗23
18014398509481984

+
4208801459950455 ∗ σ⃗2

9007199254740992
− 4420306567464985 ∗ σ⃗3

281474976710656

+
1059206653244855 ∗ Q⃗15

18014398509481984
+

50672178223625 ∗ Q⃗31
70368744177664

+
8274937251716701 ∗ sin−1(sin−1(Q⃗22 ∗ σ⃗3))

2251799813685248

− 8229011520467723 ∗ sin−1(σ⃗2
3)

562949953421312

+
2896651095433129 ∗ sin−1(tan(σ⃗3))

281474976710656

+
501121421306637 ∗ cos(Q⃗22 + Q⃗23 − Q⃗15 + Q⃗34 + Q⃗35 + log(κ⃗3))

4503599627370496

+
5140569679074477 ∗ cos(µ⃗3 + µ⃗4 + Q⃗15 + Q⃗31 + |σ⃗2|)

4503599627370496

− 49212418854775 ∗ tan(Q⃗22)

281474976710656
+

2896651095433129 ∗ tan(σ⃗3)

281474976710656

− 49212418854775

281474976710656 ∗ cos(Q⃗35)
+

4208801459950455 ∗ Q⃗31 ∗ Q⃗34
18014398509481984

− 49212418854775 ∗ Q⃗12 ∗ γ⃗5
281474976710656

− 5.2299056961053288716811948688701 ∗ Q⃗22 ∗ sin(σ⃗5)

+ 0.27075243546777693026683664356824.

(12)

3.2.3. R2 hypervolume approximation

Another recent proposal to approximate the hypervolume value of a non-
dominated set as well as the individual hypervolume contribution is based
on the use of the R2 indicator [36]. This is a linear-based approach, defined
as follows.
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RHV
2 (X,Λ, r⃗,m) =

1

|Λ|
∑
λ⃗∈Λ

max
x⃗∈X

(
gmtch(x⃗|λ⃗, r⃗)

)m

(13)

where X is a set of non-dominated solutions x⃗ ∈ IRm, Λ is a set of direction
vectors, each direction vector λ⃗ = {λ1, . . . , λm} ∈ Λ satisfies ∥λ∥2 = 1 and
λi ≥ 0, i = 1, . . . ,m, r⃗ = {r, . . . , r} is the reference point and m is the
dimensionality of the space. The function gmtch is defined as follows.

gmtch(x⃗|λ⃗, r⃗) = min
j∈1,...,m

(
|rj − aj|

λj

)
. (14)

3.2.4. Our proposal

We propose to generate hypervolume approximations by averaging a cu-
mulative-sum of function values. The overall process is depicted in Fig 2.
First, we evaluate our training data (described in the next section) using the
new approximation function. Then, we obtain the mean squared error using
the new approximation and the real hypervolume and assign the individual’s
fitness accordingly.

Figure 2: Diagram of grammatical evolution used to generate hypervolume approxima-
tions.
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In Algorithm 2 we present the outline of the corresponding fitness func-
tion. In order to evaluate the fitness of each individual we require its decoded
phenotype, a training set X⃗ = {X1, . . . , Xn}, where each Xi contains a set of
non-dominated points, and the corresponding set of real hypervolume values
I⃗H = {I1, . . . , In}, where Ii is the real hypervolume of the file Xi. Then,
we iterate through each file Xi to evaluate the phenotype using vector-wise
information. This means that for a given file of size n we will evaluate the
phenotype n times, storing the result in a cumulative-sum variable. Then,
we average this value with respect to n. This process is repeated with ev-
ery training set, and we use the average mean squared error (MSE) of each
approximation to assign the final fitness.

Algorithm 2: Fitness function used to generate hypervolume ap-
proximations using our proposal

Input : phenotype, X⃗ = {X1, . . . , Xn}, I⃗H = {I1, . . . , In};
Output: fitness;

1 mse← 0;
2 for i← 0 to n do
3 approximation← 0;
4 foreach x⃗ ∈ Xi do
5 approximation← approximation+evaluate(phenotype,x⃗);
6 end
7 approximation← approximation/size(Xi);
8 mse← mse+ (Ii − approximation)2;

9 end

10 fitness← mse/size(X⃗);
11 return fitness;

We adopted two different grammars to generate hypervolume approxi-
mations using our averaging variant. The first one is shown below, where
x⃗ ∈ IRm corresponds to the m-dimensional non-dominated points in a given
training set X of size n, and ⃗sum ∈ IRm stores the sum of all objectives of
x⃗ considering sumj =

∑n
i=1 xi,j. In contrast with the grammar adopted to

generate scalarizing functions, we decided to include sin, cos, log and exp in
addition of the basic arithmetic operators.
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⟨e⟩ ::= ⟨e⟩ + ⟨e⟩ | ⟨e⟩ - ⟨e⟩ | ⟨e⟩ * ⟨e⟩ | ⟨e⟩ / ⟨e⟩
| sin(⟨e⟩) | cos(⟨e⟩) | log(⟨e⟩) | exp(⟨e⟩)
| x⃗ | ⃗sum | n
| ⟨c⟩⟨c⟩.⟨c⟩⟨c⟩

⟨c⟩ ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

The second grammar adopted is similar to the previous one, but with the
addition of the statistical features used in [30]. In a similar way to ⃗sum, all
statistical features are calculated component-wise.

⟨e⟩ ::= ⟨e⟩ + ⟨e⟩ | ⟨e⟩ - ⟨e⟩ | ⟨e⟩ * ⟨e⟩ | ⟨e⟩ / ⟨e⟩
| sin(⟨e⟩) | cos(⟨e⟩) | log(⟨e⟩) | exp(⟨e⟩)
| x⃗ | ⃗sum | n
| µ⃗ (mean) | σ⃗ (standard deviation)

| Q⃗1 (1st quartile) | Q⃗2 (2nd quartile) | Q⃗3 (3rd quartile)

| κ⃗ (kurtosis) | λ⃗ (skewness)
| ⟨c⟩⟨c⟩.⟨c⟩⟨c⟩

⟨c⟩ ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 .

4. Experimental work

In this section we describe all the experimental setup used to generate two
new scalarizing functions with our proposed methodology. We also describe
the process followed to generate the training data used to generate eight
different hypervolume approximations.

4.1. Scalarizing functions

Using the implementation previously described, we performed a series of
executions adopting the benchmark problems from the Deb-Thiele-Laumanns-
Zitzler (DTLZ) [37] and Walking-Fish-Group (WFG) [38] test suites.

We chose one test problem per execution. However, we solved the problem
with 2, 3 and 5 objectives, in an attempt to create scalarizing functions which
could have a good performance in different dimensions. We used DTLZ1-
DTLZ7 and WFG1-WFG9. In Tables 2 to 17 we show the parameters that
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we adopted for each execution. As can be seen, the sample MOP is exactly
the same as the one adopted to train. However, in our experiments, we
only performed 3 MOMBI-II executions. Then, if the function is worth more
evaluations we proceed to execute MOMBI-II for each of the training MOPs
for a total of 30 times.

Table 2: Parameters adopted to generate scalarizing functions using DTLZ1.

Problem m
Maximum Reference

n
Hypervolume point

Training MOPs
DTLZ1

2 2.434 [1.6,1.6] 30

3 3.322 [1.5,1.5,1.5] 30

5 7.565 [1.5,1.5,1.5,1.5,1.5] 30

Sample MOP 2 2.433 [1.6,1.6] 3

Table 3: Parameters adopted to generate scalarizing functions using DTLZ2.

Problem m
Maximum Reference

n
Hypervolume point

Training MOPs
DTLZ2

2 3.21 [2,2] 30

3 7.353 [2,2,2] 30

5 31.598 [2,2,2,2,2] 30

Sample MOP 2 3.21 [2,2] 3

Table 4: Parameters adopted to generate scalarizing functions using DTLZ3.

Problem m
Maximum Reference

n
Hypervolume point

Training MOPs
DTLZ3

2 3.619 [2.1,2.1] 30

3 8.637 [2.1,2.1,2.1] 30

5 40.484 [2.1,2.1,2.1,2.1,2.1] 30

Sample MOP 2 2.111 [2.1,2.1] 3

Additionally, for each execution we set the maximum number of gener-
ations to 40, and the threshold to 0.15. To validate the performance of the

20



Table 5: Parameters adopted to generate scalarizing functions using DTLZ4.

Problem m
Maximum Reference

n
Hypervolume point

Training MOPs
DTLZ4

2 3.21 [2,2] 30

3 7.37 [2,2,2] 30

5 31.686 [2,2,2,2,2] 30

Sample MOP 2 3.21 [2,2] 3

Table 6: Parameters adopted to generate scalarizing functions using DTLZ5.

Problem m
Maximum Reference

n
Hypervolume point

Training MOPs
DTLZ5

2 3.21 [2,2] 30

3 4.731 [1.8,1.8,2] 30

5 104.98 [1.8,1.8,4.4,4.5,2] 30

Sample MOP 2 3.21 [2,2] 3

Table 7: Parameters adopted to generate scalarizing functions using DTLZ6.

Problem m
Maximum Reference

n
Hypervolume point

Training MOPs
DTLZ6

2 5.26 [2.5,2.5] 30

3 6.522 [2,2,2.2] 30

5 2997.455 [4,3.5,8.5,9.7,2.8] 30

Sample MOP 2 4.662 [2.5,2.5] 3

Table 8: Parameters adopted to generate scalarizing functions using DTLZ7.

Problem m
Maximum Reference

n
Hypervolume point

Training MOPs
DTLZ7

2 4.148 [1.9,5] 30

3 11.878 [1.9,1.9,7] 30

5 86.182 [1.9,1.9,2,2,11.8] 30

Sample MOP 2 4.146 [1.9,5] 3
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Table 9: Parameters adopted to generate scalarizing functions using WFG1.

Problem m
Maximum Reference

n
Hypervolume point

Training MOPs
WFG1

2 5.308 [3.7,4.1] 30

3 71.692 [3.5,5.6,6.5] 30

5 81.055 [3.6,2.2,2.7,2.9,5.6] 30

Sample MOP 2 4.724 [3.7,4.1] 3

Table 10: Parameters adopted to generate scalarizing functions using WFG2.

Problem m
Maximum Reference

n
Hypervolume point

Training MOPs
WFG2

2 7.444 [2.4,5.1] 30

3 80.645 [2.8,4.6,6.9] 30

5 3492.889 [2.5,4,5.5,7.2,9.3] 30

Sample MOP 2 7.381 [2.4,5.1] 3

Table 11: Parameters adopted to generate scalarizing functions using WFG3.

Problem m
Maximum Reference

n
Hypervolume point

Training MOPs
WFG3

2 11.311 [3.1,5.1] 30

3 59.045 [4,3.1,7.1] 30

5 10353.854 [3.9,5.3,7.6,8.6,11.1] 30

Sample MOP 2 10.743 [3.1,5.1] 3

Table 12: Parameters adopted to generate scalarizing functions using WFG4.

Problem m
Maximum Reference

n
Hypervolume point

Training MOPs
WFG4

2 8.897 [3.1,5.1] 30

3 83.189 [3.1,5.1,7.1] 30

5 9901.827 [3.1,5.1,7.1,9.1,11.1] 30

Sample MOP 2 8.031 [3.1,5.1] 3
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Table 13: Parameters adopted to generate scalarizing functions using WFG5.

Problem m
Maximum Reference

n
Hypervolume point

Training MOPs
WFG5

2 8.668 [3.1,5.1] 30

3 79.515 [3.1,5.1,7.1] 30

5 9437.534 [3.1,5.1,7.1,9.1,11.1] 30

Sample MOP 2 8.044 [3.1,5.1] 3

Table 14: Parameters adopted to generate scalarizing functions using WFG6.

Problem m
Maximum Reference

n
Hypervolume point

Training MOPs
WFG6

2 8.827 [3.1,5.1] 30

3 80.543 [3.1,5.1,7.1] 30

5 9506.954 [3.1,5.1,7.1,9.1,11.1] 30

Sample MOP 2 8.297 [3.1,5.1] 3

Table 15: Parameters adopted to generate scalarizing functions using WFG7.

Problem m
Maximum Reference

n
Hypervolume point

Training MOPs
WFG7

2 7.836 [3.1,5.3] 30

3 83.5 [3.1,5.1,7.1] 30

5 9989.461 [3.1,5.1,7.1,9.1,11.1] 30

Sample MOP 2 7.303 [3.1,5.3] 3

Table 16: Parameters adopted to generate scalarizing functions using WFG8.

Problem m
Maximum Reference

n
Hypervolume point

Training MOPs
WFG8

2 8.89 [3.3,5.2] 30

3 83.425 [3.3,5.1,7.1] 30

5 11786.065 [4,5.5,7.1,9.1,11.1] 30

Sample MOP 2 7.702 [3.3,5.2] 3
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Table 17: Parameters adopted to generate scalarizing functions using WFG9.

Problem m
Maximum Reference

n
Hypervolume point

Training MOPs
WFG9

2 8.945 [3.1,5.1] 30

3 79.929 [3.2,5.1,7.1] 30

5 9195.075 [3.2,5.2,7.2,9.2,11.2] 30

Sample MOP 2 8.608 [3.1,5.1] 3

best scalarizing functions obtained in each execution, we used each of them
to solve all 16 test problems (DTLZ1-DTLZ7 and WFG1-WFG9) consider-
ing 2, 3, 4, 5, 6 and 7 objectives. This generates a total of 96 test problems.
We performed 30 independent runs and computed the hypervolume and the
s-energy values of each Pareto front. S-energy is a performance indicator
used to measure the uniformity of the distribution of a set of points. The
lower the s-energy value the more uniform the distribution is [39]. Then,
we used the Wilcoxon rank-sum test under the null hypothesis that the in-
dicator results generated with each new scalarizing function come from the
same distribution as the indicator results generated with ASF, considering a
confidence level of 5%. We counted the number of problems where the null
hypothesis is rejected and the new scalarizing function indicator average is
greater than that of ASF under the column “+” of each comparison. Con-
versely, if the null hypothesis is rejected but the ASF indicator average is
greater, we count these under the column “-”. Finally, all problems in which
the null hypothesis could not be rejected are counted in the column “∼”.
We show these results in Table 18, including the execution time required to
complete the 40 generations. These executions were performed on an Intel
Core i7-8700 CPU, with 16 GB of RAM.

From these initial results, we can appreciate that many scalarizing func-
tions (especifically those generated using DTLZ3, DTLZ6, WFG4-WFG9)
include the fi(x⃗)/wi term from the original ASF. In fact, the scalarizing func-
tion generated with DTLZ3 was indeed, ASF. The best performing function
is the one generated with DTLZ6, as it outperforms ASF in more problems
(44) and it worsens them in 23 problems with respect to the hypervolume. A
similar behavior is observed with respect to the s-energy values. However, we
considered that it should be possible to obtain a better scalarizing function
using more test problems and more generations.
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Table 18: Behavior of scalarizing functions generated with Grammatical Evolution. The
comparison of the hypervolume and S-energy values show the number of test problems (a
total of 96) in which the results improved(+), worsened(-) or were similar(∼) with respect
to ASF.

Training
SF (fi(x⃗), wi)

Execution Hypervolume comparison S-energy comparison

problem time (s) + - ∼ + - ∼
DTLZ1 fi(x⃗) ∗ wi 4455.67 17 59 20 21 48 27

DTLZ2 wi/wi/wi + wi − √
wi +

√
fi(x⃗) 3997.07 10 82 4 3 83 10

DTLZ3 fi(x⃗)/wi 3949.98 0 0 96 0 0 96

DTLZ4
√
wi ∗ fi(x⃗) 3403.82 9 81 6 34 49 13

DTLZ5
√

fi(x⃗) + wi 5831.65 15 72 9 31 53 12

DTLZ6 fi(x⃗)/wi + fi(x⃗) 4667.40 44 23 29 37 25 34

DTLZ7 fi(x⃗) ∗ wi 4357.98 17 59 20 21 48 27

WFG1
√
wi ∗ 84.75 + fi(x⃗) ∗ fi(x⃗) 8338.57 3 92 1 1 91 4

WFG2
√

fi(x⃗) ∗ wi ∗ wi 11567.13 19 72 5 10 81 5

WFG3 wi + 01.52 +
√

fi(x⃗) 11135.62 15 72 9 30 50 13

WFG4 fi(x⃗)/wi − wi − wi 12056.09 19 71 6 4 74 18

WFG5 fi(x⃗)/wi − wi − wi 9838.63 19 71 6 4 74 18

WFG6 fi(x⃗)/wi − wi ∗ wi 11726.39 13 58 25 14 48 34

WFG7 fi(x⃗)/wi − fi(x⃗) 9361.49 15 73 8 8 63 25

WFG8 fi(x⃗)/wi − wi − wi 11093.16 19 71 6 4 74 18

WFG9 fi(x⃗)/wi − wi/fi(x⃗) 10509.27 11 7 78 11 13 72

Hence, we performed another round of experiments. This time we used
two different MOPs per execution. In Table 19 we present the parameters of
the problems used to generate another scalarizing function. The threshold
parameter was set to 0.15 and we set the maximum number of generations
to 80.

Table 19: Parameters adopted to generate a scalarizing function using DTLZ4 and WFG4.

Maximum Reference
Problem Objectives

Hypervolume point
n

DTLZ4 2 0.210 [1,1] 30

DTLZ4 3 0.420 [1,1,1] 30

DTLZ4 5 0.7 [1,1,1,1,1] 30

WFG4 2 2.100 [2.1,4.1] 30

WFG4 3 21.500 [2.1,4.1,6.1] 30

Training MOPs

WFG4 5 2035 [2.1,4.1,6.1,8.1,10.1] 30

Sample MOP DTLZ4 2 0.210 [1,1] 3

We performed three independent executions using these parameters, and
here we present the best performing individual, which we call GE SF1, and
it is defined as follows.

GE SF1(f⃗(x⃗), w⃗) := max
i∈1,...,m

(
fi(x⃗)

wi

∗ fi(x⃗) +
fi(x⃗)

wi

− fi(x⃗)

)
. (15)

Additionally, we performed three independent executions using I-DTLZ4
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as the training problem, which is a variant belonging to the inverse DTLZ
test problems [40]. The number of objectives used was 2, with a maximum
hypervolume of 18.0, a reference point [1,1] and n set to 30. The resulting
function, GE SF2, is defined as follows.

GE SF2(f⃗(x⃗), w⃗) := max
i∈1,...,m

(
fi(x⃗) + wi + 1− fi(x⃗)

22.42

)
. (16)

4.2. Hypervolume approximations

In order to generate our training/validation data, we used some of the dif-
ferent geometries provided by problems from the DTLZ and from the WFG
test suites. In Table 20, we show the problems adopted to obtain sets with
different geometries. There is a difference in the number of problems since
some problems (such as DTLZ5 and WFG3) are degenerate with 3 or more
objectives, changing the shape that they present in their 2-objectives ver-
sions.

Table 20: Test problems used in the generation of training/validation sets grouped by
their geometry.

(a) Problems used to generate 2-dimensional
training sets

Geometry Test problems
Linear DTLZ1
Concave DTLZ2
Mixed DTLZ7, WFG1, WFG2

(b) Problems used to generate 3, 4 and 5 dimen-
sional training sets

Geometry Test problems
Linear DTLZ1, WFG3
Convex WFG2
Concave DTLZ2, DTLZ5
Mixed DTLZ7, WFG1

We used NSGA-III [41] to solve each of the selected problems and stored
the population at every 100 generations. For problems with 2 objectives we
set the population size to be 100 individuals, whereas the problems with 3
and 4 objectives were set to 120 individuals and the problems with 5 ob-
jectives were set to 140 individuals. Then, we filtered each of the resulting
files to delete all dominated solutions present in the data. This changed the
size of elements in each file, since not all solutions are non-dominated in
each generation. Next, we normalized the remaining solutions to the interval
[0,1]. This is done to avoid the definition of a reference point in the hyper-
volume approximation function’s grammar. Once these files were obtained,
we randomly separated them into the training and the validation set. The
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total number of data files generated with each problem, as well as the size of
the corresponding training/validation sets are shown in Table 21. The final
training/validation sets were created by combining all resulting files for each
problem in each dimension, creating 4 different training/validation sets.

Table 21: Number of files generated using each of the selected test problems.

Objectives Problem
Total files Training set Validation set
generated size size

2

DTLZ1 996 491 505
DTLZ2 891 432 459
DTLZ7 894 433 461
WFG1 750 383 367
WFG2 747 363 384

3

DTLZ1 832 438 394
DTLZ2 868 401 467
DTLZ5 832 416 416
DTLZ7 832 431 401
WFG1 750 388 362
WFG2 832 400 432
WFG3 832 398 434

4

DTLZ1 873 408 465
DTLZ2 868 435 433
DTLZ5 832 404 428
DTLZ7 832 411 421
WFG1 750 382 368
WFG2 832 433 399
WFG3 832 421 411

5

DTLZ1 831 406 425
DTLZ2 833 406 427
DTLZ5 792 401 391
DTLZ7 792 392 400
WFG1 752 362 390
WFG2 792 406 386
WFG3 792 375 417

In Fig. 3 we show the computational time used in each step of the pro-
cess to create the training/validation data. In the first step we used the
PlatEMO [42] implementation of NSGA-III to store the populations. Then,
we used Python scripts to Pareto filter such files and to normalize them. Fi-
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Figure 3: Computational times used to generate the training/validation sets used for
hypervolume approximations.

nally, we employed a C implementation [43] to obtain the real hypervolume
values of each file. All these steps were performed on an Intel Core i7-8700
CPU, with 16 GB of RAM.

We performed 8 different executions, considering the two grammars pre-
viously described for each of the four training sets generated. The maximum
number of generations was set to 300, whereas the population size was set to
20. Here, we present the best result obtained from each of these executions.

In eqns (17), (18), (19) and (20) we present the best hypervolume ap-
proximation functions found using the first grammar for data with 2, 3, 4
and 5 objectives, respectively.
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GEHV 12D(X) =
1

n

n∑
i=1

(
cos(x⃗i,1/ cos(x⃗i,2 + sin(34.56))

+ sin(sin(x⃗i,1/ cos(sin(x⃗i,2))

+ x⃗i,2 ∗ cos(sin(sin(x⃗i,1 ∗ sin(n− x⃗i,2 ∗ cos(sin(
√

log(n)))

∗
√

x⃗i,2/ cos(sin(sin(sin(sin(x⃗i,1 ∗ sin(x⃗i,2)))

∗ cos(sin(cos(sin(sin(sin(sin(cos(cos(x⃗i,1 ∗ sin(x⃗i,2))))

∗ x⃗i,2/ cos(x⃗i,2))) ∗ cos(sin(x⃗i,1 ∗ sin(x⃗i,2) ∗ x⃗i,2/ sin(exp(x⃗i,2))

∗ x⃗i,2 ∗ x⃗i,2) ∗ x⃗i,2)))))) ∗ x⃗i,2 ∗ cos(sin(sin(sin(x⃗i,1 ∗ sin(x⃗i,2)

∗ cos(sin(sin(sin(cos(07.07 + x⃗i,1) ∗ ⃗sum1 ∗ sin(x⃗i,1

∗ sin(x⃗i,2) ∗ x⃗i,2/ cos(x⃗i,2))))))) ∗ cos(exp(x⃗i,1) ∗ n)) ∗ x⃗i,2)

∗ cos(n))))) ∗ sin(sin(n ∗ sin(18.34)) ∗ cos(sin(x⃗i,2))

+ x⃗i,2)) ∗ x⃗i,2) ∗ sin(sin(x⃗i,1 ∗ sin(18.71))

∗ log(sin(exp(sin(34.51))))))) ∗ sin(
√

x⃗i,2)))

)
(17)

GEHV 13D(X) =
1

n

n∑
i=1

(
cos(x⃗i,1 + sin(cos(x⃗i,3)) ∗ exp(x⃗i,3/

√
cos(x⃗i,3)))

+ cos(sin(x⃗i,2 ∗ sin(exp(x⃗i,2)) + cos(sin(cos(cos(x⃗i,3)

∗ cos(sin(cos(log(cos(cos(n+ x⃗i,3)))) ∗ x⃗i,3

+ x⃗i,3/ cos(sin(cos( ⃗sum1))))/ cos(sin(n

∗ sin(cos(cos(x⃗i,3 + cos(sin( ⃗sum2)− x⃗i,2

− cos(x⃗i,1 + sin(cos(x⃗i,3)) + ⃗sum2)))))

+ cos(n+ x⃗i,3)− x⃗i,3))))))))

)
(18)

GEHV 14D(X) =
1

n

n∑
i=1

cos(x⃗i,1 + x⃗i,2 ∗ x⃗i,3 + x⃗i,4) (19)
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GEHV 15D(X) =
1

n

n∑
i=1

(
cos(x⃗i,1 + sin(x⃗i,5) + x⃗i,3 ∗ sin(x⃗i,1 + sin(x⃗i,1)

− sin(sin( ⃗sum5/98.27 ∗ x⃗i,4 ∗ x⃗i,3

+ sin(sin(x⃗i,5 − x⃗i,3 + sin(sin(98.22))

− sin( ⃗sum2 − ⃗sum3 + x⃗i,1)− sin(x⃗i,5 ∗ sin(x⃗i,5) + x⃗i,3 + n)

− x⃗i,4 + x⃗i,1 − sin(x⃗i,5) + x⃗i,3 ∗ sin( ⃗sum1 + 68.66))− sin(x⃗i,2)

+ x⃗i,5 ∗ x⃗i,5 − x⃗i,3 − x⃗i,1 + sin(exp(sin( ⃗sum1

∗ sin( ⃗sum1 + sin(x⃗i,2)− x⃗i,5 ∗ sin(x⃗i,3 + x⃗i,2 ∗ x⃗i,5 + ⃗sum1

+
√

x⃗i,5 ∗ x⃗i,3 ∗ sin(sin(x⃗i,5))))))) + x⃗i,3 ∗ sin(x⃗i,1/n ∗ sin(x⃗i,2)

∗ x⃗i,5 + sin(
√

⃗sum4 − 98.06 + x⃗i,3 ∗
√

x⃗i,1 + ⃗sum3 − x⃗i,2 ∗ x⃗i,5

∗ sin(cos(98.67) + x⃗i,5 + 96.65 ∗ 97.82 ∗ sin(exp(x⃗i,1) ∗ x⃗i,3

− 98.62 ∗ sin(x⃗i,1 ∗ x⃗i,1) + exp(sin( ⃗sum1 + x⃗i,2 ∗ x⃗i,5 + ⃗sum1

+ 29.20 ∗
√

x⃗i,5))− x⃗i,3) + exp(n)) ∗ sin(x⃗i,3 ∗ exp( ⃗sum3)

∗ x⃗i,4 + x⃗i,1 + ⃗sum2 ∗ sin(x⃗i,3) ∗ x⃗i,3) ∗ sin( ⃗sum1 ∗ x⃗i,1))))))

∗ sin(x⃗i,1)− sin(sin(
√

⃗sum5 + ⃗sum3 +

√√
x⃗i,3))))

)
.

(20)

In eqns (21), (22), (23) and (24) we present the best hypervolume ap-
proximation functions found using the second grammar for data with 2, 3, 4
and 5 objectives, respectively.

GEHV 22D(X) =
1

n

n∑
i=1

sin(cos(Q⃗22 ∗ cos(σ⃗1) + Q⃗21)) (21)
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GEHV 23D(X) =
1

n

n∑
i=1

(
cos(µ⃗1 + µ⃗3 + sin(sin(Q⃗12 ∗ sin(sin(Q⃗21 ∗ λ⃗1 ∗ x⃗i,3

+ sin(
√

sin(x⃗i,2)) ∗ µ⃗3)) + exp(σ⃗2) ∗ Q⃗12 ∗ σ⃗2

∗ (x⃗i,2 + x⃗i,1 + sin(µ⃗1 + µ⃗3 + sin(sin(Q⃗12

∗ sin(sin(x⃗i,3 ∗ λ⃗1 ∗ sin(
√√

x⃗i,2) ∗ Q⃗33 + Q⃗12

∗ sin(cos(sin(x⃗i,2 ∗ x⃗i,1 ∗ sin(sin(sin(Q⃗33 + Q⃗12))

∗ sin(cos(µ⃗1 + µ⃗3 ∗ µ⃗1 ∗ µ⃗3 − sin(sin(Q⃗12

∗ sin(sin( ⃗sum3 ∗ σ⃗1)) + ⃗sum2 ∗ λ⃗1 ∗ x⃗i,3

∗ sin(
√√

x⃗i,2))))))) + µ⃗3 ∗ exp(σ⃗2)− Q⃗12 ∗ σ⃗2))))

+

√
x⃗i,2 +

√
x⃗i,2 + x⃗i,1 ∗ sin(µ⃗1 + µ⃗1 + µ⃗3

+ sin(sin(µ⃗1 ∗ µ⃗3 ∗ Q⃗13 ∗ Q⃗13)) + Q⃗12

∗ sin(sin(Q⃗21 ∗ λ⃗1 ∗ cos(sin(
√
sin(x⃗i,2))) + µ⃗3

∗ exp(σ⃗2))) + Q⃗12 ∗ σ⃗2

∗ (x⃗i,2 + x⃗i,1 + sin(sin(sin(Q⃗33 + σ⃗1))

∗ sin(cos(x⃗i,3 ∗ sin(κ⃗2)− σ⃗2
2))) + x⃗i,2 +

√
x⃗i,2)

1/2)

∗ log(µ⃗1 + µ⃗3))) + Q⃗21))
1/2)))

)
(22)
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GEHV 24D(X) =
1

n

n∑
i=1

(
cos(x⃗i,1 + Q⃗13 + Q⃗24 + exp(Q⃗34) ∗ σ⃗2 ∗ σ⃗4

∗ cos(x⃗i,1 ∗ Q⃗34 ∗ σ⃗2 ∗ σ⃗4 ∗ cos(Q⃗34 ∗ σ⃗4)

∗ exp(κ⃗3) ∗ x⃗i,3 ∗ σ⃗4 ∗ cos( ⃗sum4) ∗ σ⃗4 ∗ cos(Q⃗14)

∗ x⃗i,1 + Q⃗13 + Q⃗24 − λ⃗2 ∗ σ⃗2 ∗ λ⃗4 + Q⃗13

+ σ⃗2
3/ exp(Q⃗34) ∗ Q⃗11 ∗ σ⃗4 ∗ Q⃗31 − λ⃗2 ∗ σ⃗2

∗ λ⃗4 + Q⃗13 + Q⃗21 ∗ exp(Q⃗34) ∗ x⃗i,1 ∗ σ⃗4 ∗ σ⃗2 ∗ x⃗i,1

∗ Q⃗31 − λ⃗2 ∗ σ⃗2 ∗ κ⃗2 + Q⃗13 + σ⃗2
3 ∗ x⃗i,4

∗ exp(Q⃗31) ∗ λ⃗2 ∗ Q⃗34 ∗ κ⃗2 + Q⃗13 + σ⃗2 ∗ exp(Q⃗31)

∗ σ⃗2 ∗ σ⃗4 ∗ σ⃗4 ∗ cos(µ⃗4 ∗ σ⃗2 ∗ σ⃗2 ∗ σ⃗4

∗ cos(x⃗i,1 ∗ σ⃗2
4 ∗ σ⃗2

4 ∗ x⃗i,3 ∗ x⃗i,2 ∗ cos(Q⃗14)

∗ ⃗sum3 + exp(x⃗i,2)− Q⃗13 ∗ Q⃗24 + λ⃗2 ∗ σ⃗2)

∗ Q⃗12 ∗ σ⃗2
2 + sin(κ⃗2 + Q⃗13 ∗ σ⃗2

3 ∗ Q⃗13 ∗ σ⃗2
3 ∗ x⃗i,4

− exp(Q⃗31) ∗ λ⃗2 ∗ σ⃗2 ∗ σ⃗1 + µ⃗2 ∗ σ⃗2 ∗ Q⃗33 ∗ σ⃗2

∗ σ⃗4 ∗ cos(Q⃗31) ∗ λ⃗4 + Q⃗13 + σ⃗2
3) ∗ exp(σ⃗2)

∗ Q⃗24 ∗ σ⃗2 ∗ σ⃗1 + µ⃗2 ∗ σ⃗2 ∗ Q⃗33 ∗ σ⃗2 ∗ σ⃗4

∗ cos(Q⃗31) ∗ λ⃗4 + Q⃗13 + σ⃗2
3 ∗ exp(σ⃗2) ∗ Q⃗24 ∗ λ⃗2

∗ λ⃗2 ∗ σ⃗2 ∗ κ⃗2 + Q⃗13 + σ⃗2 ∗ σ⃗2 ∗ σ⃗4 ∗ cos(Q⃗24)

+ λ⃗2 ∗ σ⃗2 ∗ Q⃗12 ∗ σ⃗2
2 + sin( ⃗sum3 ∗ exp(Q⃗31))

∗ σ⃗2 ∗ σ⃗2
3 + cos(Q⃗31)) ∗ λ⃗4 + exp(Q⃗12) ∗ σ⃗2

3 ∗ σ⃗2

∗σ⃗2 ∗ σ⃗4 ∗ λ⃗4 ∗ ⃗sum4))

)

(23)

GEHV 25D(X) =
1

n

n∑
i=1

cos(Q⃗35 ∗ x⃗i,5 + µ⃗4 + µ⃗1). (24)
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Figure 4: Computational time used to generate each of the hypervolume approximation
functions using our proposal.

5. Results

5.1. Scalarizing functions

To assess the performance of GE SF1 and GE SF2 we coupled them
with MOMBI-II and solved the benchmark problems DTLZ1-DTLZ7, WFG1-
WFG9 and I-DTLZ1-I-DTLZ7 using 2, 3, 4, 5, 6 and 7 objectives. We per-
formed 30 independent executions and measured the hypervolume values of
the Pareto fronts generated. We repeated the same process with the original
ASF, as well as with TCH and PBI.

In the following 3 tables, we show the best average hypervolume for each
problem in boldface. Aditionally, we performed the Wilcoxon rank-sum
test under the null hypothesis that the hypervolume results generated with
one scalarizing function come from the same distribution as the hypervolume
results generated with another scalarizing function, considering a confidence
level of 5%. This test was performed with each pair of scalarizing functions,
and we show the cases in which the null hypothesis was rejected and the
current function’s average hypervolume is greater under the “+” column of
each function. Additionally, we indicate with gray cells all of the scalarizing
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function results in which the null hypothesis could not be rejected when
comparing against the best result (marked in boldface).

In Tables 22 and 23 we show the average results of the hypervolume
indicator in standard benchmark problems (DTLZ and WFG).

On the other hand, in Table 24 we show the average results of the hyper-
volume indicator in inverse DTLZ problems.

From Tables 22 and 23 we counted the number of gray cells of each
scalarizing function (i.e., the best performing functions for each problem)
and grouped them by number of objectives. We show these results in Ta-
ble 25. Here, we can observe that GE SF1 is the best performing scalarizing
function, having the best results in 56 out of 96 test instances, followed by
PBI, which obtained the best results in 36 cases. This is the behavior we
were looking for by combining DTLZ4 and WFG4, which is to improve the
performance obtained with ASF. However, not only GE SF1 outperformed
ASF, but it also outperformed the other scalarizing functions adopted in this
comparison. Conversely, GE SF2 is the scalarizing function with the worst
performance, as it only obtained the best results in 10 test instances, which
was also an expected behavior since it was trained using I-DTLZ4. Nonethe-
less it is interesting to see that it was able to obtain top results in DTLZ5
with 2, 6 and 7 objectives as well as DTLZ6 with 2 and 3 objectives, even
though it was not designed to successfully solve standard MOPs.

Even though GE SF1 attained the largest number of problems improved,
it is evident that not even this function is able to outperform the others in
every test problem, since it only obtained top results in 58.33% of the test
instances. This is also an expected behavior since we are dealing with many
different types of problems/number of objectives/geometries, which makes it
difficult for a single scalarizing function to improve results in every possible
setup.

From Table 24 we counted the number of gray cells of each scalarizing
function and we show these results in Table 26. These results correspond
to the validation using inverse DTLZ problems. Here, we can observe that
GE SF2, which was generated specifically using an inverse test MOP in the
search process of PonyGE2, obtains the largest number of problems improved.
Overall, GE SF2 is able to obtain top results in 36 out of 42 test instances.

Finally, we performed two additional comparisons against MOEA/D [34]
and NSGA-III, as well as the default version of MOMBI-II with ASF. In
the first comparison, shown in Table 27 we compare these three MOEAs
against MOMBI-II with GE SF1, since it was the best performing scalarizing
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Table 22: Hypervolume comparison using different scalarizing functions in problems with
2-4 objectives.

Problem m
ASF(1) PBI(2) TCH(3) GE SF1(4) GE SF2(5)

HV + HV + HV + HV + HV +

DTLZ1

2

2.327E-01 − 2.337E-01 1
5 2.337E-01 1

5 2.337E-01 1
5 2.336E-01 1

DTLZ2 4.182E-01 − 4.201E-01 1
3 4.201E-01 1 4.203E-01 1,

2,3 4.205E-01 1,
2,
3,
4

DTLZ3 4.172E-01 − 4.174E-01 − 4.188E-01 1
2 4.188E-01 1

2 4.191E-01 1
2

DTLZ4 2.988E-01 5 3.101E-01 1,
3,5 3.101E-01 1

5 3.103E-01 1,
2,
3,
5 2.692E-01 −

DTLZ5 4.182E-01 − 4.201E-01 1
3 4.201E-01 1 4.203E-01 1,

2,3 4.205E-01 1,
2,
3,
4

DTLZ6 1.274E+00 − 1.268E+00 − 1.261E+00 − 1.291E+00 3 1.265E+00 −
DTLZ7 6.433E-01 − 6.445E-01 1 6.447E-01 1,

2,5 6.448E-01 1,
2,
3,
5 6.446E-01 1

2

WFG1 2.252E+00 2,
3,5 1.519E+00 − 1.589E+00 2 2.363E+00 1,

2,
3,
5 1.546E+00 −

WFG2 4.906E+00 2,
3,5 4.300E+00 − 4.315E+00 2 4.929E+00 1,

2,
3,
5 4.323E+00 2

3

WFG3 4.529E+00 2,
3,5 4.470E+00 − 4.491E+00 2 4.543E+00 1,

2,
3,
5 4.503E+00 2

3

WFG4 2.272E+00 2,
3,5 2.223E+00 − 2.235E+00 2

5 2.281E+00 1,
2,
3,
5 2.223E+00 −

WFG5 1.973E+00 2,
3,5 1.963E+00 − 1.966E+00 2 1.980E+00 1,

2,
3,
5 1.965E+00 2

WFG6 2.024E+00 − 2.047E+00 − 2.062E+00 − 2.035E+00 − 2.071E+00 1
4

WFG7 2.686E+00 2,
3,5 2.350E+00 − 2.371E+00 2

5 2.707E+00 1,
2,
3,
5 2.343E+00 −

WFG8 3.795E+00 2
5 3.424E+00 − 3.743E+00 2 3.848E+00 1,

2,5 3.747E+00 2

WFG9 1.997E+00 − 2.210E+00 1
4 2.221E+00 1,

2,4 1.917E+00 − 2.216E+00 1
4

DTLZ1

3

3.805E+01 5 3.845E+01 1,
3,
4,
5 3.844E+01 1,

4,5 3.805E+01 5 3.614E+01 −
DTLZ2 7.394E-01 3

5 7.494E-01 1,
3,
4,
5 7.099E-01 5 7.410E-01 1,

3,5 6.533E-01 −
DTLZ3 2.387E+02 − 2.408E+02 1,

3,
4,
5 2.408E+02 1,

4,5 2.387E+02 − 2.075E+02 −
DTLZ4 8.609E-01 3

5 8.704E-01 1,
3,
4,
5 8.111E-01 5 8.628E-01 1,

3,5 7.519E-01 −
DTLZ5 2.188E+01 4 2.207E+01 1

4 2.212E+01 1,
2,
4,
5 2.182E+01 − 2.211E+01 1,

2,4

DTLZ6 2.079E+02 4 2.087E+02 1
4 2.094E+02 1,

2,4 2.074E+02 − 2.097E+02 1,
2,
3,
4

DTLZ7 1.449E+00 2,
3,5 1.409E+00 3 1.389E+00 − 1.450E+00 2,

3,5 1.344E+00 −
WFG1 3.462E+01 2

5 3.265E+01 5 3.504E+01 2
5 3.504E+01 2

5 2.692E+01 −
WFG2 4.455E+01 2,

3,5 4.440E+01 3
5 4.333E+01 5 4.486E+01 1,

2,
3,
5 4.088E+01 −

WFG3 4.824E+01 2
5 4.785E+01 − 4.850E+01 1,

2,
4,
5 4.819E+01 2

5 4.788E+01 −
WFG4 2.401E+01 2,

3,5 2.312E+01 3
5 2.190E+01 5 2.409E+01 1,

2,
3,
5 2.063E+01 −

WFG5 2.192E+01 2,
3,5 2.172E+01 3

5 1.987E+01 5 2.203E+01 1,
2,
3,
5 1.917E+01 −

WFG6 2.444E+01 2,
3,5 2.352E+01 3

5 2.218E+01 5 2.450E+01 2,
3,5 2.088E+01 −

WFG7 2.426E+01 2,
3,5 2.359E+01 3

5 2.206E+01 5 2.434E+01 1,
2,
3,
5 2.075E+01 −

WFG8 2.566E+01 2,
3,5 2.547E+01 3

5 2.461E+01 5 2.591E+01 1,
2,
3,
5 2.335E+01 −

WFG9 2.519E+01 2,
3,5 2.391E+01 3

5 2.313E+01 − 2.555E+01 1,
2,
3,
5 2.237E+01 −

DTLZ1

4

1.015E+01 5 1.034E+01 1,
3,
4,
5 1.033E+01 1,

4,5 1.016E+01 5 8.635E+00 −
DTLZ2 1.014E+00 3

5 1.032E+00 1,
3,
4,
5 8.857E-01 5 1.016E+00 1,

3,5 7.018E-01 −
DTLZ3 1.017E+00 3

5 1.018E+00 1,
3,5 8.739E-01 5 1.018E+00 3

5 7.006E-01 −
DTLZ4 1.021E+00 3,

4,5 1.032E+00 1,
3,
4,
5 8.642E-01 5 1.018E+00 3

5 7.113E-01 −
DTLZ5 4.380E+01 5 4.420E+01 1,

3,
4,
5 4.419E+01 1,

4,5 4.382E+01 5 4.350E+01 −
DTLZ6 6.929E+03 2

5 6.890E+03 − 6.925E+03 2
5 6.934E+03 1,

2,
3,
5 6.909E+03 2

DTLZ7 1.872E+00 2,
3,5 1.820E+00 3

5 1.607E+00 − 1.875E+00 1,
2,
3,
5 1.701E+00 3

WFG1 2.510E+02 2
5 2.419E+02 5 2.753E+02 1,

2,
4,
5 2.504E+02 2

5 2.038E+02 −
WFG2 3.868E+02 2,

3,5 3.695E+02 3
5 3.623E+02 − 3.873E+02 2,

3,5 3.616E+02 −
WFG3 3.774E+02 5 3.886E+02 1,

3,
4,
5 3.836E+02 1,

4,5 3.788E+02 5 3.729E+02 −
WFG4 2.511E+02 2,

3,
4,
5 2.421E+02 3

5 1.623E+02 − 2.499E+02 2,
3,5 1.612E+02 −

WFG5 2.331E+02 2,
3,5 2.301E+02 3

5 1.473E+02 − 2.334E+02 2,
3,5 1.530E+02 3

WFG6 2.341E+02 2,
3,5 2.289E+02 3

5 1.367E+02 − 2.337E+02 2,
3,5 1.517E+02 3

WFG7 2.538E+02 2,
3,5 2.516E+02 3

5 1.706E+02 5 2.547E+02 1,
2,
3,
5 1.636E+02 −

WFG8 2.944E+02 3
5 3.130E+02 1,

3,
4,
5 2.142E+02 − 3.106E+02 1,

3,5 2.205E+02 3

WFG9 2.228E+02 3
5 2.273E+02 1,

3,5 1.461E+02 − 2.294E+02 1,
3,5 1.580E+02 335



Table 23: Hypervolume comparison using different scalarizing functions in problems with
5-7 objectives.

Problem m
ASF(1) PBI(2) TCH(3) GE SF1(4) GE SF2(5)

HV + HV + HV + HV + HV +

DTLZ1

5

7.580E-02 3,
4,5 7.673E-02 1,

3,
4,
5 7.467E-02 5 7.575E-02 3

5 6.270E-02 −
DTLZ2 1.291E+00 3

5 1.308E+00 1,
3,
4,
5 1.146E+00 5 1.294E+00 1,

3,5 7.531E-01 −
DTLZ3 1.129E+04 4

5 1.129E+04 1,
4,5 1.130E+04 1,

2,
4,
5 1.128E+04 5 8.178E+03 −

DTLZ4 1.304E+00 3
5 1.308E+00 1,

3,5 1.146E+00 5 1.310E+00 1,
2,
3,
5 7.864E-01 −

DTLZ5 1.198E+02 − 1.285E+02 1,
3,
4,
5 1.238E+02 1

4 1.222E+02 1 1.229E+02 1
4

DTLZ6 9.618E+04 2,
3,5 9.590E+04 3 9.510E+04 − 9.626E+04 1,

2,
3,
5 9.593E+04 3

DTLZ7 2.985E+00 3
5 2.994E+00 1,

3,5 2.588E+00 5 3.006E+00 1,
2,
3,
5 1.886E+00 −

WFG1 9.512E+02 2,
4,5 9.023E+02 5 1.022E+03 1,

2,
4,
5 9.355E+02 2

5 8.513E+02 −
WFG2 3.952E+03 2,

3,5 3.842E+03 5 3.899E+03 2,
4,5 3.878E+03 2

5 3.801E+03 −
WFG3 5.134E+03 3 5.141E+03 3

5 4.812E+03 − 5.196E+03 1,
2,
3,
5 5.094E+03 3

WFG4 2.980E+03 2,
3,5 2.864E+03 3

5 1.955E+03 5 2.989E+03 1,
2,
3,
5 1.593E+03 −

WFG5 2.767E+03 2,
3,5 2.749E+03 3

5 1.534E+03 − 2.793E+03 1,
2,
3,
5 1.485E+03 −

WFG6 2.890E+03 2,
3,5 2.850E+03 3

5 1.069E+03 − 2.908E+03 2,
3,5 1.532E+03 3

WFG7 3.085E+03 2,
3,5 3.059E+03 3

5 2.076E+03 5 3.094E+03 1,
2,
3,
5 1.631E+03 −

WFG8 4.742E+03 3
5 5.218E+03 1,

3,
4,
5 3.059E+03 − 4.861E+03 1,

3,5 3.092E+03 −
WFG9 2.690E+03 3

5 2.815E+03 1,
3,5 1.192E+03 − 2.751E+03 1,

3,5 1.667E+03 3

DTLZ1

6

4.607E-02 3
5 4.643E-02 1,

3,
4,
5 4.597E-02 5 4.604E-02 5 3.836E-02 −

DTLZ2 1.536E+00 3
5 1.549E+00 1,

3,
4,
5 1.432E+00 5 1.539E+00 1,

3,5 8.118E-01 −
DTLZ3 7.854E+03 4

5 7.857E+03 1,
3,
4,
5 7.857E+03 1,

4,5 7.854E+03 5 7.301E+03 −
DTLZ4 1.548E+00 3

5 1.551E+00 1,
3,5 1.438E+00 5 1.555E+00 1,

2,
3,
5 8.471E-01 −

DTLZ5 4.951E+01 2
3 4.444E+01 − 4.806E+01 2 5.031E+01 1,

2,3 5.037E+01 1,
2,3

DTLZ6 3.316E+05 2,
3,5 3.297E+05 3 3.150E+05 − 3.318E+05 2,

3,5 3.295E+05 3

DTLZ7 3.173E+00 3,
4,5 3.206E+00 1,

3,
4,
5 2.736E+00 5 3.145E+00 3

5 1.915E+00 −
WFG1 2.555E+02 2

5 2.414E+02 − 2.683E+02 1,
2,
4,
5 2.561E+02 2

5 2.403E+02 −
WFG2 4.426E+04 2 4.334E+04 − 4.580E+04 1,

2,5 4.519E+04 1,
2,5 4.458E+04 1

2

WFG3 7.153E+04 2,
3,5 6.801E+04 3 6.512E+04 − 7.230E+04 1,

2,
3,
5 6.924E+04 3

WFG4 3.845E+04 2,
3,5 3.681E+04 3

5 2.644E+04 5 3.929E+04 1,
2,
3,
5 1.886E+04 −

WFG5 3.849E+04 2,
3,5 3.236E+04 3

5 2.207E+04 5 3.910E+04 1,
2,
3,
5 1.893E+04 −

WFG6 4.297E+04 2,
3,5 4.218E+04 3

5 1.429E+04 − 4.324E+04 1,
2,
3,
5 2.127E+04 3

WFG7 4.006E+04 2,
3,5 3.265E+04 5 2.835E+04 5 4.036E+04 1,

2,
3,
5 1.903E+04 −

WFG8 6.954E+04 3
5 7.983E+04 1,

3,
4,
5 3.340E+04 − 7.044E+04 1,

3,5 4.440E+04 3

WFG9 3.328E+04 3
5 3.763E+04 1,

3,
4,
5 1.251E+04 − 3.454E+04 1,

3,5 2.141E+04 3

DTLZ1

7

3.240E-02 3,
4,5 3.258E-02 1,

3,
4,
5 3.176E-02 5 3.227E-02 3

5 2.622E-02 −
DTLZ2 1.761E+00 3,

4,5 1.773E+00 1,
3,
4,
5 1.366E+00 5 1.751E+00 3

5 8.475E-01 −
DTLZ3 1.744E+00 3

5 1.754E+00 1,
3,5 1.339E+00 5 1.755E+00 1,

3,5 9.017E-01 −
DTLZ4 1.773E+00 3,

4,5 1.774E+00 1,
3,
4,
5 1.469E+00 5 1.771E+00 3

5 9.113E-01 −
DTLZ5 8.148E+00 2

3 6.169E+00 − 7.842E+00 2 8.228E+00 2
3 8.532E+00 1,

2,
3,
4

DTLZ6 6.208E+05 3
5 6.302E+05 1,

3,5 4.979E+05 − 6.281E+05 1,
3,5 6.166E+05 3

DTLZ7 3.360E+00 3,
4,5 3.197E+00 3

5 2.468E+00 5 3.307E+00 2,
3,5 2.446E+00 −

WFG1 1.392E+02 2 1.237E+02 − 1.675E+02 1,
2,
4,
5 1.429E+02 1,

2,5 1.391E+02 2

WFG2 6.303E+05 2
5 6.070E+05 − 6.350E+05 2

5 6.223E+05 2
5 6.176E+05 2

WFG3 1.105E+06 2
3 1.075E+06 3 9.999E+05 − 1.094E+06 2

3 1.109E+06 2
3

WFG4 5.364E+05 3
5 5.426E+05 1,

3,5 3.237E+05 5 5.506E+05 1,
3,5 2.694E+05 −

WFG5 5.268E+05 2,
3,5 3.514E+05 3

5 2.125E+05 − 5.402E+05 1,
2,
3,
5 2.420E+05 3

WFG6 6.158E+05 2,
3,5 5.490E+05 3

5 3.520E+05 5 6.150E+05 3
5 2.901E+05 −

WFG7 5.822E+05 2,
3,5 5.345E+05 3

5 3.862E+05 5 5.904E+05 1,
3,5 2.800E+05 −

WFG8 9.453E+05 3
5 1.196E+06 1,

3,
4,
5 2.015E+05 − 9.908E+05 1,

3,5 5.819E+05 3

WFG9 4.745E+05 3
5 6.323E+05 1,

3,
4,
5 1.526E+05 − 5.271E+05 1,

3,5 3.747E+05 336



Table 24: Hypervolume comparison using different scalarizing functions in inverted prob-
lems.

Problem m
ASF(1) PBI(2) TCH(3) GE SF1(4) GE SF2(5)

HV + HV + HV + HV + HV +

DTLZ1 MINUS

2

1.503E+05 2
5 1.50E+05 5 1.503E+05 2

5 1.503E+05 2
5 1.50E+05 −

DTLZ2 MINUS 9.56E+00 2 9.53E+00 − 9.56E+00 2 9.56E+00 1,
2,3 9.572E+00 1,

2,
3,
4

DTLZ3 MINUS 3.79E+06 2 3.78E+06 − 3.79E+06 2 3.79E+06 1,
2,3 3.794E+06 1,

2,
3,
4

DTLZ4 MINUS 9.56E+00 2 9.53E+00 − 9.56E+00 2 9.56E+00 1,
2,3 9.572E+00 1,

2,
3,
4

DTLZ5 MINUS 9.56E+00 2 9.53E+00 − 9.56E+00 2 9.56E+00 1,
2,3 9.572E+00 1,

2,
3,
4

DTLZ6 MINUS 9.44E+01 2 9.42E+01 − 9.44E+01 2 9.45E+01 1,
2,3 9.455E+01 1,

2,
3,
4

DTLZ7 MINUS 6.55E-01 2 4.28E-01 − 6.55E-01 2 6.55E-01 2 6.548E-01 1,
2,
3,
4

DTLZ1 MINUS

3

1.76E+07 2
3 1.74E+07 − 1.76E+07 2 1.82E+07 1,

2,3 2.176E+07 1,
2,
3,
4

DTLZ2 MINUS 1.88E+01 − 1.91E+01 1,
3,4 1.89E+01 1 1.91E+01 1

3 2.025E+01 1,
2,
3,
4

DTLZ3 MINUS 4.70E+09 − 4.76E+09 1
3 4.71E+09 1 4.76E+09 1,

2,3 5.053E+09 1,
2,
3,
4

DTLZ4 MINUS 1.88E+01 − 1.91E+01 1
3 1.88E+01 1 1.91E+01 1

3 2.025E+01 1,
2,
3,
4

DTLZ5 MINUS 1.95E+01 2
3 1.95E+01 3 1.93E+01 − 1.96E+01 1,

2,3 2.024E+01 1,
2,
3,
4

DTLZ6 MINUS 5.90E+02 − 5.96E+02 1
3 5.92E+02 1 5.98E+02 1,

2,3 6.286E+02 1,
2,
3,
4

DTLZ7 MINUS 4.44E-01 2
3 1.80E-01 − 4.01E-01 2 4.45E-01 1,

2,3 4.453E-01 1,
2,
3,
4

DTLZ1 MINUS

4

5.00E+08 2
3 4.17E+08 3 1.25E+08 − 6.25E+08 1,

2,3 1.345E+09 1,
2,
3,
4

DTLZ2 MINUS 1.69E+01 − 2.20E+01 1,
3,4 2.14E+01 1

4 2.05E+01 1 3.223E+01 1,
2,
3,
4

DTLZ3 MINUS 2.67E+12 − 3.42E+12 1,
3,4 3.39E+12 1

4 3.25E+12 1 5.069E+12 1,
2,
3,
4

DTLZ4 MINUS 1.67E+01 − 2.18E+01 1,
3,4 2.13E+01 1

4 2.04E+01 1 3.224E+01 1,
2,
3,
4

DTLZ5 MINUS 2.31E+01 − 2.75E+01 1,
3,4 2.60E+01 1

4 2.42E+01 1 3.256E+01 1,
2,
3,
4

DTLZ6 MINUS 1.88E+03 − 2.32E+03 1,
3,4 2.21E+03 1

4 2.13E+03 1 3.145E+03 1,
2,
3,
4

DTLZ7 MINUS 1.905E+00 2,
3,
4,
5 2.00E-01 − 1.40E+00 2 1.86E+00 2,

3,5 1.85E+00 2
3

DTLZ1 MINUS

5

7.49E+08 2 6.10E+07 − 1.74E+10 1,
2,4 9.61E+08 2 4.107E+10 1,

2,
3,
4

DTLZ2 MINUS 1.58E+00 − 2.22E+01 1,
3,4 2.00E+01 1

4 1.28E+01 1 4.467E+01 1,
2,
3,
4

DTLZ3 MINUS 3.40E+14 − 2.24E+15 1,
3,4 2.04E+15 1

4 1.32E+15 1 4.424E+15 1,
2,
3,
4

DTLZ4 MINUS 1.66E+00 − 2.20E+01 1,
3,4 1.88E+01 1

4 1.26E+01 1 4.460E+01 1,
2,
3,
4

DTLZ5 MINUS 1.81E+01 − 3.55E+01 1,
3,4 3.34E+01 1

4 2.06E+01 1 4.563E+01 1,
2,
3,
4

DTLZ6 MINUS 2.26E+03 − 8.08E+03 1,
3,4 7.36E+03 1

4 4.45E+03 1 1.374E+04 1,
2,
3,
4

DTLZ7 MINUS 2.04E+00 2
3 1.00E-01 − 1.58E+00 2 2.188E+00 1,

2,3 1.911E+00 2
3

DTLZ1 MINUS

6

2.73E+10 2 8.05E+08 − 1.874E+11 1,
2,
4,
5 3.39E+10 2 1.13E+11 1,

2,4

DTLZ2 MINUS 2.70E+00 − 2.58E+01 1,
3,4 4.09E+00 1

4 3.01E+00 1 4.872E+01 1,
2,
3,
4

DTLZ3 MINUS 2.08E+17 − 1.67E+18 1,
3,4 4.62E+17 1

4 2.62E+17 1 3.048E+18 1,
2,
3,
4

DTLZ4 MINUS 1.04E+00 − 2.46E+01 1,
3,4 3.10E+00 1 1.68E+00 1 4.834E+01 1,

2,
3,
4

DTLZ5 MINUS 2.06E+01 − 4.02E+01 1,
3,4 2.96E+01 1

4 2.09E+01 1 5.094E+01 1,
2,
3,
4

DTLZ6 MINUS 8.08E+03 − 2.93E+04 1,
3,4 9.66E+03 1

4 8.47E+03 1 4.756E+04 1,
2,
3,
4

DTLZ7 MINUS 3.968E+00 2,
3,5 1.60E+00 − 3.48E+00 2 3.785E+00 2,

3,5 3.19E+00 2

DTLZ1 MINUS

7

3.333E+12 2,
3,5 1.24E+11 3

5 4.88E+09 5 3.321E+12 2,
3,5 1.99E+09 −

DTLZ2 MINUS 3.24E+00 3 2.29E+01 1,
3,4 2.30E-02 − 2.96E+00 3 3.890E+01 1,

2,
3,
4

DTLZ3 MINUS 1.50E+20 3 9.72E+20 1,
3,4 2.97E+18 − 1.60E+20 3 1.553E+21 1,

2,
3,
4

DTLZ4 MINUS 1.17E+00 3 2.15E+01 1,
3,4 3.53E-03 − 1.27E+00 3 3.810E+01 1,

2,
3,
4

DTLZ5 MINUS 2.24E+01 3 2.98E+01 1,
3,4 1.33E+01 − 2.24E+01 3 4.337E+01 1,

2,
3,
4

DTLZ6 MINUS 2.64E+04 3 7.29E+04 1,
3,4 2.52E+03 − 2.69E+04 3 1.187E+05 1,

2,
3,
4

DTLZ7 MINUS 3.745E+00 2
5 1.60E+00 − 3.919E+00 2

5 3.457E+00 2
5 2.38E+00 2
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Table 25: Number of DTLZ and WFG problems in which each scalarizing function ob-
tained the best performance (or a statistically similar performance to the best one) using
the hypervolume indicator.

Test Total

problems
m

problems
ASF PBI TCH GE SF1 GE SF2

2 16 1 3 5 12 6

3 16 3 4 3 9 1

4 16 4 8 1 8 0

5 16 2 5 2 10 0

6 16 1 6 2 9 1

DTLZ1-7, WFG1-9

7 16 4 10 2 8 2

Total 15 36 15 56 10

Table 26: Number of I-DTLZ problems in which each scalarizing function obtained the best
performance (or a statistically similar performance to the best one) using the hypervolume
indicator.

Test Total

problems
m

problems
ASF PBI TCH GE SF1 GE SF2

2 7 1 0 1 1 6

3 7 0 0 0 0 7

4 7 1 0 0 0 6

5 7 0 0 0 1 7

6 7 1 0 1 1 5

I-DTLZ1-7

7 7 2 0 1 2 5

Total 5 0 3 5 36
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function for standard MOPs. In this comparison, MOMBI-II with GE SF1
obtained the largest number of top results, with 54 out of 96, followed by
NSGA-III with 40 top results.

Table 27: Comparison of the number of problems improved, using the hypervolume indi-
cator, with different MOEAs in the DTLZ and the WFG test problems.

Test Total

problems
m

problems
MOEA/D NSGA-III MOMBI-IIASF MOMBI-IIGESF1

2 16 4 5 0 14

3 16 3 8 3 10

4 16 2 7 6 7

5 16 3 5 2 9

6 16 1 5 2 9

DTLZ1-7,

WFG1-9

7 16 3 10 4 5

Total 16 40 17 54

In the second comparison against other MOEAs, we compared the per-
formance of GE SF2, since it was the best performing scalarizing function
for inverted MOPs. These results are shown in Table 28. Similar to the
scalarizing functions comparison from Table 24, MOMBI-II with GE SF2
obtained the best results across all dimensions, and significantly improved
the results obtained by all the other MOEAs.

Table 28: Comparison of the number of problems improved, using the hypervolume indi-
cator, with different MOEAs in the I-DTLZ problems.

Test Total

problems
m

problems
MOEA/D NSGA-III MOMBI-IIASF MOMBI-IIGE SF2

2 7 1 2 1 5

3 7 0 0 1 6

4 7 0 0 1 6

5 7 1 0 0 7

6 7 0 1 1 5

I-DTLZ1-7

7 7 0 1 2 5

Total 2 4 6 34

In Figure 5 we show the contour lines of the 5 scalarizing functions used in
our comparisons, with 5 different weight vectors. All these plots are shown
in the interval [0,1] for two objectives, for an easier comparison. We can
observe that the contour lines from ASF and GE SF1 are really similar. In
an analogous way, the contour lines of TCH and GE SF2 also share some
similarities. However, GE SF1 exhibits a sharper steepness with respect to
ASF, since for all 5 weight vectors it reached a smaller value in the lower
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values of the plot. Conversely, GE SF2 exhibits a lower steepness when
compared to TCH, since this time TCH reaches the smallest values with all
the 5 weight vectors adopted.

Figure 5: Contour lines for ASF, TCH, PBI, GE SF1 and GE SF2 with different weight
vectors w⃗.

Finally, we show a comparison of the Pareto fronts obtained in each in-
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(a) I −DTLZ1 (b) I −DTLZ2 (c) I −DTLZ3

(d) I −DTLZ4 (e) I −DTLZ5 (f) I −DTLZ6

(g) I −DTLZ7

Figure 6: Pareto fronts obtained using ASF (left) and GE SF2 (right) in DTLZ inverse
problems with 2 objectives.

verted test problem with 2 objectives in Fig. 6 and in inverted problems with
3 objectives in Fig. 7. The fronts shown in these figures correspond to the
results at the median of the hypervolume values obtained from 30 indepen-
dent executions. In all cases, we can observe that the Pareto fronts generated
with GE SF2 have a better distribution than those generated with ASF.

It is particularly interesting to notice that there was no weight vector
adaptation mechanism used in the inverse problems, meaning that the same
weight vectors used for the standard DTLZ and WFG test problems are used
to solve the inverse DTLZ problems. However, from the plots presented in
Figures 6 and 7 it is noticeable that GE SF2 is replacing the role of a weight
vector adaptation, which would typically be the easier way to improve the
obtained results in inverse problems.

5.2. Hypervolume approximations

In order to validate the performance of our hypervolume approximation
functions, we compared them against the Monte Carlo method, considering
10,000 sample points, against the RH

2 V approximation and against the GP-
generated approximations [30] using two measures: the average MSE and
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(a) I −DTLZ1 (b) I −DTLZ2

(c) I −DTLZ3 (d) I −DTLZ4

(e) I −DTLZ5 (f) I −DTLZ6

(g) I −DTLZ7

Figure 7: Pareto fronts obtained using ASF (left) and GE SF2 (right) in the DTLZ inverse
problems with 3 objectives.
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the average execution time. All these approximations were obtained using
Python in the same hardware mentioned in the previous section.

For the RH
2 V approximation, we generated the direction vectors as fol-

lows. We used the simplex lattice design method [34] to generate a set of
weight vectors. Then, for each weight vector w⃗, we generated the corre-
sponding direction vector λ⃗ = w⃗

∥w⃗∥2 , as stated in [44]. In total, we used
9870 direction vectors for 2 and 3-dimensions, 9880 vectors for 4-dimensions
and 8855 vectors for 5 dimensions. On the other hand, the reference point
r⃗ = {r, . . . , r} was defined as follows for all the experiments.

r = 1 +
1

H
(25)

where H is an integer satisfying CH+m−1
m−1 ≤ N < CH+m

m−1 , and Cn
m is the total

number of combinations for choosing m elements from a set of n elements,
as used in [45].

In Table 29, we present the comparison of the average MSE obtained
computing the different hypervolume approximations previously mentioned
in the validation data. We used a gradient to better illustrate the results. The
darker the cell, the better the value, which in this case is the smallest value.
In all 4 cases, Monte Carlo obtained the smallest error with a two orders of
magnitude improvement compared to the second best performing approxima-
tion, which are the approximations generated using our proposal. Although
all 8 of our approximations share the same order of magnitude, which in turn
is two or three orders of magnitude better than the GP-generated approxi-
mations, the use of the second grammar produced slightly better results in
3, 4 and 5-dimensional data. This hints that the use of statistical features
provides useful information to generate better hypervolume approximation
functions. The next best performing approximations are the GP-generated
approximations. Lastly, RHV

2 obtained the worst result in all cases.
On the other hand, we present the comparison of the average compu-

tational time, per file, in Table 30. Once again, the darker the cell, the
better the value, meaning the smallest value. Here, we can observe that the
GP-generated approximations obtained the best results in all three available
cases, whereas Monte Carlo obtained the worst results in 2 and 3-dimensional
data, and RHV

2 obtained the worst results in 4 and 5-dimensional data. Re-
garding the approximations generated with our proposal, they ranged from
one order up to two orders of magnitude worsening compared to the best
results. This is an expected behavior, since our averaging variant involves an
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Table 29: Average MSE comparison of hypervolume approximations in validation data.

Average MSE
m Validation files

Mm GEHV 1mD GEHV 2mD Monte Carlo RHV
2

2 2176 - 2.211E-03 3.721E-03 2.209E-05 4.709E-02

3 2906 1.431E-01 2.242E-03 2.018E-03 1.542E-05 8.770E-01

4 2925 2.129E-01 5.879E-03 2.436E-03 1.459E-05 9.202E+00

5 2836 2.765E-01 5.272E-03 5.238E-03 1.395E-05 7.357E+01

additional iteration of the data against the GP-generated approximations.
Additionaly, most of the functions generated with our proposal are more
complex. However, three of our eight functions obtained relatively better
execution times due to them being the simplest equations generated with
our proposal, namely GEHV 14D, GEHV 22D and GEHV 25D.

Table 30: Average computational time comparison of hypervolume approximations in
validation data.

Average Computation Time (s)
m Validation files

Mm GEHV 1mD GEHV 2mD Monte Carlo RHV
2

2 2176 - 2.050E-02 1.983E-03 2.224E+00 1.518E+00

3 2906 9.935E-04 1.755E-02 3.288E-02 3.032E+00 2.910E+00

4 2925 1.038E-03 2.617E-03 3.988E-02 2.405E+00 3.873E+00

5 2836 1.113E-03 3.311E-02 2.670E-03 2.340E+00 4.518E+00

From these results we can notice that although Monte Carlo obtained
the best approximations in terms of quality (measured by MSE), it is also
the most computationally costly. In contrast, our functions obtained better
values in terms of quality against the GP-generated approximations at the
expense of increasing the computational time required.

Finally, we used the average ratio HVapprox

HVreal
to better illustrate the quality

of the approximations obtained with our functions against the GP-generated
approximations. The closer this value is to 100%, the closer the approxima-
tion is to the real hypervolume value. A value smaller than 100% represents
an underestimation. Consequently a value greater than 100% indicates an
overestimation of the hypervolume. In Tables 31 to 33 we show the average
ratio for all available approximations in the validation data classified by the
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problem used to generate each file.

Table 31: Average
HVapprox

HVreal
ratio comparison of hypervolume approximations in 3-

dimensional validation data.

Validation Validation HVapprox/HVreal

set files M3
4,6 GEHV 13D GEHV 23D

DTLZ1 3D 394 143.67% 94.50% 93.59%

DTLZ2 3D 467 161.85% 99.23% 106.01%

DTLZ5 3D 416 333.23% 110.20% 106.61%

DTLZ7 3D 401 184.97% 94.77% 99.97%

WFG1 3D 362 164.59% 105.03% 99.73%

WFG2 3D 432 150.79% 97.81% 93.96%

WFG3 3D 434 165.92% 113.92% 102.01%

Average 186.43% 102.21% 100.27%

Table 32: Average
HVapprox

HVreal
ratio comparison of hypervolume approximations in 4-

dimensional validation data.

Validation Validation HVapprox/HVreal

set files M4
5,6 GEHV 14D GEHV 24D

DTLZ1 4D 465 151.95% 90.89% 95.04%

DTLZ2 4D 433 172.80% 106.59% 106.68%

DTLZ5 4D 428 223.63% 105.03% 98.16%

DTLZ7 4D 421 199.50% 96.65% 99.92%

WFG1 4D 368 161.74% 96.78% 100.02%

WFG2 4D 399 153.36% 93.39% 97.64%

WFG3 4D 411 168.79% 118.16% 99.67%

Average 175.97% 101.07% 99.59%

From these results we can observe that the approximation functions gen-
erated with our proposal have a consistent behavior close to 100% in the
final average for all three tables. However, this does not occur with the
GP-generated approximations. In 3-dimensional data there is an average

45



Table 33: Average
HVapprox

HVreal
ratio comparison of hypervolume approximations in 5-

dimensional validation data.

Validation Validation HVapprox/HVreal

set files M5
1,5 GEHV 15D GEHV 25D

DTLZ1 5D 425 161.56% 93.58% 94.70%

DTLZ2 5D 427 160.83% 96.46% 100.86%

DTLZ5 5D 391 171.04% 96.86% 91.84%

DTLZ7 5D 400 189.48% 107.87% 99.04%

WFG1 5D 390 168.16% 96.92% 98.99%

WFG2 5D 386 163.94% 95.71% 97.06%

WFG3 5D 417 199.49% 114.09% 120.85%

Average 173.50% 100.21% 100.48%

overestimation of 186.43&, whereas in 4-dimensional data there is an aver-
age underestimation of 175.97%. Finally, in 5-dimensional data, the average
overestimation consists of 173.5%.
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6. Conclusions and Future work

In this work we have presented a methodology that allows the automatic
generation of scalarizing functions as well as hypervolume approximations,
using grammatical evolution.

Using this methodology we have proposed two different scalarizing func-
tions (GE SF1 and GE SF2). The former was obtained using DTLZ4 and
WFG4 and the latter was obtained using I-DTLZ4. We have provided ex-
perimental evidence that shows that these two functions outperform ASF,
TCH and PBI in the test problems considered, as well as other MOEAs such
as MOEA/D and NSGA-III. GE SF1 obtained the largest number of wins
in the comparisons using the standard DTLZ and WFG problems, whereas
GE SF2 obtained the largest number of wins in the comparisons using the
inverted DTLZ problems. Since our methodology employs hypervolume cal-
culations, it can become computationally expensive. In the worst case, which
occurred when using WFG4 as the training problem, it took 12,056 seconds
to complete 40 generations, averaging close to 300 seconds per generation.
However, it is important to notice that this is the cost of generating the
scalarizing function. Once we have obtained it, using such a scalarizing func-
tion has a similar computational cost to that of ASF or TCH.

Also, in the case of standard benchmark problems, the percentage of prob-
lems with top results obtained with GE SF1 was under 60%, which evidences
that even the best performing scalarizing function from our comparisons is
not able to generalize the improvements in all benchmark problems. Thus,
we can conjecture that in order to achieve improvements in more test in-
stances, an ensemble of multiple complementary scalarizing functions could
be used, and possibly couple it to a weight vector adaptation mechanism.

Furthermore, we have also proposed one variant to generate hypervolume
approximations and we obtained two different approximation functions for
2, 3, 4 and 5-dimensional data. From our results we can conclude that the
use of statistical features seems to improve the quality of the approximation
functions generated using our proposal. In all cases, we found a consistent
behavior both in terms of quality and computational cost: Monte Carlo
obtained the best quality values while the GP-generated approximations ob-
tained the best execution time values. However, approximations found with
our proposal obtained better trade-offs between these two measures, since
they consistently obtained better quality values when compared against the
GP-generated approximations at a significantly lower computational time
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when compared against the Monte Carlo method.
Even though the hypervolume becomes considerably computationally ex-

pensive with 5 or more objectives, we consider that the methodology that we
proposed here can be easily extended to generate approximations for higher
dimensional spaces.

Also, we showed a ratio comparison, between the hypervolume approx-
imation and the real hypervolume, which we consider to be evidence that
the approximation functions generated with GP are possibly not generaliz-
ing its good performance in the type of data files we created in this work.
This is particularly noticeable in validation data generated for DTLZ5 with
3 dimensions (with an average overestimation of 333.23%) and DTLZ5 with
4 dimensions (with an average overestimation of 223.63%). These are the
extreme cases, but we can find bad quality approximations across all valida-
tion data adopted. However, this same behavior is potentially also present
in the approximations we created using GE for different validation data. We
believe that both GP and GE are able to generate good results for a cer-
tain type of data and even obtain a good generalization but up to a certain
point. And in order to ensure a consistent capability to generalize in different
data/problems it seems to be necessary to use a large number of different
training data.

Finally, in both methodologies presented in this paper, the functions
found using GE were trained using a specific problem or specific data, but
there is evidence that they can generalize their good performance to prob-
lems/data that were not considered in the training. Based on this evidence,
we believe that this implementation can be used to obtain better results in a
wide variety of problems. Here, we have presented its applications in two par-
ticular cases: a scalarizing function and hypervolume approximations. These
two cases can benefit decomposition-based and indicator-based MOEAs, re-
spectively.

However, we claim that a similar methodology can be used to obtain
different MOEA components, such as new density estimators, or even new
performance indicators, and this will be, indeed, part of our future work.
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compliance from a practical point of view, in: Proceedings of the Genetic
and Evolutionary Computation Conference, ACM, 2021, pp. 395–402.
doi:10.1145/3449639.3459276.
URL https://doi.org/10.1145/3449639.3459276
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