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Abstract—This paper is the second part of the two-part II. MOEAS FORCLUSTERING

paper on the survey of multi-objective evolutionary algorthms . . . . . .
for data mining problems. In Part-l of the paper [1], multi- Clustering techniques aim to find a suitable grouping of

objective evolutionary algorithms used for feature selegon and  the -input dataset so that some cri.teria are optill”niz.ed.. A
classification have been reviewed. In this Part-ll, differat multi- ~ straightforward way to pose clustering as an optimization

objective evolutionary algorithms used for clustering, asociation problem is to optimize some cluster validity index [5] that
rule mining and other data mining tasks are surveyed. Moreoer, rafiects the goodness of the clustering solutions. All fesi

a general discussion is provided along with scopes for futer . .
research in the domain of multi-objective evolutionary algrithms partitionings of the dataset and the corresponding valties o

for data mining. the validity index define the complete search space. Under
o . . this context, genetic and other evolutionary algorithmgeha
Index Terms—Multi-objective evolutionary algorithms, cluster- b idel d h the alobal . | f th
ing, association rule mining, biclustering, ensemble leaing. een widely used to reach the global optimum value of the

chosen validity measure. Conventional evolutionary elisy
techniques [6] use some validity measure as the fithess.value
. INTRODUCTION However, no single validity measure works equally well for
As mentioned in Part-I of the paper [1], multi-objective evodifferent kinds of datasets. Thus, it is natural to simugtausly
lutionary algorithms (MOEASs) [2] have become increasinglpptimize multiple of such measures for capturing different
popular in the domain of data mining during the last decadeharacteristics of the data. Hence it is useful to utilize B3
In this two-part paper, we survey several MOEAs for différerfor clustering. Multi-objective clustering techniquestiogize
data mining tasks. In Part-l [1], we have introduced themore than one cluster validity index simultaneously, legdd
basic concepts of multi-objective optimization and dataing high-quality results. The resultant set of near-Paretinog
and reviewed different MOEAs designed for addressing twamlutions contains a number of non-dominated solutiomsn fr
important data mining tasks, namely feature selection amghich the user has to select the most appropriate one based
classification. on his/her own preferences. A number of multi-objective-evo
In this Part-1l of the paper, MOEAs used for two othefutionary clustering algorithms are available in the kiere.
major data mining tasks, viz., clustering [3] and assowmiati They vary in different aspects, including the type of MOEA,
rule mining [4] are surveyed. Both of these data mininthe chromosome encoding, the objective functions opticize
tasks are unsupervised in nature and can be easily posedhasvolutionary operators adopted and the mechanismediopt
multi-objective optimization problems. In recent yeaesjeyal to select the final solution from the non-dominated front.
MOEAs have been proposed in the literature to accomplish
these tasks. We review many of thesg approqches with fQCUSAQ”UnderIying MOEAs
chromosome representation, objective functions, evariatiy .
operators, and methods for obtaining the final solution from 1 Nere are mainly four MOEAs that have been used as
the non-dominated set. Besides this, here we also revilyy underlying optimization tool for multi-objective clesing.
MOEAs employed for several other data mining tasks such B&reto Envelope-Based Selection Algorithm-II (PESAS9]
ensemble learning, biclustering, feature extraction;guap has be_en used in the algprlthms VIENNA (Voronoi Initialized
discovery and so on. Fig. 1 shows the different MOEAs-basEyolutionary Nearest-Neighbor Algorithm) [7], MOCK-AM
data mining tasks reviewed in this part of the paper aloﬁall (Multi-Objective Clustering with automati&” determi-

with the corresponding references. A general discussion Bftion Around Medoids), MOCK [10], and MECEA (Multi-
the future scope of research in this area of multi-objectiPiective Evolutionary Clustering Ensemble Algorithmp]1
data mining is also provided. Non-dominated Sorting Genetic Algorithm-Il (NSGA-I1) [BO

has been employed in many multi-objective clustering ap-
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Continuous data- [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17}, [18], [19], [20]
[ Clustering | Categorical data- [21], [22], [23], [24]
Graph data— [25], [26]

Categorical— [27], [28], [29], [30], [31]

MOEAs for

clustering, Association | Numeric— [32], [33]

association rule” | rule mining ~ |

mining & other Fuzzy — [34], [35], [36], [37], [38]

data mining o

tasks [ Ensemble learning- [39], [40], [41], [42], [43]

__ Other tasks_i Biclustering— [44], [45], [46], [47], [48], [49]
Feature extraction- [50]

Subgroup discovery- [51], [52], [53]
Regression- [54], [55]

Outlier detection— [56]

Subspace clustering [57], [58]

Fig. 1. MOEAs for clustering, association rule mining antlestdata mining tasks surveyed in this part of the articleh\weferences)

MOGA (Dynamic MOGA) [26], MOVGA (Multi-objective distances to the other points of the cluster is minimum. &her
Variable-length Genetic Algorithm) [19], and MOCA (Multi- are some approaches which encode the cluster medoids, or
Objective Clustering Algorithms) [20]. In [23] and [17],the indices of the points representing the cluster medaids i
Strength Pareto Evolutionary Algorithm-2 (SPEA2) [62] hathe chromosomes. Examples of such multi-objective evolu-
been used as the underlying optimization tool. Niched Bardionary clustering algorithms include MOGA (medoid) [22],
Genetic Algorithm (NPGA) [63] has been employed irand EMCOC [18]. Another approach is to encode cluster
MOKGA (Multi-objective K-Means Genetic Algorithm) [8]. modes in the chromosomes. Cluster modes are suitable for
categorical attributes where the mean centroid of the etust
B. Chromosome Representation cannot be computed. Given a set of categorical points, their

The choromosome representation approaches can broa{H%}:e is defined as a vector of the attributes where each
be classified into two major classes, viz., prototype-basga ponent v_alue_ of the vector represents the most irequent
approaches and point-based approaches. In the prototy| aéye occurring in the corre-spondmg.attr}bu'ge over aII- the
based approach, cluster representatives or prototypes, S oints. MOGA (mode) [24] is a mult|-object|ye clustering
as cluster centroids, medoids and modes are encoded in q,%onthm where cluster modes are encoded in th? chromo-
chromosome. On the other hand, in the point-based appro THnes. The advantage of prototype—_based encoding is that
a complete clustering solution is encoded in the chromosoril]g')e the Ieng_th of the chromosome§ is small and, therefore,
In a prototype (cluster center)-based approach, the Ch%gakes less time to apply the evolutionary operators such a

mosomes are made up of real numbers which represent %ssozer_ and ml:tatpn. Alsé)’f this e?ccidmg |_||30I|cy IS quOd
coordinates of the cluster centers. If a chromosome encod@s©2Pturing overiapping and tuzzy clusters. Howeversene

the centers ofK clusters ind-dimensional space, then its® glon%ms hfa}[/: a Lendency to capturg r(()jg;d-shtaped ?Stir
length! will be d x K. In case of multi-objective clustering,on y. AlS0, 11 Ih€ chromosomes encode diflerent number o

this encoding scheme was first utilized by Mukhopadhya ’uTsters, th_ey have varial_ale lengths which are to be h_andled
Maulik and Bandyopadhyay in [64] and the authors have us (]j"le apply|_ng the evolutionary operators. Moreover, '"B.th
this encoding policy in a series of multi-objective clustgr type encodlng, the .chromosomes may be.very Igr_ge if the
algorithms such as MOGA [12], SIMM-TS (Significant Multi-numberOf a_ttrlbutes is large. Therefore, for higher dinnzmes
class Membership (Two-stage)) [65], MOGA-SVM [15], [16]datasets, this encoding strategy may not work very well.

and MOVGA [19]. Besides Mukhopadhyay et al., several other Another popular encoding approach is point-based encod-
researchers have adopted this encoding policy in differang, where the complete clustering of the data points are
multi-objective clustering algorithms such as VRIGGA [61kncoded instead of only the representatives/prototypéeiseof
MOES(Hybrid) [14], and MOCA [20]. In some algorithms,clusters. Under this scheme, there are two main approaches,
instead of using cluster centers as cluster prototypesteriu viz., cluster label-based approach and locus-based awjpce
medoids have been encoded in the chromosome. A clustepresentation. The cluster label-based approach is thet mo
medoid is the point of the cluster, from which the sum of theommon form of point-based encoding. Here, the chromosome



lengths are equal to the number of points in the input datasahd the Edge indekdge(C). In [19], [24], [75], the objective
and each position represents the cluster label of the corfieactions are chosen to be the normalizég index (7)
sponding points. If positiori of the chromosome containsand the fuzzy cluster separatidhwhich are simultaneously

a valuek, then theith data point is assigned to cluster minimized. It is to be noted that instead of cluster censpid
Obviously, the chromosomes can contain only integer valuelsister modes have been used for computing the validityxinde
drawn from the se{1,2,..., K}, whereK is the maximum values in [24], [75], since these algorithms have been agpli
number of clusters. The multi-objective clustering altforis on categorical data. In [76], out of several combinatian#;

that use this encoding policy include VIENNA [7], MOKGA[77] and Dunn [78] indices have also been chosen as the
[8], and GraSC (Graph-based Sequence Clustering) [23], [66vo objectives to be simultaneously optimized. The indices
In MOCK [10], [21], Handl and Knowles used a variant of the/,,, and cluster separation have been used in [79]. There are
cluster label-based encoding strategy. Here, each chamm®s also a few multi-objective clustering techniques which use
consists ofn genes 4 is the number of data points) and eaclmore than two objective functions. For example, in [74],][80
gene can have integer values {i,...,n}. If the genei is three cluster validity measures, viZ,B index,Z index and
assigned a valug it represents a link between the data points.J,,, index have been simultaneously optimized. In [20], three
andj, and, in the resulting clustering solution, these two minbbjective functions have been simultaneously optimized as
will belong to the same cluster. Thus, a graph is formed withiell: average cluster variance, average between group sum
the data points as the vertices and the links between two dafsquares A BGSS) and cluster connectedness. In [81], four
points are the edges. Therefore, for decoding a chromosomilgjective functions are considered: overall cluster dewa

it is required that we identify all the connected componentsuster separation, cluster dominance and the diameter of
of the graph. This can be done in linear time [10]. The dathe biggest cluster. It is known that MOEAs usually do not
points in the same connected component are then assigpedorm very well when the number of objective functions
to the same cluster. Hence, this representation encodes itfteeases to four or more [82]. However, in [81], the authors
clustering as well as the number of clusters (number of colnave not addressed this issue. It should be noted that theecho
nected components). Many algorithms besides MOCK, suchafsa suitable set of objective functions is not a trivial peoh,
MECEA [13], AI-NSGA-II [25], and DYN-MOGA [26] have and the clustering output may heavily depend on this choice
adopted this encoding policy. Although point-based ermgdi[83]. In view of this, recently, an interactive multi-obje@
techniques are not biased towards convex-shaped clutsteys, clustering algorithm was proposed in [84]. In this approach
suffer from the large length of chromosomes when the numbbe algorithm interacts with a human decision maker to learn
of data pointsn is large. Thus, the algorithms using thighe suitable set of objective functions along with evolvihg
encoding approach require more time to converge. Howevelystering solution. However, a detailed study that corapar
unlike prototype-based encoding, here the chromosoméhenthe effects of different objective functions is still misgi

is independent of the encoded number of clusters.

D. Evolutionary Operators

C. Objective Functions Evolutionary operators, such as crossover and mutation,

For the clustering problem, usually cluster validity ineic depend on the adopted chromosome representation scheme.
[67] are used as the objective functions. Most of such mulfidany of the algorithms employing prototype-based represen
objective clustering algorithms have used two validity intation have adopted single-point crossover. Examples cif su
dices to be simultaneously optimized. In [7], [10], [68]eth multi-objective clustering algorithms include MOGA [12],
MOCK clustering algorithm minimizes two validity indices:MOGA-SVM [15], [16] and MOVGA [19]. In [9], two-point
overall cluster deviationlfev(C')) and cluster connectednessrossover has been used. Ripon et al. have employed jumping
(Conn(C)). Some other multi-objective clustering works havgene crossover in their multi-objective clustering altjoris
also used these two objectives [9], [13], [66]. In [12], [15][61], [18]. In [14], the authors have used a centroid-poacidih
[16] the authors used two validity indiced,, [69] and X B  crossover approach where the centroids encoded in thetparen
[70] which are minimized simultaneously to obtain compaahromosomes are first combined to build a centroid-pool.
and well-separated clusters. In [8], [71], [72], the twoid#&y Thereafter, an offspring solution is generated by randomly
indices to be minimized are: Total Within-Cluster Varianceelecting a number of chromosomes from the centroid pool.
(TWCV) and the number of clusterk. In [22], a multi- The algorithms that employ a point-based encoding policy
objective categorical data clustering algorithm is used twve used uniform crossover in most cases [7], [10], [13],
optimize: overall deviatioDev(C) (with respect to medoids [23], [25], [26]. Following the crossover operators, a esyiof
instead of centroids) and silhouette index [73]. In [1118]]1 mutation operators are also employed. Mutation refers @llsm
the intra-cluster entropy/ and cluster separatiofiep(C) are changes in the chromosomes and is used for maintaining the
used as the two objective functions. The index67] and diversity of the population. In prototype-based encodihg,

X B are simultaneously optimized in [74]. In [23], [25], [66],predominant mutation operator found is centroid pertuobat

the objectives adopted are: Min-Max Cut and the silhoueti@], [12], [14], [15], [16], [19], [61]. The basic idea of thimu-
index [73]. In [17], the aim is to obtain compact and welltation operator is to shift a randomly selected centroighsly
separated clusters and for that sake, the objectives to fbmm its current position. For medoid-based encoding and
minimized are: the validity indices overall deviatidiev(C') mode-based encoding, the mutation operators random medoid



replacement [22] and mode perturbation [24] have been useefjuirement, the final result may be biased depending on
respectively. In [20], a mutation operator is employed ithe validity index chosen for selecting the final solution.
which either random cluster centers of the chromosomes &fereover, one may criticize this approach by questioning wh
perturbed or cluster centers are added/deleted to/from thé independent validity measure is not optimized disectl
chromosome with equal probability. For the cluster labeddrl ~ The second approach is the knee-based approach, where
encoding, the common approach for mutation is to replace ttee objective is to select the knee solution from the non-
class label of the selected point by a random class labes ThHominated front. A knee solution refers to an interesting
mutation operator has been adopted in [66], [85]. To tacksmlution for which the change of one objective value induces
the problem of dealing with a large chromosome length, the maximum change in the other one. Handl and Knowles
special mutation operator, called directed neighborhimiaded have used this knee-based approach in their MOCK algorithm
mutation was proposed in [10]. In this mutation, each poiftO], [21], [89]. This approach is motivated by the GAP
1 is linked to its L nearest neighborsnn;i, nn;s,...,nn;p}, statistic [90]. This is done by comparing the generatedtBare
and thus the effective search space is reducedtoThus, front with control fronts generated by applying MOCK on
changing the class label of poininduces the change to all itsrandom control data. The solution that corresponds to the
L nearest neighbors. The mutation probability is also decidenaximum distance between the generated Pareto front and the
adaptively. The same mutation operator has been used in maagtrol fronts is selected as the final solution. Howevearehs
other algorithms [13], [17], [25], [26]. no well-formed motivation behind choosing a knee solutisn a
the final solution. It is not well explained why the user stibul
be most interested on this solution. Another major problem i
that it is a time consuming approach, because the algorithm
MOEAs-based clustering algorithms also differ in théas to be executed multiple times with random datasets to
method for obtaining the final solution from the nongenerate the control front. Therefore, a few variants os¢he
dominated set of solutions yielded by the MOEA. Thesgchnique have been proposed in [91], [92], [17] primardy f
methods can be broadly classified into three categories, vimproving its scalability for larger datasets.
independent objective-based approach, knee-based approaThe third approach is the cluster ensemble-based approach
and cluster ensemble-based approach. where it is assumed that all the non-dominated solutions
In the independent objective-based approach, an indepeantain some information about the clustering structure of
dent cluster validity index, other than those optimizedimyr the dataset. Therefore, the motivation is to combine this
the clustering process, is used to select a single solutimfiormation to obtain a single clustering solution. In [80]
from the non-dominated front. Many of the currently avaigab some well-known cluster ensemble techniques, such as the
multi-objective clustering techniques have adopted thps aCluster-based Similarity Partitioning Algorithm (CSPAhe
proach because of its simplicity. In [12], [64], the authosged HyperGraph Partitioning Algorithm (HGPA) and the Meta-
the J,, and X B indices as the objective functions, wherea€Lustering Algorithm (MCLA) [93] have been used to com-
the final solution was selected using ind@x In a similar bine the non-dominated front solutions to obtain the final
approach [19], fuzzy cluster compactness and separatiom welustering and their performance is compared by the authors
adopted as the two objectives whereas Thindex was used In a similar approach [13], MCLA has been used for en-
as the selection criterion. In [86], thé B andZ indices have sembling purposes. In [15], [16], [24], Mukhopadhyay et al.
been used as the objective functions whereas the silhougiteposed a novel approach for combining the nondominated
index was used for selecting the final solution. In [71], the t solutions. Here, the points that are put in the same class by
objective functions ard'WCV and the number of clusters,most of the non-dominated solutions are first identified.Sehe
whereas the authors used theB index and theSD index points are considered to be highly confident and then, some
[87], [88] for selecting the final solution from the Paretorit. classifier such as SVM at-nn is trained using these points.
In [8], the two objective functions used a#?&V C'V and the Thereafter, the remaining points are classified by the ediin
number of clusters, and various other validity indices,hsuclassifier. This way, the class labels for all the points are
as the Dunn index, théB index and the silhouette indexgenerated. It has been shown that ensemble-based tecénique
are adopted for selecting the final solution. The authors algork better than the independent objective-based tecksiqu
presented a comparative study of their results. Demir giral. [12] for both satellite image segmentation [15] and micragr
their GraSC algorithm [66], optimized the silhouette index] data clustering [16]. Although these methods are promising
the min-max cut index, and used ti&B index for selecting and motivating, the ensemble method takes reasonable time
the final solution. In [20], the authors optimized three ghijee  and the final solution depends on the choice of the ensemble
functions, viz., average cluster variance, average betwdechnique. Also, sometimes it is necessary to map one non-
group sum of squaresd(BGSS) and cluster connectednessgominated solution to another [24] to ensure that clusteella
and they used the Rand indeR) [5] for selecting the final < means the same cluster in all the solutions. Therefore, the
solution from the Pareto front. Note that computation7f final solution also depends on the mapping technique utilize
requires knowing about the true clustering of the dataset.
Hence, this method is not applicable when the true clugerifi. Relative Comparison and Applications
information is unknown. Although this approach for selegti  We have summarized the processes of well-known MOEAs-
the final solution is simple to implement and has low timbased clustering algorithms in Table I. A total of nineteen

E. Obtaining a Final Solution



different algorithms are considered here. The algorithnes éaving a support greater than the minimum support thre3hold
categorized based on the data types where those have bmmhthereafter, from the frequent itemsets, the assoniaties
applied, i.e., continuous data, categorical data and gdapdn that surpass the minimum confidence threshold. Generdting a
In each category, we have reported the underlying MOEAs, ttiee frequent itemsets is itself a time consuming task when th
encoding strategies, the objective functions, the evahatiy number of items is large, because it needs at least a nuknber
operators and the final solution selection methods used dfyscans of the dataset féritems. Therefore, it would be bene-
the different clustering methods. The algorithms have beénial if one could generate the association rules in a dinegt,
arranged in ascending order of their time of publicatiogkipping the frequent itemset generation step. For thipqae,
to illustrate how they have evolved over time. Out of thevolutionary algorithms have been used widely for genegati
nineteen algorithms, ten of them used different versions a$sociation rules by maximizing the support/confidencéef t
prototype-based encoding and the rest used point-based rettes [99]. However, the goodness of an association rulaatan
coding strategies. NSGA-II has been found again to be tbaly be represented by its support or confidence. There are
most commonly used approach. However, other MOEAs hameany other metrics available to measure the goodness of an
also been adopted, including PESA-Il, NPGA and SPEA2. association rule [100]. Therefore, the problem of ARM can
MOEAs-based clustering algorithms have found severaé posed as a multi-objective optimization problem wheee th
applications in real-life domains such as image segmeamtatigoal is to find association rules while optimizing severairsu
bioinformatics, web mining and social networks. Usualhg t goodness criteria simultaneously. In the past decaderaleve
problem of image segmentation can be posed as the probRMYEAs have been proposed for ARM. These techniques can
of clustering the pixels of the images in the intensity spéfce broadly be classified into three categories, namely categor
the image has multiple bands, then they serve as the differ@al association rules, numeric association rules andyfuzz
attributes of the dataset. In [17], a few benchmark col@ssociation rules. Here, we discuss several multi-obgecti
images have been segmented. Maulik et. al. [12], [15], [64}olutionary ARM algorithms from these three categories.
have applied multi-objective fuzzy clustering for segnagion
of remote sensing imagery of multi-spectral satellite iggg
Besides this, the application of multi-objective evolatoy
clustering can also be found in the segmentation of MRI Categorical association rules are generated from a birmary o
medical imagery [19], [80]. Multi-objective clustering ia categorical dataset. In a binary dataset, a rule ieC =
also been applied in texture image segmentation [13]. ARE can be interpreted as follows: if item$, B, andC are
other important application area of multi-objective evmo- purchased, then item® and £ are also purchased. Thus,
ary clustering algorithms is bioinformatics, where migrag these rules do not say anything about the number of items
gene expression data sets are clustered to group co-esgre8izat are to be purchased; they simply imply the presence
genes. There have been various studies in this area [1§], [68 absence of items. For categorical data, if some item has
[86], [94], [95]. Multi-objective clustering has also fodrits Mmultiple categorical values, then each attribute-valui isa
application in finding gene markers [96], [97] from expressi treated as a separate item. This way the dataset is converted
data. Recently, multi-objective clustering has also besedu into a binary dataset.
in clustering protein-protein interaction networks [9Bulti- 1) Underlying MOEAs: Different standard and non-
objective clustering algorithms have also been appliedeb wstandard MOEAs have been used in various works on cate-
data mining. For example, in [23], a web-recommender systegarical ARM. We call a MOEA as non-standard if it does
has been built using multi-objective clustering by extiragt not follow any of the standard MOEA approaches directly,
web usage patterns. An extension of this work is presentedt uses instead some combination of operators. In [27], a
in [66] where different multi-objective clustering appob@s multi-objective genetic algorithm (MOGA) is used. In [28],
have been compared for determining a suitable approach foe authors used a multi-objective co-evolutionary altoni
clustering web user sessions, which consist of sequencedasfthis purpose. In [29] and [31], some non-standard MOEAs
web pages visited by the users. In recent times, clusteriagg used for the rule mining problem. NSGA-II has been used
social networks has gained popularity and a number of recémi30] for ARM.
studies have applied multi-objective clustering techagjto 2) Chromosome Representatiorthere are mainly two
detect strong communities within social networks [25],][26 chromosome representation techniques for categorical ARM
similar to the ones available for classification rule mining
[1]. In the first approach (Pittsburgh approach), a set of
possible association rules are encoded in each chromosome.
An association rule can be considered as a general cas@lois approach is more suitable for classification rule nmgnin
a classification rule. The consequent of a classificatior rukhere the objective is to identify good set of rulesHow-
consists of the class attribute only, whereas, in assoadiatiever, in ARM, the objective is to find aet of good rules
rules, the consequent may consist of a set attributes. fidrere Therefore, for this case, the Michigan approach, in which
the number of association rules for a given dataset is muehch chromosome represents exactly one rule, is more lguitab
greater than that of classification rules. Most of the ctadsi [27]. Most of the MOEAs-based categorical ARM techniques
association rule mining (ARM) algorithms, such as #igriori  use this chromosome representation. In an early work [27],
algorithm [4], first generate all frequent itemsets (i.teprisets the authors adopted the Michigan approach as follows: each

A. Categorical Association Rules

IIl. MOEA S FORASSOCIATIONRULE MINING



TABLE |
COMPARISON OF DIFFERENTMOEAS FOR CLUSTERING
Algorithm Underlying  Data Encoding Objective functions Evolutionary operators Final solution from
MOO tool Type non-dominated front
Handl and Knowles [7], PESA-II Continuous Integer Deuv(C), Conn(C) No crossover, Independent objective-based
2004 (VIENNA) (Label-based) neighborhood-biased mutation (F-measure)
Liu et. al. [8], NPGA Continuous Integer TWCV, One-point crossover, Independent objective-based
2005 (MOKGA) (Label-based) number of clustef§  probability-based replacement D¢nn, DB, Silhouette,
mutation C, SD, S_Dbw indices)
Chen and Wang [9], NSGA-II Continuous Real-valued Deuv(C), Conn(C) Two-point crossover, Independent objective-based
2005 (MOEA(Dynamic)) (Centroid-based) centroid perturbation mutation (F-raeg)s
(Gaussian mutation)
Handl and Knowles [10], PESA-II Continuous Integer Deuv(C), Conn(C) Uniform crossover, Knee-based
2007 (MOCK) (Adjacency neighborhood-biased mutation (with null mydel
graph-based)
Ripon et. al. [11], NSGA-II Continuous Real-valued Entrofy Jumping gene crossover, Independent objective-based
2006 (VRIGGA) (Centroid-based)  separatidep(C') centroid perturbation mutation (Deviation ahdlunn index)
(polynomial mutation)
Bandyopadhyay et. al. [12], NSGA-II Continuous Real-vdlue Jm, XB One-point crossover, Independent objective-based
2007 (MOGA) (Centroid-based) centroid perturbation mutation Z irffdex)
(uniform distribution)
Qian et. al. [13], PESA-II Continuous Integer Deuv(C), Conn(C) Uniform crossover, Ensemble-based
2008 (MECEA) (Adjacency neighborhood-biased mutation (Graph-basedCtA)
graph-based)
Won et. al. [14], NSGA-II Continuous Real-valued TWCV, Centroid pool crossover, None
2008 (MOES(Hybrid)) (Centroid-based)  number of clustek§ centroid perturbation mutation
(variable-length) (log normal distribution)
Mukhopadhyay et. al. [15], [16], NSGA-II Continuous Realvwed Jm, XB One-point crossover, Ensemble-based
2009 (MOGA-SVM) (Centroid-based) centroid perturbation mutation (Majoviote and
(uniform distribution) SVM classifier)
Shirakawa and Nagao [17] SPEA2 Continuous Integer Dev(C), Edge(C) Uniform crossover, Knee-based
2009 (MOCK variant) (Adjacency neighborhood-biased mutation (without nulldeip
graph-based)
Ripon and Siddique [18], NSGA-II Continuous Binary Entrof, Jumping gene crossover, Independent objective-based
2009 (EMCOC) (Medoid-based) separatiafiep(C) no mutation (Entropy and Seprataion)
Mukhopadhyay and Maulik [19], NSGA-II Continuous Realuwed Normalized/,, One-point crossover Independent objective-based
2011 (MOVGA) (Centroid-based)  fuzzy separatich centroid perturbation mutation  Z(index)
(variable-length) (uniform distribution)
Kirkland et. al. [20], NSGA-II Continuous Real-valued Aege deviation, Exchange corresponding Independent algdrased
2011 (MOCA) (Centroid-based) ABGSS, Conn(C) prototypes crossover, (Rand index)
(variable-length) centroid pool mutation
(add/delete/modify centroid)
Handl and Knowles [21], PESA-II Categorical/ Integer Dev(C), Conn(C) Uniform crossover, Knee-based
2005 (MOCK-am) distance matrix  (Adjacency neighborho@séd mutation (with null model)
graph-based)
Mukhopadhyay and Maulik [22], NSGA-II Categorical Integer Deuv(C), silhouette One-point crossover, Independent objettaged
2007, MOGA(medoid) (Medoid-based) medoid replacement (Minkowski score)
(point index)
Demir et. al. [23], SPEA2 Categorical/ Integer Min-Max cut, Modified uniform crossover, Non-domination status
2007 (GraSC) distance matrix  (Label-based) silhouette doanreplacement mutation
Mukhopadhyay et. al. [24], NSGA-II Categorical Categarica Normalized J,,, One-point crossover, Ensemble-based
2009 (MOGA(mode)) (Mode-based) fuzzy separatich mode replacement mutation (Majority vote and
(categorical value replacement)  k-nn classifier)
Kim et. al. [25], NSGA-II Graph Integer Entropy/, Uniform crossover, Non-domination status
2010 (AI-NSGA-II) (Adjacency separatioep(C) neighborhood-biased mutation
graph-based)
Folino and Pizzuti [26], NSGA-II Graph Integer CS(C), NMIT Uniform crossover, Independent objective-based
2010 (DYN-MOGA) (Adjacency neighborhood-biased mutation (Modularity)

graph-based)

chromosome had lengftk, wherek was the number of items. view of this, an alternative encoding strategy is preseired
The chromosomes were binary strings where each attrib{8®], which can be used for a categorical dataset directly.
was given two bits. If these two bits are 00 or 11, then thdere, each attribute has two parts. The first part represents
attribute appears in the antecedent or consequent parte ofthe position of the attribute in the rule, and the second part

rule, respectively; otherwise, the attribute is absentnfithe

of the attribute from the rule.

present in a transaction with certain value (a categoried¢)}

represents the categorical value it takes. The first partaaos
rule. In a similar approach [28], the presence of an atteiliut two bits and the attribute appears in the antecedent and the
the antecedent and consequent part are represented bybitsdhsequent of the rule if the bits are 10 and 11, respectively
and 01, whereas other bit combinations represent the abseoiherwise, it is absent from the rule. The second part reptes
categorical values taken by attributes in binary form. Hesve

the authors did not explain how a binary value in the second

The above encoding schemes [27], [28] can only be adoptgght represents a categorical state if the number of states f
for binary datasets, i.e., when an item is either present @ attribute is not an exact power of 2.

absent in a transaction. If someone wants to use this engodin
for more general categorical data, where an item may beThe main disadvantage of using a binary encoding scheme
is that it gives rise to a large chromosome length when the
the dataset will first need to be transformed into a binarnyumber of attributes is large, since at least two bits areede
one by considering each attribute-value pair as an item. flor each attribute. An integer encoding may come handy & thi



respect. Such an integer encoding scheme has been propdsedounter this bias, they also maximized attribute freqyen
in ARMMGA (Association Rule Mining using Multi-objective which is the ratio of the rule-length to the total humber of
Genetic Algorithm) [31], where the chromosomes encode titems. The reason behind taking three objective functidns a
index of the attributes. A chromosome encodingtaule, a time is that NSGA-II, the underlying MOEA, is known to
k being the total number of items in the antecedent amerform well when the number of objective functions is at
the consequent, has + 1 genes. The first gene positionmost three. Secondly, due to correlation of the measures, it
indicates the separating position of the chromosome whéseunnecessary to use correlated measures for optimization
the antecedent and the consequent attributes are sepdrated31], the classical measures (support and confidence of the
example, ifA; represents théth item, then the chromosomerules) are simultaneously optimized. Thus, it is apparesrhf
{3 12541 3} represents the ruleloAs4, = A;As. the above discussion that different sets of rule-intemgstss
This representation significantly reduces the length of tmeeasures have been chosen by various authors as their objec-
chromosome, but not effectively the search space, becawuse tive functions. However, a systematic comparison among the
for each position, a large number of alternative indicestare chosen objective functions is still missing in the literatu
be searched. Moreover, this representation scheme gises ri 4) Evolutionary Operators: When binary encoding has
to a variable chromosome length, thus requiring a speeihlizbeen adopted, standard crossover and mutation operat@s ha
crossover operator. Also, there remains a possibility afifig been used. For example, in [27], multi-point crossover and
duplicate indices in a chromosome after crossover/mutatidit-flip mutation have been used. In [30] bit-flip mutation
which must be taken care of during the evolutionary processas been adopted, however, the authors did not specifically
3) Objective Functions:Although support and confidencemention which crossover operator is used. In [28], the asgtho
are two popular objectives which are to be maximized, thepeoposed Pareto neighborhood crossover, a combination op-
are several other metrics to measure the interestingnesseiftor and an annexing operator. However, the way in which
association rules. These metrics, which have been usedthgse operators work is not explained. There is no mention
different algorithms for optimization in a multi-objecéiv about the motivation for defining these operators, as well
framework, include coverage, lift, comprehensibilityscte, as no experimental results have been provided showing their
prevalence, recall, Laplace, conviction, surprise, Jatcd improved effectiveness with respect to the standard opes.at
measure, etc. [100]. In [27], the rule mining problem has In the encoding strategies, where along with the attriutes
been modeled as a three-objective optimization problenrevhé¢heir values are also encoded, other types of evolutionary
confidence, comprehensibility, and interestingness h@aen b operators are needed. In [29], although the authors did not
optimized simultaneously. They defined the compreheiitsibilexplain the encoding strategy explicitly, from the destioip
of a rule aslog(1 + |C])/log(1 + |A U C|), where|C| and of the evolutionary operators, it appears that they used an
|AUC| denote the number of attributes in the consequent pafiproach in which the categorical values of the attributes
and total rule, respectively. They considered that the fowparticipating in the rule are encoded. Here, the authord use
value of comprehensibility, i.e., less number of attrisube value exchange and insertion crossover operators. If two pa
the consequent of the rule, leads to better understantyabiéints have some common attributes in the antecedent part, the
of the rule. The interestingness measure, on the other limndy value exchange crossover is performed by exchanging the
defined as a product of three probabilities, viz., the prditgb categorical values of one of the common attributes. When the
of generating the rule given the antecedent (ratio of th@stp parents do not have any common attribute, then one random
of the rule to the support of the antecedent), the probgbiliattribute selected from one parent is inserted into therothe
of generating the rule given the consequent (ratio of tivdth a probability that is inversely proportional to the ¢gh
support of the rule to the support of the consequent), anéithe later chromosome. Four mutation operators were egpli
the probability of generating the rule given both antecédewith equal probabilities. A value mutation randomly re@sac
and consequent (ratio of the support of the rule to the tolchosen categorical value with another random value from
number of transactions). A rule becomes more interestiitg ithe same domain. An attribute mutation randomly replaces
has a high interestingness value. In [28], two objectivecfunan attribute with another one. An insertion mutation irsert
tions, statistical correlation and comprehensibilityyddeen a new attribute-value pair, and a deletion mutation delates
simultaneously optimized in a co-evolutionary framewdrke randomly chosen attribute-value pair. In [31], where ieteg
statistical correlation measure indicates a better agoni encoding of the attributes is used, an order-1 crossoaesty
of the rule. In [29], five objective functions, viz., supportis adopted. In this strategy, first, one segmentis choseallgqu
confidence, J-measure, interest and surprise [100] have b&em two chromosomes and, respectively, are copied from the
simultaneously optimized. They found five different groupfirst and second parents to the first and second offspringt, Nex
of correlated measures. To make the objective functions catarting from the right side of the segment, the values of the
tradictory and uncorrelated, they selected these five messugenes that do not exist in the selected segment of the first
from five different groups. In [30], six different measureparent, are copied to the first offspring. The same procedure
(support, confidence, interest, comprehensibility, cosamd is repeated for the second offspring as well. The mutation
attribute frequency) have been considered. Three of thegeerator replaces a chosen item from the chromosome with a
measures have been taken at a time and optimized simuladom item not present in the chromosome.
neously. Measures such as support, confidence, interest anfl) Obtaining a Final SolutionAll the works for categorical
comprehensibility tend to be better if the rule-length iafier. rule mining using MOEAs that have been discussed in this



paper, use a Michigan type of encoding, where each chromo3) Objective FunctionsMODENAR optimizes four crite-
some encodes one association rule. Hence, the final gareratia of the rules [32]: support, confidence, comprehengybili
produces a set of non-dominated solutions each of which amed amplitude of the intervals that make up the itemset and
given to the user as the association rules generated from the rule. Comprehensibility is used to bias the search gsoce
input dataset. Thus, in this case, there is no specific needt@fard shorter rules, under the assumption that shortesrul
selecting a single solution from the non-dominated front. provide more non-redundant information. They also progose
that the amplitude of the intervals must be smaller for eder

ing rules, but the rationale for this is not explained. In N6G

) i ] . II-QAR [33], three objective functions are simultaneouspi-

For datasets .havmg contlnuoug attnbutg domains, the ARMizeg: lift, comprehensibility and performance. Perfonoa
algorithms designed for categorical attributes do not Wotk gefined by the product of confidence and support. Lift is
well. Th|_s is becau_se such algorithms need categorization @fined as the ratio of support of the rule to the product of
the continuous attributes. Hence the results of the ARM-algfhe supports of the antecedent and the consequent of the rule
rithms depend a lot on the categorization technique adoptefh1). A high value for the lift measure indicates that the
To overcome this limitation, many numeric/quantitative MR je is interesting, since its support is high with respect t
algorithms have been proposed and some of them adoptegh@supports of its antecedent and its confidence. The cempre
multi-objective optimization approach. hensibility is defined simply as the reciprocal of the number

A quantitative association rule is represented as [32]}: [33)f attributes in the rule. In [33], an experimental compamis

(h < A1 <hi) A (s < Ay < ho) = (s < Az < h3). between NSGA-II-QAR and MODENAR is provided.

4) Evolutionary Operators: MODENAR [32] used the
Here A; represents theth attribute.l; and h,; represent the standard version of the crossover and mutation opera-
lower and upper bound of the attribute values. Thish;] tors adopted by the version of differential evolution calle
defines an interval of values for the attributg. Here, we DE/rand/1. Additionally, a rounding operator is used tormu
discuss two different works on quantitative ARM. off the first part of the attribute which requires an integ@r (

1) Underlying MOEASs: In this section, we review two 1, 2) for computing the objective function values. In NSGA-
multi-objective numerical/quantitative rule mining atlgbms. 1I-QAR [33], a multi-point crossover is utilized. The two s
The first is a multi-objective differential evolution basewf the chromosome undergoes two different mutations. In the
numeric association rule mining algorithm (MODENAR) [32]first part, where the chromosome can have a value of -1, 0 or
In this case, a multi-objective differential evolution (&) 1, a random value is selected from the $et, 0, 1} and it
algorithm is used as the underlying optimization frameworkeplaces the existing value. The other part of the chromesom
In another work, an NSGA-II-based quantitative assoamti@ncodes the lower and upper bound of the chromosome. A
rule mining algorithm (NSGA-II-QAR) is proposed [33]. mutation in applied to this part by increasing or decreasing

2) Chromosome Representatiohe chromosomes rep-these values randomly. In both of these studies [32], [33],
resenting numeric or quantitative association rules need during mutation/crossover, it may happen that the lowemniou
encode the lower and upper bounds of the intervals of tbecomes larger than the upper bound, or they go outside the
attributes participating in a rule. In [32], where the MODbounds. For this, some repairing operators are also adopted
ENAR algorithm has been proposed, the following encodingake the chromosome a valid one.
technique has been adopted for the chromosomes. They usef) Obtaining a Final Solution: Both MODENAR and
chromosomes where each attribute has three components. NB&A-11-QAR used a Michigan approach of rule mining by
first component indicates whether the attribute is present encoding one rule in one chromosome. Thus, the final non-
absent in the rule, and if present, in which part (antecedentdominated set gives a set of numeric rules. Thus, there is no
consequent) in the rule it is. The second and third compaenented for any particular solution from the final non-domidate
indicate the lower and upper bounds of the ranges of tket. All the solutions will serve as the final selected rule se
attribute. The first component can have integer values 021 or
which indicate the presence of the attribute in the antetted
of the rule, the presence of the attribute in the consequent ] o ) o
of the rule, and the absence of the attribute from the rule, On€ of the major problems of mining numeric association
respectively. The second and third components can take ré#gs is that these algorithms deal with sharp boundaries
values from the corresponding attribute ranges. It is to [gtween consecutive intervals. Thus, they cannot represen
noted that as MODENAR uses differential evolution as a}mooth changes from one interval to another, which can
optimizer and works on real-valued chromosomes, the asth§€ €asily handled by fuzzy association rules. A number of
used a round-off operator to handle the integer part of tMOEA-based fuzzy ARM techniques have been developed in
chromosome. A similar encoding scheme is adopted in NSGHQ€ past decade. Here, we describe several of these algsrith
I-QAR. The only difference is that in this case, the firstyer @nd discuss different approaches that incorporate them.
the chromosome, instead of using the values 0, 1, 2, adopts thThe general form of a fuzzy association rule is as [34]:
values 0, 1 and -1, res_pectively, to de_not_e the same_meaning. If X = {21, 20,....0p} is A={f1, for-. .\ [}
both cases, the algorithms used a Michigan encoding sitateg
i.e., each chromosome encodes one rule. Then'Y = {y1,92,---,Yq} is B={91,92,---, 94}

B. Numeric Association Rules

Fuzzy Association Rules



Here X andY represent two sets of attributes aldhY = ¢. in [34], two objective functions are optimized simultansiyu
A and B represent the fuzzy sets (linguistic values) of th&he first objective function is stability of the encoded mem-
corresponding attributes iX andY’, respectively. Therefore, bership functions, which has two components, viz., overlap
if a rule is encoded in a chromosome, both the attributes afattor and coverage factor. The stability is optimized toidv
their linguistic values should be encoded in it. A number afeneration of too redundant and too separated fuzzy sessmfor
studies have been done on the application of MOEAs for fuzitgm. The second objective is to maximize the total number of
association rule mining. Here we review some of them. large 1l-itemsets for given minimum support values. Althoug

1) Underlying MOEAs:Different MOEAs have been em-this work is a consequence of the works of Kaya et al.
ployed in various works on fuzzy ARM. In [34], [35], [36], with modifications in the objective functions and evoluton
Kaya et al. used a variant of SPEA for fuzzy rule mining. loperators (described later), the authors did not compagie th
[37], a multi-objective GA (MOGA) is used for this purposeresults with those of Kaya et al. So, it is difficult to judgeyan
In another work on fuzzy association rule mining, NSGA-limprovement of the performance over the previous appraache
has been employed [38]. However, in none of these studies|n [38], the authors used a direct approach to temporal fuzzy
relative comparison among different MOEAs for fuzzy rul@ssociation rule mining by adopting the Michigan form of
mining has been addressed. chromosomes. Thus, here the objective functions are tetate

2) Chromosome Representatiomhere are two categoriesthe optimization of the encoded rules. In this work, fourembj
of chromosome representations for fuzzy ARM. In the firgive functions, namely temporal support, temporal configen
approach, a chromosome represents a set of fuzzy clustezzy support and membership function widths, are optichize
corresponding to each attribute. The objective is to find \Whereas the first three objective functions are obviouslaste
suitable set of fuzzy clusters that partition the range dfies objective function is used to prevent a membership function
in each attribute domain. This approach is adopted in aserfeom covering the whole range of attribute values. Without
of works done by Kaya et al. in [34], [35], [36]. In these worksthis objective function, the solutions could evolve to aove
each chromosome represents the base values of the varitidecomplete range of attribute values, since this givekdrig
number of membership functions representing the fuzzy setgpport values as it includes more number of items.
for each quantitative attribute. Standard triangular mersiip 4) Evolutionary Operators: In the works of Kaya et
functions are used to represent the fuzzy sets. Real-valwdd [34], [35], the authors have used standard multi-point
representation of the chromosomes is used for this purposmssover operations. In [36], the authors used arithmetic
Here a chromosome does not represent association rulecrétssover. Also, they employed standard real-value nartati
represents a suitable fuzzy clustering of the attributealom In [37], the authors used Max-min arithmetical crossovet an
The evolved fuzzy membership functions are then used @se-point mutation. This crossover operator generates fou
the linguistic values of the corresponding attributes. Zyuz offspring at a time out of which the two best offspring are
association rules are mined using standard algorithmsltmase chosen. However, the authors did not describe the crossover
minimum support and minimum confidence criteria. A similaprocess in detail, and did not discuss its advantage over a
encoding approach is adopted in [37]. standard crossover operator. The mutation operator is tased

The second approach directly encodes fuzzy associatslightly change the center of the fuzzy set being mutated. It
rules in the chromosomes. This is a kind of Michigan approaéh to be noted that when mutation takes place at the center
where each chromosome encodes a possible rule. In [38], sofha fuzzy membership function, it may disrupt the order
an encoding is adopted to mine temporal fuzzy associatioh the resulting fuzzy membership functions. Hence, these
rules. Here, the authors used a mixed representation of chizzy membership functions need rearrangement according t
mosomes combining integer and real values. The chromosothneir center values after the mutation. In [38], for a Micmg
encodes the lower and upper bounds of the temporal intertygpe of encoding, a modified uniform crossover operator is
in the rules as integers. The indices of the items partirigat adopted. For mutating the genes representing the lower and
in the rule are also encoded as integers. Finally, the reapper bounds of the time interval, the values are generated
valued parameters of the triangular membership functiomsthin the endpoint rangeefr) where the midpoint is the
corresponding to each item are encoded in the chromosowedue of the current geng), such that the mutated value is a
Thus, this representation induces variable-length cheemmes member of the sef—epr/2,...,g,...,epr/2}. This is done
needing special evolutionary operators. to reduce the effect of random sampling of the dataset.

3) Objective Functionsin the works of Kaya et al. [34], 5) Obtaining a Final Solution:As in [34], [35], [36], [37],
[35], [36], the authors optimize two criteria, viz., numbEr a chromosome encodes a possible fuzzy clustering of the
large itemsets and time spent to obtain the large itemsedfiribute values, it is necessary to select a suitable isolut
Thus, here the objective is to evolve a possible fuzzy clusem the final non-dominated set, based on which of the
tering of the numeric attributes that maximizes the numiber final association rules are extracted. However, in [34]],[35
large itemsets while minimizing the time required to obtaif87], this issue has been overlooked. In [36], the authors
all large itemsets given the clustering. After optimizirget presented an approach based on the lower bound of the
clustering, the authors then used the membership functisnsobjective function values to identify interesting solutio The
the linguistic values for the fuzzy association rules ested authors first determined a lower bound for an objective such
based on minimum support and minimum confidence criterighat the values under the located lower bound are infeasible

In [37], where a similar encoding strategy is adopted &wlutions for us. The lower bounds are the parameters that
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are varied by the optimizer to obtain multiple non-domidateset of diverse classifiers encoded in the chromosomes of the
sets of solutions. Subsequently, the solution, which madm final non-dominated front, and then make the final prediction
the other objective in feasible space is chosen. Howevby, combining the predictions of these individual class#ier
as the author mentioned, the lower bound must be chogbrough a majority vote. Integration of diverse classifiers
carefully and it is not a trivial task. In [38], the authoredsa through ensemble learning may prevent overfitting and may
Michigan type of encoding of temporal fuzzy associatiorsul provide better classification accuracy and improved rotasst
Therefore, all the rules encoded in the final non-dominaé¢d £ompared to the predictions based on a single classifiel].[102
are considered as extracted rules. There is no specific feed d'he general framework for ensemble classification design
choosing any particular solution from the non-dominated sés to produce a diverse set of classifiers by optimizing @erta
contradictory criteria. A popular approach in this regasd i
to optimize an artificial neural network-based classifier or

] i _ ) MLP with respect to the complexity of the classifier and
In Table II, we provide a comparative overview of differeng predictive accuracy. The complexity of an MLP refers

approaches for MOEA-based association rule mining. The the number of hidden layer units and weights of the
approaches are categorized in three types as discussed, ¥gnnections. This approach has been adopted in [39], [40],
categorical rule mining, numeric rule mining and fuzzy rulgs1] 142), [43]. In [39], a Pareto-frontier differentiabelution
mining. Different methods are compared with respect to thepg) algorithm [103] is used to develop the Memetic Pareto
underlying MOO tool, encoding strategy, objective funoio - arificial Neural Network (MPANN) method. In MPANN,
evolqtionary operators anq method for_obta_ining the finghe authors performed a comparison between two multi-
solution from the non-dominated set. It is evident from thgpiactive formulations to the formation of neuro-enserable
table that most of the methods have used a Michigan encodjfghe first formulation, the training set is split into twomo
and thus all the non-dominated solutions are treated as figgkriapping stratified subsets. The objectives are to nizgm
solutions without needing a particular solution from thé. sgpe training error on each subset. In the second formula-
Although a number of diﬁgrent mefthods have been discussl%in, they add random noise to the training set to form a
here, very few comparative studies of these methods &ig:ond objective. They also compared there algorithm with
available in the literature. Only in [33], two numeric ruley pegative correlation learning (NCL) algorithm for traigi
mining approaches using a MOEA, namely MODENAR angdp, ensemble of ANNs using Backpropagation [104]. In [40],
NSGA-II-QAR, have been compared in terms of differenpe problem of regularization of neural network classifisrs
rule-interestingness metrics. However, in all the otherksp ;4dressed and as a bi-product, a neural network ensemble is
the authors have concentrated on comparing the performagge@erated. They compare the use of NSGA-Il and a dynamic
of their approaches with respect to existing single-object yeighted aggregation method in generating the ensemble by
evolutionary and other non-evolutionary methods. - optimizing two objectives, viz., training mean squaredoerr
Although MOEA-based ARM algorithms have gained popsng number of network connections. A similar approach for
ularity in recent years, their use in real-life applica8ols the generation of an ensemble of MLPs is found in [41]
stillfairly limited. The authors have mainly preferred tqyiih different objective functions to be optimized. Hereeth
demonstrate their methods on some UCI repository datase{$inors minimized Type-I and Type-Il errors simultanegusl
It would interesting, however, to see applications of theggnich refer to the number of false positives and number of
techniques in domains such as mining gene expression agde negatives, respectively. The algorithm, called MGgP
other biological data, financial databases and text mining. g designed based on the single front genetic algorithm (9FG
proposed in [105]. The authors showed that this ensemble
IV. MOEAS FOROTHER DATA MINING TASKS works well for class-imbalanced data. In [42], an algorithm
Most of MOEA-based data mining techniques have consi@@/led DIVACE (DIVerse and Accurate Ensemble Learning Al-
ered the four areas (feature selection, classificatiosteling 9°rithm) is proposed. DIVACE uses ideas from NCL [104] and
and association rule mining) as discussed before (in PaMPANN [39], and formulates the ensemble learning problem
| [1] and this part of the paper). However, besides thes®S @ multl-ob_Jectlve problem exp_I|C|tIy_W|th|n an evolutiary
MOEAs have also been applied for many other data minirg§tuP- The aim of the algorithm is to find good a trade-off be-
tasks. These tasks include ensemble learning, biclugfedn tween diversity and accuracy to produce an ensemble of heura

clustering, etc. In this section, we discuss some of the MoEARetwork classifiers. The diversity is modeled as a corafati
based approaches that have been applied in these areas. Penalty [104]. The authors showed that DIVACE performs
better than the MPANN algorithm. In a recent work, a Multi-

i objective genetic algorithm based Artificial Neural Networ

A. MOEAs for Ensemble Learning Ensemble (MANNE) method is proposed in [43] for intrusion

Ensemble learning refers to the task of combining thaetection. The authors optimized neural network classifier
predictions of individual classifiers in some way to obtainsing NSGA-II with two objective functions, namely detecti
more robust predictions. The inherent strength of MOEAs tate and false positive rate to generate the ensemble. The
produce a set of trade-off classifiers in the form of a nomethod was compared with a decision tree and its ensembles
dominated set has made them popular in designing ensemhisi®g bagging and boosting methods.
of classifiers. The general idea is to use MOEAs to yield a Another popular approach for building MOEAs-based clas-

D. Relative Comparison and Applications
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Algorithm Underlying Type Encoding Objective functions Evolutionary operators Final solution from
MOO tool non-dominated front
Ghosh and Nath [27], MOGA Categorical  Binary Confidence, pahensibility, Multi-point crossover, None
2004 (Michigan) interestingness bit-flip mutation
Hu and Yang-LI [28], Pareto-based Categorical ~ Binary Stiatl correlation, Pareto neighborhood crossover, None
2007 coevolutionary (Michigan) comprehensibility cormdiion, annexing
Khabzaoui et. al. [29], Non-standard Categorical ~ Not nuered Support, confidence, J-measure, Value exchange eeosso None
2008 interest, surprise insertion crossover,
value/attribute mutation,
insertion/deletion mutation
Anand et. al. [30], NSGA-II Categorical ~ Binary Combinati¢® at a time) of Crossover not mentioned, None
2009 (Michigan) support, confidence, interest, bit-flip mutatio
comprehensibility, cosine,
attribute frequency
Qodmanan et. al. [31], Non-standard Categorical  Integer pp8u, confidence Order-1 crossover, None
2011 (ARMMGA) (Michigan) random replacement mutation
Alatas et. al. [32], MODE Numeric Mixed (Integer +  Suppompnfidence, comprehensibility  DE/Rand/1 None
2008 (MODENAR) real) (Michigan) amplitude of interval
Martin et. al. [33], NSGA-II Numeric Real-valued Lift, comghensibility, Multi-point crossover, random None
2011 (NSGA-II-QAR) (Michigan) performance (suppost confidence) increase/decrease mutation,
random replacement mutation
Kaya and Alhajj [34], 2003  SPEA variant Fuzzy Real-valued nitver of large itemsets, Multi-point crossover, Not mergidn
Kaya and Alhajj [35], 2004 (membership time taken to find algke itemsets standard real-value mutation
functions)
Alhajj and Kaya [36], SPEA variant Fuzzy Real-valued Numbegtarge itemsets, Multi-point crossover, Lower-bound
2008 (membership time taken to find all large itemsets standaaivedue mutation based
functions)
Chen et. al. [37], MOGA Fuzzy Real-valued Number of largaetnisets, Max-min arithmetic crossover, None
2008 (membership suitability of membership functions one-ponutation
functions)
Matthews et. al. [38], NSGA-II Fuzzy Mixed (integer +  Tempbsupport, temporal Modified uniform crossover, None
2011 (temporal) real) confidence, fuzzy support, random changgtion
(Michigan) membership function width

sifier ensembles is to encode a feature subset and othet are similar based on a subset of attributes. Hence, bi-
parameters in a chromosome and use some classifier as a welstering can be thought of as the simultaneous clustering
per to compute the objective functions (usually classificat of objects and attributes. Biclustering algorithms haweess
accuracy and feature subset size). The idea is to evolvedd sedpplications in different real-life domains such as texnimy
non-dominated classifiers with respect to the trade-offileet  [110], recommender systems [111] and collaborative filtgri
accuracy and feature subset size. Each of them works oifl&2]. However, almost all the MOEAs for biclustering are
specific subspace of the dataset and can be used to formapplied for mining biclusters from microarray gene expiw@ss
ensemble of classifiers [106], [107], [108]. In [106], Olrseet data [109]. Here, we review some of these algorithms.

al. used MLP as the wrapper and the classification accuracypg the biclustering problem requires several objectiveseto

and feature subset size as the two objective functions to @ﬁtimized such as mean squared residugs(R) (a coherence
0ptimized.|n[107],the authors considered b_oth the supedv measure) [113], volume, row variance, etc., this problem
and the unsupervised cases. For the supervised case, &y Pgn pe posed as a multi-objective optimization problem in a
used MLP as the wrapper and as objective functions the sag&ightforward manner. In recent years, a number of stud-
defined in [106]. In the unsupervised case, they have used {€ jave been done in solving biclustering problems using
K-means clustering algorithm and usgd3 index and number \oeas. In [44], a multi-objective GA-based biclustering
of features as the objective functions. Experimental md'technique is proposed. The authors use a binary string of

established performance improvement compared to classi@?.'gth G + C, whereG and C denote the number of genes

bagging and boosting techniques. In [108], on the other hanghy hymber of conditions/samples/time points, respeytitfe
three classifiers have been .use.d as wrappers, namely aecigigy;t position is ‘1', then the corresponding gene or conuiti
tree, SVM and MLP. Two objective functions used are averag€qq|acted in the bicluster and if a bit position is ‘0’, there-

accuracy of these three classifiers and consensus accufracgp%nding gene or condition is not selected in the biclutee.
them. The authors demonstrated that the proposed methdhithm optimizes thel/SR and volume of the biclusters
outperforms single objective GA-based methods design8d Wijmitaneously, in order to obtain coherent and large bieks.
one of these classifiers as wrapper. The algorithm uses NSGA-II as the underlying multi-objeeti

optimization tool. Cheng and Church’s biclustering altorn
B. MOEAs for Biclustering [113] has been used as a local search strategy.

A variant of the clustering, called biclustering or co- In [45], a different encoding policy is adopted. The al-
clustering [109], aims to capture local structures within gorithm is termed as Multi-Objective GA-based Bicluster-
dataset. A clustering algorithm groups similar objects reheing (MOGAB). Here, each string has two parts: one for
the similarity is computed based on all attributes. On thdustering the genes, and another for clustering the condi-
contrary, the goal of a biclustering algorithm is to find awpo tions. If M and N denote the maximum number of gene
of objects that are not necessarily similar over all thelattes, clusters and the maximum number of condition clusters,
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respectively, then the length of each stringdis + N. The isolated handwritten symbols is posed as a multi-objective
first M positions represent thd/ cluster centers for the optimization problem, and a multi-objective genetic altion
genes, and the remaining positions represent th& cluster is proposed to solve the problem. The proposed algorithm has
centers for the conditions. Thus a string, looks like fobow been shown to outperform human experts. However, not much
{gcr 902 ... gem ceep cea ... cent, where eachye;, progress has been noticed in this area, using MOEAs.
i = .M, represents the index of a gene that acts as aSubgroup discovery is another data mining problem where
cluster center of a set of genes, and each j = 1...N, the aim is to mine fuzzy rules for subgroup discovery. These
represents the index of a condition that acts as a clusfarzy rules help to represent the knowledge about pattefrins o
center of a set of conditions. A string that encodésgene interest which is explanatory and understandable to theréxp
clusters andV condition clusters, represents a setddfx N A few MOEAs-based approaches have been proposed for this
biclusters, taking each pair of gene and condition clustegurpose over the last few years [51], [52], [53]. The objexti
Each pair< gc;,cc; >, i=1...M, j=1...N, represents is to optimize different rule-interestingness criteridradRM.
a bicluster that consists of all genes of the gene clusterMOEAs have also been used for regression. In [54], a
centered at gengc;, and all conditions of the condition clusterMOEAs-based approach for obtaining linguistic fuzzy rule-
centered at conditionc;. During the fitness computation, thebased regression models from imprecise data is proposed.
gene and condition clusters encoded in the chromosome Bkgre, each chromosome encodes one rule (Michigan ap-
updated through K- means at each iteration. Two objectivggpach), which competes with others in terms of maximum
MSR(I,J)

viz., and ; AR 77) are optimized simultaneously.coverage and fitting. The knowledge base is formed through
This approach also adopts KISGA-II for optimization. Siaglecooperation of individuals in the population. In a similapnk
point crossover and random replacement mutation have b¢gh], the authors proposed a multi-objective genetic fuzzy
used as the evolutionary operators. MOGAB also uses NSGgystem (GFS) to learn the granularities of fuzzy partitions
Il as its underlying optimization tool. In [46], a fuzzy véwa for tuning the membership functions (MFs), and for learning
of MOGAB is proposed. Fuzzy versions @ff SR and row the fuzzy rules for a regression problem. The proposed ndetho
variance have been simultaneously optimized. uses dynamic constraints. This enables three-parametar me

In [47], the authors proposed the Sequential Multi-Objexti bership function tuning for improved accuracy and guarste
Biclustering (SMOB) algorithm. They adopted binary encodhe transparency of fuzzy partitions at the same time.
ing in this case. Three objective functions, viz., mean sgdla  Another application of MOEAs has been found in outlier
residue, volume and row variance were optimized. In [48}etection. In [56], a multi-objective genetic algorithmpso-
a hybrid multi-objective biclustering algorithm that coimé&s posed for outlier detection. The MOEA in this case is mainly
NSGA-II and a Estimation of Distribution Algorithm (EDA) employed as an effective search method in unsupervised
[114] for searching biclusters was proposed. The volume akgrning for finding outlying subspaces from training data.
M SR of the biclusters are simultaneously optimized. In [49Besides this, MOEAs have also been used in soft subspace
an NSGA-II based multi-objective biclustering algorithrasv clustering [57], [58]. However, MOEAs have been applied in
proposed. This approach uses integer encoding. Here, thése areas only very recently and much more work is still
integers represent the indices of the rows and the columnspefeded.
the dataset. The objectives optimized are the similarityiwi
the biclusters and the volume of the biclusters.

Although different biclustering approaches are proposed u
ing MOEASs, there has been no effort to compare them system-Although MOEAs are being applied in data mining tasks
atically. MOEA-based biclustering algorithms have beem<o over the past decade and the literature is already quite rich
pared with respect to standard single-objective evolatign still some important future research issues remain opere,He
biclustering approaches as well as with respect to other nave discuss some relevant and important research topics to
evolutionary algorithms based on several criteria. Howevée addressed in the future. First of all, most of the studies
comparative studies among different MOEA-based appraacheave focused on comparing the proposed MOEA-based data
are practically non-existent. These algorithms differ ligit mining techniques with existing non-evolutionary or tradi
encoding strategies, objective functions, evolutiongugrators tional single-objective evolutionary techniques. Howe\as
and underlying MOEAs. Therefore, some studies to compadiscussed before, practically none of the studies have com-
their performance would be beneficial for the users to selgudred the performance of different MOEA-based algorithms

V. FUTURE DIRECTIONS

the most suitable method for their applications. for different data mining tasks in a systematic way. Thus,
o for a novice user, it is difficult to judge which algorithm
C. Other MOEAs-based Data Mining Approaches he/she should use for a particular task in hand. Possible

There are a few additional areas of data mining whereasons for unavailability of these studies may be the ldck o
MOEAs have been applied, but they are not well-studied stpublicly available softwares/codes, difficulty in reprethg
now. One of such areas is feature extraction and constructithe results, use of a variety encoding strategies, obgctiv
Feature extraction or construction refers to the task aitawa functions, evolutionary operators and final solution stdec
of new features from functions of the original features.tbea Thus, a systematic comparison to guide new users to choose a
selection can be considered as a special case of featuae-extsuitable method for his/her application would be very valaa
tion. In [50], the problem of feature extraction for recaging as it is still missing in the specialized literature.



13

In the majority of the studies on MOEA-based data miningnteractive MOEAs may be developed for other data mining
the performance of the algorithms has been reported basedasks such as feature selection, classification and rulengnin
the quality of the obtained result in terms of some metrics.
However, to address large scale data mining problems using
MOEAs, such as clustering large images or selecting genes
from gene expression data containing several thousands ofn this two-part article, we have surveyed several MOEAs
genes, along with the quality measure, the efficiency of thused for four primary data mining tasks namely feature se-
algorithm is also an important concern. Evolutionary algdection and classification (in Part-l [1]), and clusteringda
rithms have long been criticized for consuming large ameurassociation rule mining (in Part-11). The main focus hasrbee
of computational time as compared to other heuristics. Moren the chromosome representation, objective functions; ev
over, MOEAs typically require more computational time thatutionary operators, and final solution selection from tlo&n
single-objective evolutionary algorithms. Almost nonetoé dominated front. Moreover, a comparative overview among
MOEAs-based data mining studies reviewed here has condiifferent methods in each category along with some real-lif
ered to provide a systematic time complexity analysis. &herapplications are provided. Additionally, in this Part-il the
fore, it is difficult to compare different MOEAs in terms ofpaper, several other MOEAs-based data mining tasks, such as
time usage. Computational efficiency of MOEAs used in datmsemble learning, biclustering, feature extractiongudup
mining is, indeed another promising research area. For exatiiscovery etc. have been reviewed. Finally we have discusse
ple, one could incorporate local search strategies in MOtBAsa number of future research areas that deserve attention fro
improve the convergence rate. Many of the MOEAs-based déite researchers working on the development of MOEAs-based

VI. CONCLUSIONS

mining techniques currently available have already adbptdata mining algorithms.

this strategy, specially in clustering [12] and biclustegr[44].
Another possibility is the efficient parallelization of M@E
using multiple processors. A few studies in this regard have
been done for ARM [115] and clustering [116], but more [1]
studies are needed to explore other application areashanot
way to reduce the search time for the MOEAs used in datgy;
mining is to use some appropriate stop criterion for them,
instead of a fixed number of generations (as traditionallyl3]
done). Some approaches are currently available for definin
stop criteria for MOEAs (see for example [117]), but none of
them have been adopted in data mining yet.

Most of the data mining problems have many objectives
to be optimized. For example, a rule mining problem has
objectives such as support, confidence, rule length, comi€]
prehensibility, interestingness, lift, etc., whereas astgring 7
algorithm may optimize a number of cluster validity measure
simultaneously. However, few MOEA-based data mining prob-
lems have been posed with more than three objective furectiont®!
[81]. Traditional MOEAS such as NSGA-II, SPEA2 and PAES
are known to have difficulties to solve problems with 4 or more9]
objectives, and other approaches are required to deal aéth t
(see for example [82]). The use of such approaches in data
mining is, however, still missing in the specialized litem.  [10]

Another research direction that deserves attention ig-inte
active data mining using MOEAs. In interactive data miningy11j
during the execution of a data mining algorithm, it intesact
with a human decision maker to learn in a gradual way.
This might be very useful to incorporate such interactians iy
MOEA-based data mining algorithms when some expert user
is available for the problem at hand. Such an approach has

(5]

been proposed in [84], where the authors have developed an
interactive MOEA-based clustering approach called irtira
multi-objective clustering (IMOC). In IMOC, the algorithm
interacts with a human decision maker during its execution i
order to learn the suitable set of cluster validity indioasthe
input dataset. Thus, different sets of validity measureg bea  [15]
chosen for different datasets. The method has been shown to
perform well in clustering of gene expression data. Similar

(14]
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