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Abstract—This paper is the second part of the two-part
paper on the survey of multi-objective evolutionary algorithms
for data mining problems. In Part-I of the paper [1], multi-
objective evolutionary algorithms used for feature selection and
classification have been reviewed. In this Part-II, different multi-
objective evolutionary algorithms used for clustering, association
rule mining and other data mining tasks are surveyed. Moreover,
a general discussion is provided along with scopes for future
research in the domain of multi-objective evolutionary algorithms
for data mining.

Index Terms—Multi-objective evolutionary algorithms, cluster-
ing, association rule mining, biclustering, ensemble learning.

I. I NTRODUCTION

As mentioned in Part-I of the paper [1], multi-objective evo-
lutionary algorithms (MOEAs) [2] have become increasingly
popular in the domain of data mining during the last decade.
In this two-part paper, we survey several MOEAs for different
data mining tasks. In Part-I [1], we have introduced the
basic concepts of multi-objective optimization and data mining
and reviewed different MOEAs designed for addressing two
important data mining tasks, namely feature selection and
classification.

In this Part-II of the paper, MOEAs used for two other
major data mining tasks, viz., clustering [3] and association
rule mining [4] are surveyed. Both of these data mining
tasks are unsupervised in nature and can be easily posed as
multi-objective optimization problems. In recent years, several
MOEAs have been proposed in the literature to accomplish
these tasks. We review many of these approaches with focus on
chromosome representation, objective functions, evolutionary
operators, and methods for obtaining the final solution from
the non-dominated set. Besides this, here we also review
MOEAs employed for several other data mining tasks such as
ensemble learning, biclustering, feature extraction, sub-group
discovery and so on. Fig. 1 shows the different MOEAs-based
data mining tasks reviewed in this part of the paper along
with the corresponding references. A general discussion on
the future scope of research in this area of multi-objective
data mining is also provided.
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II. MOEA S FORCLUSTERING

Clustering techniques aim to find a suitable grouping of
the input dataset so that some criteria are optimized. A
straightforward way to pose clustering as an optimization
problem is to optimize some cluster validity index [5] that
reflects the goodness of the clustering solutions. All possible
partitionings of the dataset and the corresponding values of
the validity index define the complete search space. Under
this context, genetic and other evolutionary algorithms have
been widely used to reach the global optimum value of the
chosen validity measure. Conventional evolutionary clustering
techniques [6] use some validity measure as the fitness value.
However, no single validity measure works equally well for
different kinds of datasets. Thus, it is natural to simultaneously
optimize multiple of such measures for capturing different
characteristics of the data. Hence it is useful to utilize MOEAs
for clustering. Multi-objective clustering techniques optimize
more than one cluster validity index simultaneously, leading to
high-quality results. The resultant set of near-Pareto-optimal
solutions contains a number of non-dominated solutions, from
which the user has to select the most appropriate one based
on his/her own preferences. A number of multi-objective evo-
lutionary clustering algorithms are available in the literature.
They vary in different aspects, including the type of MOEA,
the chromosome encoding, the objective functions optimized,
the evolutionary operators adopted and the mechanism adopted
to select the final solution from the non-dominated front.

A. Underlying MOEAs

There are mainly four MOEAs that have been used as
the underlying optimization tool for multi-objective clustering.
Pareto Envelope-Based Selection Algorithm-II (PESA-II) [59]
has been used in the algorithms VIENNA (Voronoi Initialized
Evolutionary Nearest-Neighbor Algorithm) [7], MOCK-AM
[21] (Multi-Objective Clustering with automaticK determi-
nation Around Medoids), MOCK [10], and MECEA (Multi-
objective Evolutionary Clustering Ensemble Algorithm) [13].
Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [60]
has been employed in many multi-objective clustering ap-
proaches such as MOEA (Dynamic) [9], VRJGGA (Variable-
length Real Jumping Genes Genetic Algorithms) [61], MOGA
[12], MOGA(medoid) [22], MOES (Hybrid) (Multi-Objective
Evolutionary Strategy (Hybrid)) [14], MOGA-SVM (Multi-
objective GA with Support Vector Machine) [15], [16], EM-
COC (Evolutionary Multi-Objective Clustering for Overlap-
ping Clusters detection) [18], MOGA (mode) [24], DYN-
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Continuous data− [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20]

Clustering Categorical data− [21], [22], [23], [24]

Graph data− [25], [26]

Categorical− [27], [28], [29], [30], [31]
MOEAs for
clustering, Association Numeric− [32], [33]
association rule rule mining
mining & other Fuzzy− [34], [35], [36], [37], [38]
data mining
tasks Ensemble learning− [39], [40], [41], [42], [43]

Other tasks Biclustering− [44], [45], [46], [47], [48], [49]

Feature extraction− [50]

Subgroup discovery− [51], [52], [53]

Regression− [54], [55]

Outlier detection− [56]

Subspace clustering− [57], [58]

Fig. 1. MOEAs for clustering, association rule mining and other data mining tasks surveyed in this part of the article (with references)

MOGA (Dynamic MOGA) [26], MOVGA (Multi-objective
Variable-length Genetic Algorithm) [19], and MOCA (Multi-
Objective Clustering Algorithms) [20]. In [23] and [17],
Strength Pareto Evolutionary Algorithm-2 (SPEA2) [62] has
been used as the underlying optimization tool. Niched Pareto
Genetic Algorithm (NPGA) [63] has been employed in
MOKGA (Multi-objective K-Means Genetic Algorithm) [8].

B. Chromosome Representation

The choromosome representation approaches can broadly
be classified into two major classes, viz., prototype-based
approaches and point-based approaches. In the prototype-
based approach, cluster representatives or prototypes, such
as cluster centroids, medoids and modes are encoded in the
chromosome. On the other hand, in the point-based approach,
a complete clustering solution is encoded in the chromosome.

In a prototype (cluster center)-based approach, the chro-
mosomes are made up of real numbers which represent the
coordinates of the cluster centers. If a chromosome encodes
the centers ofK clusters ind-dimensional space, then its
length l will be d × K. In case of multi-objective clustering,
this encoding scheme was first utilized by Mukhopadhyay,
Maulik and Bandyopadhyay in [64] and the authors have used
this encoding policy in a series of multi-objective clustering
algorithms such as MOGA [12], SiMM-TS (Significant Multi-
class Membership (Two-stage)) [65], MOGA-SVM [15], [16]
and MOVGA [19]. Besides Mukhopadhyay et al., several other
researchers have adopted this encoding policy in different
multi-objective clustering algorithms such as VRJGGA [61],
MOES(Hybrid) [14], and MOCA [20]. In some algorithms,
instead of using cluster centers as cluster prototypes, cluster
medoids have been encoded in the chromosome. A cluster
medoid is the point of the cluster, from which the sum of the

distances to the other points of the cluster is minimum. There
are some approaches which encode the cluster medoids, or
the indices of the points representing the cluster medoids in
the chromosomes. Examples of such multi-objective evolu-
tionary clustering algorithms include MOGA (medoid) [22],
and EMCOC [18]. Another approach is to encode cluster
modes in the chromosomes. Cluster modes are suitable for
categorical attributes where the mean centroid of the cluster
cannot be computed. Given a set of categorical points, their
mode is defined as a vector of the attributes where each
component value of the vector represents the most frequent
value occurring in the corresponding attribute over all the
points. MOGA (mode) [24] is a multi-objective clustering
algorithm where cluster modes are encoded in the chromo-
somes. The advantage of prototype-based encoding is that
here the length of the chromosomes is small and, therefore,
it takes less time to apply the evolutionary operators such as
crossover and mutation. Also, this encoding policy is good
for capturing overlapping and fuzzy clusters. However, these
algorithms have a tendency to capture round-shaped clusters
only. Also, if the chromosomes encode different number of
clusters, they have variable lengths which are to be handled
while applying the evolutionary operators. Moreover, in this
type encoding, the chromosomes may be very large if the
number of attributes is large. Therefore, for higher dimensional
datasets, this encoding strategy may not work very well.

Another popular encoding approach is point-based encod-
ing, where the complete clustering of the data points are
encoded instead of only the representatives/prototypes ofthe
clusters. Under this scheme, there are two main approaches,
viz., cluster label-based approach and locus-based adjacency
representation. The cluster label-based approach is the most
common form of point-based encoding. Here, the chromosome
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lengths are equal to the number of points in the input dataset,
and each position represents the cluster label of the corre-
sponding points. If positioni of the chromosome contains
a valuek, then theith data point is assigned to clusterk.
Obviously, the chromosomes can contain only integer values
drawn from the set{1, 2, . . . , K}, whereK is the maximum
number of clusters. The multi-objective clustering algorithms
that use this encoding policy include VIENNA [7], MOKGA
[8], and GraSC (Graph-based Sequence Clustering) [23], [66].
In MOCK [10], [21], Handl and Knowles used a variant of the
cluster label-based encoding strategy. Here, each chromosome
consists ofn genes (n is the number of data points) and each
gene can have integer values in{1, . . . , n}. If the genei is
assigned a valuej, it represents a link between the data pointsi
andj, and, in the resulting clustering solution, these two points
will belong to the same cluster. Thus, a graph is formed with
the data points as the vertices and the links between two data
points are the edges. Therefore, for decoding a chromosome,
it is required that we identify all the connected components
of the graph. This can be done in linear time [10]. The data
points in the same connected component are then assigned
to the same cluster. Hence, this representation encodes the
clustering as well as the number of clusters (number of con-
nected components). Many algorithms besides MOCK, such as
MECEA [13], AI-NSGA-II [25], and DYN-MOGA [26] have
adopted this encoding policy. Although point-based encoding
techniques are not biased towards convex-shaped clusters,they
suffer from the large length of chromosomes when the number
of data pointsn is large. Thus, the algorithms using this
encoding approach require more time to converge. However,
unlike prototype-based encoding, here the chromosome length
is independent of the encoded number of clusters.

C. Objective Functions

For the clustering problem, usually cluster validity indices
[67] are used as the objective functions. Most of such multi-
objective clustering algorithms have used two validity in-
dices to be simultaneously optimized. In [7], [10], [68], the
MOCK clustering algorithm minimizes two validity indices:
overall cluster deviation (Dev(C)) and cluster connectedness
(Conn(C)). Some other multi-objective clustering works have
also used these two objectives [9], [13], [66]. In [12], [15],
[16] the authors used two validity indices,Jm [69] and XB
[70] which are minimized simultaneously to obtain compact
and well-separated clusters. In [8], [71], [72], the two validity
indices to be minimized are: Total Within-Cluster Variance
(TWCV ) and the number of clustersK. In [22], a multi-
objective categorical data clustering algorithm is used to
optimize: overall deviationDev(C) (with respect to medoids
instead of centroids) and silhouette index [73]. In [11], [18],
the intra-cluster entropyH and cluster separationSep(C) are
used as the two objective functions. The indexI [67] and
XB are simultaneously optimized in [74]. In [23], [25], [66],
the objectives adopted are: Min-Max Cut and the silhouette
index [73]. In [17], the aim is to obtain compact and well-
separated clusters and for that sake, the objectives to be
minimized are: the validity indices overall deviationDev(C)

and the Edge indexEdge(C). In [19], [24], [75], the objective
functions are chosen to be the normalizedJm index (J )
and the fuzzy cluster separationS which are simultaneously
minimized. It is to be noted that instead of cluster centroids,
cluster modes have been used for computing the validity index
values in [24], [75], since these algorithms have been applied
on categorical data. In [76], out of several combinations,DB
[77] and Dunn [78] indices have also been chosen as the
two objectives to be simultaneously optimized. The indices
Jm and cluster separation have been used in [79]. There are
also a few multi-objective clustering techniques which use
more than two objective functions. For example, in [74], [80],
three cluster validity measures, viz.,XB index,I index and
Jm index have been simultaneously optimized. In [20], three
objective functions have been simultaneously optimized as
well: average cluster variance, average between group sum
of squares (ABGSS) and cluster connectedness. In [81], four
objective functions are considered: overall cluster deviation,
cluster separation, cluster dominance and the diameter of
the biggest cluster. It is known that MOEAs usually do not
perform very well when the number of objective functions
increases to four or more [82]. However, in [81], the authors
have not addressed this issue. It should be noted that the choice
of a suitable set of objective functions is not a trivial problem,
and the clustering output may heavily depend on this choice
[83]. In view of this, recently, an interactive multi-objective
clustering algorithm was proposed in [84]. In this approach
the algorithm interacts with a human decision maker to learn
the suitable set of objective functions along with evolvingthe
clustering solution. However, a detailed study that compares
the effects of different objective functions is still missing.

D. Evolutionary Operators

Evolutionary operators, such as crossover and mutation,
depend on the adopted chromosome representation scheme.
Many of the algorithms employing prototype-based represen-
tation have adopted single-point crossover. Examples of such
multi-objective clustering algorithms include MOGA [12],
MOGA-SVM [15], [16] and MOVGA [19]. In [9], two-point
crossover has been used. Ripon et al. have employed jumping
gene crossover in their multi-objective clustering algorithms
[61], [18]. In [14], the authors have used a centroid-pool based
crossover approach where the centroids encoded in the parent
chromosomes are first combined to build a centroid-pool.
Thereafter, an offspring solution is generated by randomly
selecting a number of chromosomes from the centroid pool.
The algorithms that employ a point-based encoding policy
have used uniform crossover in most cases [7], [10], [13],
[23], [25], [26]. Following the crossover operators, a variety of
mutation operators are also employed. Mutation refers to small
changes in the chromosomes and is used for maintaining the
diversity of the population. In prototype-based encoding,the
predominant mutation operator found is centroid perturbation
[9], [12], [14], [15], [16], [19], [61]. The basic idea of this mu-
tation operator is to shift a randomly selected centroid slightly
from its current position. For medoid-based encoding and
mode-based encoding, the mutation operators random medoid



4

replacement [22] and mode perturbation [24] have been used,
respectively. In [20], a mutation operator is employed in
which either random cluster centers of the chromosomes are
perturbed or cluster centers are added/deleted to/from the
chromosome with equal probability. For the cluster label-based
encoding, the common approach for mutation is to replace the
class label of the selected point by a random class label. This
mutation operator has been adopted in [66], [85]. To tackle
the problem of dealing with a large chromosome length, a
special mutation operator, called directed neighborhood-biased
mutation was proposed in [10]. In this mutation, each point
i is linked to itsL nearest neighbors{nni1, nni2, . . . , nniL},
and thus the effective search space is reduced toLn. Thus,
changing the class label of pointi induces the change to all its
L nearest neighbors. The mutation probability is also decided
adaptively. The same mutation operator has been used in many
other algorithms [13], [17], [25], [26].

E. Obtaining a Final Solution

MOEAs-based clustering algorithms also differ in the
method for obtaining the final solution from the non-
dominated set of solutions yielded by the MOEA. These
methods can be broadly classified into three categories, viz.,
independent objective-based approach, knee-based approach
and cluster ensemble-based approach.

In the independent objective-based approach, an indepen-
dent cluster validity index, other than those optimized during
the clustering process, is used to select a single solution
from the non-dominated front. Many of the currently available
multi-objective clustering techniques have adopted this ap-
proach because of its simplicity. In [12], [64], the authorsused
the Jm and XB indices as the objective functions, whereas
the final solution was selected using indexI. In a similar
approach [19], fuzzy cluster compactness and separation were
adopted as the two objectives whereas theI index was used
as the selection criterion. In [86], theXB andI indices have
been used as the objective functions whereas the silhouette
index was used for selecting the final solution. In [71], the two
objective functions areTWCV and the number of clusters,
whereas the authors used theDB index and theSD index
[87], [88] for selecting the final solution from the Pareto front.
In [8], the two objective functions used areTWCV and the
number of clusters, and various other validity indices, such
as the Dunn index, theDB index and the silhouette index
are adopted for selecting the final solution. The authors also
presented a comparative study of their results. Demir et al., in
their GraSC algorithm [66], optimized the silhouette indexand
the min-max cut index, and used theDB index for selecting
the final solution. In [20], the authors optimized three objective
functions, viz., average cluster variance, average between
group sum of squares (ABGSS) and cluster connectedness,
and they used the Rand index (R) [5] for selecting the final
solution from the Pareto front. Note that computation ofR
requires knowing about the true clustering of the dataset.
Hence, this method is not applicable when the true clustering
information is unknown. Although this approach for selecting
the final solution is simple to implement and has low time

requirement, the final result may be biased depending on
the validity index chosen for selecting the final solution.
Moreover, one may criticize this approach by questioning why
this independent validity measure is not optimized directly.

The second approach is the knee-based approach, where
the objective is to select the knee solution from the non-
dominated front. A knee solution refers to an interesting
solution for which the change of one objective value induces
the maximum change in the other one. Handl and Knowles
have used this knee-based approach in their MOCK algorithm
[10], [21], [89]. This approach is motivated by the GAP
statistic [90]. This is done by comparing the generated Pareto
front with control fronts generated by applying MOCK on
random control data. The solution that corresponds to the
maximum distance between the generated Pareto front and the
control fronts is selected as the final solution. However, there is
no well-formed motivation behind choosing a knee solution as
the final solution. It is not well explained why the user should
be most interested on this solution. Another major problem is
that it is a time consuming approach, because the algorithm
has to be executed multiple times with random datasets to
generate the control front. Therefore, a few variants of these
technique have been proposed in [91], [92], [17] primarily for
improving its scalability for larger datasets.

The third approach is the cluster ensemble-based approach
where it is assumed that all the non-dominated solutions
contain some information about the clustering structure of
the dataset. Therefore, the motivation is to combine this
information to obtain a single clustering solution. In [80],
some well-known cluster ensemble techniques, such as the
Cluster-based Similarity Partitioning Algorithm (CSPA),the
HyperGraph Partitioning Algorithm (HGPA) and the Meta-
CLustering Algorithm (MCLA) [93] have been used to com-
bine the non-dominated front solutions to obtain the final
clustering and their performance is compared by the authors.
In a similar approach [13], MCLA has been used for en-
sembling purposes. In [15], [16], [24], Mukhopadhyay et al.
proposed a novel approach for combining the nondominated
solutions. Here, the points that are put in the same class by
most of the non-dominated solutions are first identified. These
points are considered to be highly confident and then, some
classifier such as SVM ork-nn is trained using these points.
Thereafter, the remaining points are classified by the trained
classifier. This way, the class labels for all the points are
generated. It has been shown that ensemble-based techniques
work better than the independent objective-based techniques
[12] for both satellite image segmentation [15] and microarray
data clustering [16]. Although these methods are promising
and motivating, the ensemble method takes reasonable time
and the final solution depends on the choice of the ensemble
technique. Also, sometimes it is necessary to map one non-
dominated solution to another [24] to ensure that cluster label
i means the same cluster in all the solutions. Therefore, the
final solution also depends on the mapping technique utilized.

F. Relative Comparison and Applications

We have summarized the processes of well-known MOEAs-
based clustering algorithms in Table I. A total of nineteen
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different algorithms are considered here. The algorithms are
categorized based on the data types where those have been
applied, i.e., continuous data, categorical data and graphdata.
In each category, we have reported the underlying MOEAs, the
encoding strategies, the objective functions, the evolutionary
operators and the final solution selection methods used by
the different clustering methods. The algorithms have been
arranged in ascending order of their time of publication
to illustrate how they have evolved over time. Out of the
nineteen algorithms, ten of them used different versions of
prototype-based encoding and the rest used point-based en-
coding strategies. NSGA-II has been found again to be the
most commonly used approach. However, other MOEAs have
also been adopted, including PESA-II, NPGA and SPEA2.

MOEAs-based clustering algorithms have found several
applications in real-life domains such as image segmentation,
bioinformatics, web mining and social networks. Usually, the
problem of image segmentation can be posed as the problem
of clustering the pixels of the images in the intensity space. If
the image has multiple bands, then they serve as the different
attributes of the dataset. In [17], a few benchmark color
images have been segmented. Maulik et. al. [12], [15], [64]
have applied multi-objective fuzzy clustering for segmentation
of remote sensing imagery of multi-spectral satellite images.
Besides this, the application of multi-objective evolutionary
clustering can also be found in the segmentation of MRI
medical imagery [19], [80]. Multi-objective clustering has
also been applied in texture image segmentation [13]. An-
other important application area of multi-objective evolution-
ary clustering algorithms is bioinformatics, where microarray
gene expression data sets are clustered to group co-expressed
genes. There have been various studies in this area [16], [65],
[86], [94], [95]. Multi-objective clustering has also found its
application in finding gene markers [96], [97] from expression
data. Recently, multi-objective clustering has also been used
in clustering protein-protein interaction networks [98].Multi-
objective clustering algorithms have also been applied in web
data mining. For example, in [23], a web-recommender system
has been built using multi-objective clustering by extracting
web usage patterns. An extension of this work is presented
in [66] where different multi-objective clustering approaches
have been compared for determining a suitable approach for
clustering web user sessions, which consist of sequences of
web pages visited by the users. In recent times, clustering
social networks has gained popularity and a number of recent
studies have applied multi-objective clustering techniques to
detect strong communities within social networks [25], [26].

III. MOEA S FORASSOCIATIONRULE M INING

An association rule can be considered as a general case of
a classification rule. The consequent of a classification rule
consists of the class attribute only, whereas, in association
rules, the consequent may consist of a set attributes. Therefore,
the number of association rules for a given dataset is much
greater than that of classification rules. Most of the classical
association rule mining (ARM) algorithms, such as theApriori
algorithm [4], first generate all frequent itemsets (i.e., itemsets

having a support greater than the minimum support threshold)
and thereafter, from the frequent itemsets, the association rules
that surpass the minimum confidence threshold. Generating all
the frequent itemsets is itself a time consuming task when the
number of items is large, because it needs at least a numberk
of scans of the dataset fork items. Therefore, it would be bene-
ficial if one could generate the association rules in a directway,
skipping the frequent itemset generation step. For this purpose,
evolutionary algorithms have been used widely for generating
association rules by maximizing the support/confidence of the
rules [99]. However, the goodness of an association rule cannot
only be represented by its support or confidence. There are
many other metrics available to measure the goodness of an
association rule [100]. Therefore, the problem of ARM can
be posed as a multi-objective optimization problem where the
goal is to find association rules while optimizing several such
goodness criteria simultaneously. In the past decade, several
MOEAs have been proposed for ARM. These techniques can
broadly be classified into three categories, namely categor-
ical association rules, numeric association rules and fuzzy
association rules. Here, we discuss several multi-objective
evolutionary ARM algorithms from these three categories.

A. Categorical Association Rules

Categorical association rules are generated from a binary or
categorical dataset. In a binary dataset, a rule likeABC ⇒
DE can be interpreted as follows: if itemsA, B, andC are
purchased, then itemsD and E are also purchased. Thus,
these rules do not say anything about the number of items
that are to be purchased; they simply imply the presence
or absence of items. For categorical data, if some item has
multiple categorical values, then each attribute-value pair is
treated as a separate item. This way the dataset is converted
into a binary dataset.

1) Underlying MOEAs: Different standard and non-
standard MOEAs have been used in various works on cate-
gorical ARM. We call a MOEA as non-standard if it does
not follow any of the standard MOEA approaches directly,
but uses instead some combination of operators. In [27], a
multi-objective genetic algorithm (MOGA) is used. In [28],
the authors used a multi-objective co-evolutionary algorithm
for this purpose. In [29] and [31], some non-standard MOEAs
are used for the rule mining problem. NSGA-II has been used
in [30] for ARM.

2) Chromosome Representation:There are mainly two
chromosome representation techniques for categorical ARM,
similar to the ones available for classification rule mining
[1]. In the first approach (Pittsburgh approach), a set of
possible association rules are encoded in each chromosome.
This approach is more suitable for classification rule mining,
where the objective is to identify agood set of rules. How-
ever, in ARM, the objective is to find aset of good rules.
Therefore, for this case, the Michigan approach, in which
each chromosome represents exactly one rule, is more suitable
[27]. Most of the MOEAs-based categorical ARM techniques
use this chromosome representation. In an early work [27],
the authors adopted the Michigan approach as follows: each
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TABLE I
COMPARISON OF DIFFERENTMOEAS FOR CLUSTERING

Algorithm Underlying Data Encoding Objective functions Evolutionary operators Final solution from
MOO tool Type non-dominated front

Handl and Knowles [7], PESA-II Continuous Integer Dev(C), Conn(C) No crossover, Independent objective-based
2004 (VIENNA) (Label-based) neighborhood-biased mutation (F-measure)
Liu et. al. [8], NPGA Continuous Integer TWCV , One-point crossover, Independent objective-based
2005 (MOKGA) (Label-based) number of clustersK probability-based replacement (Dunn, DB, Silhouette,

mutation C, SD, S Dbw indices)
Chen and Wang [9], NSGA-II Continuous Real-valued Dev(C), Conn(C) Two-point crossover, Independent objective-based
2005 (MOEA(Dynamic)) (Centroid-based) centroid perturbation mutation (F-measure)

(Gaussian mutation)
Handl and Knowles [10], PESA-II Continuous Integer Dev(C), Conn(C) Uniform crossover, Knee-based
2007 (MOCK) (Adjacency neighborhood-biased mutation (with null model)

graph-based)
Ripon et. al. [11], NSGA-II Continuous Real-valued EntropyH, Jumping gene crossover, Independent objective-based
2006 (VRJGGA) (Centroid-based) separationSep(C) centroid perturbation mutation (Deviation andDunn index)

(polynomial mutation)
Bandyopadhyay et. al. [12], NSGA-II Continuous Real-valued Jm, XB One-point crossover, Independent objective-based
2007 (MOGA) (Centroid-based) centroid perturbation mutation (I index)

(uniform distribution)
Qian et. al. [13], PESA-II Continuous Integer Dev(C), Conn(C) Uniform crossover, Ensemble-based
2008 (MECEA) (Adjacency neighborhood-biased mutation (Graph-based - MCLA)

graph-based)
Won et. al. [14], NSGA-II Continuous Real-valued TWCV , Centroid pool crossover, None
2008 (MOES(Hybrid)) (Centroid-based) number of clustersK centroid perturbation mutation

(variable-length) (log normal distribution)
Mukhopadhyay et. al. [15], [16], NSGA-II Continuous Real-valued Jm, XB One-point crossover, Ensemble-based
2009 (MOGA-SVM) (Centroid-based) centroid perturbation mutation (Majority vote and

(uniform distribution) SVM classifier)
Shirakawa and Nagao [17] SPEA2 Continuous Integer Dev(C), Edge(C) Uniform crossover, Knee-based
2009 (MOCK variant) (Adjacency neighborhood-biased mutation (without null model)

graph-based)
Ripon and Siddique [18], NSGA-II Continuous Binary EntropyH, Jumping gene crossover, Independent objective-based
2009 (EMCOC) (Medoid-based) separationSep(C) no mutation (Entropy and Seprataion)
Mukhopadhyay and Maulik [19], NSGA-II Continuous Real-valued NormalizedJm One-point crossover Independent objective-based
2011 (MOVGA) (Centroid-based) fuzzy separationS centroid perturbation mutation (I index)

(variable-length) (uniform distribution)
Kirkland et. al. [20], NSGA-II Continuous Real-valued Average deviation, Exchange corresponding Independent objective-based
2011 (MOCA) (Centroid-based) ABGSS, Conn(C) prototypes crossover, (Rand index)

(variable-length) centroid pool mutation
(add/delete/modify centroid)

Handl and Knowles [21], PESA-II Categorical/ Integer Dev(C), Conn(C) Uniform crossover, Knee-based
2005 (MOCK-am) distance matrix (Adjacency neighborhood-biased mutation (with null model)

graph-based)
Mukhopadhyay and Maulik [22], NSGA-II Categorical Integer Dev(C), silhouette One-point crossover, Independent objective-based
2007, MOGA(medoid) (Medoid-based) medoid replacement (Minkowski score)

(point index)
Demir et. al. [23], SPEA2 Categorical/ Integer Min-Max cut, Modified uniform crossover, Non-domination status
2007 (GraSC) distance matrix (Label-based) silhouette random replacement mutation
Mukhopadhyay et. al. [24], NSGA-II Categorical Categorical NormalizedJm One-point crossover, Ensemble-based
2009 (MOGA(mode)) (Mode-based) fuzzy separationS mode replacement mutation (Majority vote and

(categorical value replacement) k-nn classifier)

Kim et. al. [25], NSGA-II Graph Integer EntropyH, Uniform crossover, Non-domination status
2010 (AI-NSGA-II) (Adjacency separationSep(C) neighborhood-biased mutation

graph-based)
Folino and Pizzuti [26], NSGA-II Graph Integer CS(C), NMI Uniform crossover, Independent objective-based
2010 (DYN-MOGA) (Adjacency neighborhood-biased mutation (Modularity)

graph-based)

chromosome had length2k, wherek was the number of items.
The chromosomes were binary strings where each attribute
was given two bits. If these two bits are 00 or 11, then the
attribute appears in the antecedent or consequent parts of the
rule, respectively; otherwise, the attribute is absent from the
rule. In a similar approach [28], the presence of an attribute in
the antecedent and consequent part are represented by bits 10
and 01, whereas other bit combinations represent the absence
of the attribute from the rule.

The above encoding schemes [27], [28] can only be adopted
for binary datasets, i.e., when an item is either present or
absent in a transaction. If someone wants to use this encoding
for more general categorical data, where an item may be
present in a transaction with certain value (a categorical state),
the dataset will first need to be transformed into a binary
one by considering each attribute-value pair as an item. In

view of this, an alternative encoding strategy is presentedin
[30], which can be used for a categorical dataset directly.
Here, each attribute has two parts. The first part represents
the position of the attribute in the rule, and the second part
represents the categorical value it takes. The first part contains
two bits and the attribute appears in the antecedent and the
consequent of the rule if the bits are 10 and 11, respectively;
otherwise, it is absent from the rule. The second part represents
categorical values taken by attributes in binary form. However,
the authors did not explain how a binary value in the second
part represents a categorical state if the number of states for
an attribute is not an exact power of 2.

The main disadvantage of using a binary encoding scheme
is that it gives rise to a large chromosome length when the
number of attributes is large, since at least two bits are needed
for each attribute. An integer encoding may come handy in this
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respect. Such an integer encoding scheme has been proposed
in ARMMGA (Association Rule Mining using Multi-objective
Genetic Algorithm) [31], where the chromosomes encode the
index of the attributes. A chromosome encoding ak-rule,
k being the total number of items in the antecedent and
the consequent, hask + 1 genes. The first gene position
indicates the separating position of the chromosome where
the antecedent and the consequent attributes are separated. For
example, ifAi represents theith item, then the chromosome
{3 | 2 5 4 1 3} represents the ruleA2A5A4 ⇒ A1A3.
This representation significantly reduces the length of the
chromosome, but not effectively the search space, because now
for each position, a large number of alternative indices areto
be searched. Moreover, this representation scheme gives rise
to a variable chromosome length, thus requiring a specialized
crossover operator. Also, there remains a possibility of finding
duplicate indices in a chromosome after crossover/mutation,
which must be taken care of during the evolutionary process.

3) Objective Functions:Although support and confidence
are two popular objectives which are to be maximized, there
are several other metrics to measure the interestingness of
association rules. These metrics, which have been used by
different algorithms for optimization in a multi-objective
framework, include coverage, lift, comprehensibility, cosine,
prevalence, recall, Laplace, conviction, surprise, Jaccard, J-
measure, etc. [100]. In [27], the rule mining problem has
been modeled as a three-objective optimization problem where
confidence, comprehensibility, and interestingness have been
optimized simultaneously. They defined the comprehensibility
of a rule aslog(1 + |C|)/log(1 + |A ∪ C|), where |C| and
|A∪C| denote the number of attributes in the consequent part
and total rule, respectively. They considered that the lower
value of comprehensibility, i.e., less number of attributes in
the consequent of the rule, leads to better understandability
of the rule. The interestingness measure, on the other hand,is
defined as a product of three probabilities, viz., the probability
of generating the rule given the antecedent (ratio of the support
of the rule to the support of the antecedent), the probability
of generating the rule given the consequent (ratio of the
support of the rule to the support of the consequent), and
the probability of generating the rule given both antecedent
and consequent (ratio of the support of the rule to the total
number of transactions). A rule becomes more interesting ifit
has a high interestingness value. In [28], two objective func-
tions, statistical correlation and comprehensibility, have been
simultaneously optimized in a co-evolutionary framework.The
statistical correlation measure indicates a better association
of the rule. In [29], five objective functions, viz., support,
confidence, J-measure, interest and surprise [100] have been
simultaneously optimized. They found five different groups
of correlated measures. To make the objective functions con-
tradictory and uncorrelated, they selected these five measures
from five different groups. In [30], six different measures
(support, confidence, interest, comprehensibility, cosine and
attribute frequency) have been considered. Three of these
measures have been taken at a time and optimized simulta-
neously. Measures such as support, confidence, interest and
comprehensibility tend to be better if the rule-length is smaller.

To counter this bias, they also maximized attribute frequency,
which is the ratio of the rule-length to the total number of
items. The reason behind taking three objective functions at
a time is that NSGA-II, the underlying MOEA, is known to
perform well when the number of objective functions is at
most three. Secondly, due to correlation of the measures, it
is unnecessary to use correlated measures for optimization. In
[31], the classical measures (support and confidence of the
rules) are simultaneously optimized. Thus, it is apparent from
the above discussion that different sets of rule-interestingness
measures have been chosen by various authors as their objec-
tive functions. However, a systematic comparison among the
chosen objective functions is still missing in the literature.

4) Evolutionary Operators: When binary encoding has
been adopted, standard crossover and mutation operators have
been used. For example, in [27], multi-point crossover and
bit-flip mutation have been used. In [30] bit-flip mutation
has been adopted, however, the authors did not specifically
mention which crossover operator is used. In [28], the authors
proposed Pareto neighborhood crossover, a combination op-
erator and an annexing operator. However, the way in which
these operators work is not explained. There is no mention
about the motivation for defining these operators, as well
as no experimental results have been provided showing their
improved effectiveness with respect to the standard operators.

In the encoding strategies, where along with the attributes,
their values are also encoded, other types of evolutionary
operators are needed. In [29], although the authors did not
explain the encoding strategy explicitly, from the description
of the evolutionary operators, it appears that they used an
approach in which the categorical values of the attributes
participating in the rule are encoded. Here, the authors used
value exchange and insertion crossover operators. If two par-
ents have some common attributes in the antecedent part, then
a value exchange crossover is performed by exchanging the
categorical values of one of the common attributes. When the
parents do not have any common attribute, then one random
attribute selected from one parent is inserted into the other
with a probability that is inversely proportional to the length
of the later chromosome. Four mutation operators were applied
with equal probabilities. A value mutation randomly replaces
a chosen categorical value with another random value from
the same domain. An attribute mutation randomly replaces
an attribute with another one. An insertion mutation inserts
a new attribute-value pair, and a deletion mutation deletesa
randomly chosen attribute-value pair. In [31], where integer
encoding of the attributes is used, an order-1 crossover strategy
is adopted. In this strategy, first, one segment is chosen equally
from two chromosomes and, respectively, are copied from the
first and second parents to the first and second offspring. Next,
starting from the right side of the segment, the values of the
genes that do not exist in the selected segment of the first
parent, are copied to the first offspring. The same procedure
is repeated for the second offspring as well. The mutation
operator replaces a chosen item from the chromosome with a
random item not present in the chromosome.

5) Obtaining a Final Solution:All the works for categorical
rule mining using MOEAs that have been discussed in this
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paper, use a Michigan type of encoding, where each chromo-
some encodes one association rule. Hence, the final generation
produces a set of non-dominated solutions each of which are
given to the user as the association rules generated from the
input dataset. Thus, in this case, there is no specific need of
selecting a single solution from the non-dominated front.

B. Numeric Association Rules

For datasets having continuous attribute domains, the ARM
algorithms designed for categorical attributes do not work
well. This is because such algorithms need categorization of
the continuous attributes. Hence the results of the ARM algo-
rithms depend a lot on the categorization technique adopted.
To overcome this limitation, many numeric/quantitative ARM
algorithms have been proposed and some of them adopted a
multi-objective optimization approach.

A quantitative association rule is represented as [32], [33]:

(l1 ≤ A1 ≤ h1) ∧ (l2 ≤ A2 ≤ h2) ⇒ (l3 ≤ A3 ≤ h3).

Here Ai represents theith attribute.li and hi represent the
lower and upper bound of the attribute values. Thus,[li, hi]
defines an interval of values for the attributeAi. Here, we
discuss two different works on quantitative ARM.

1) Underlying MOEAs: In this section, we review two
multi-objective numerical/quantitative rule mining algorithms.
The first is a multi-objective differential evolution based
numeric association rule mining algorithm (MODENAR) [32].
In this case, a multi-objective differential evolution (MODE)
algorithm is used as the underlying optimization framework.
In another work, an NSGA-II-based quantitative association
rule mining algorithm (NSGA-II-QAR) is proposed [33].

2) Chromosome Representation:The chromosomes rep-
resenting numeric or quantitative association rules need to
encode the lower and upper bounds of the intervals of the
attributes participating in a rule. In [32], where the MOD-
ENAR algorithm has been proposed, the following encoding
technique has been adopted for the chromosomes. They used
chromosomes where each attribute has three components. The
first component indicates whether the attribute is present or
absent in the rule, and if present, in which part (antecedentor
consequent) in the rule it is. The second and third components
indicate the lower and upper bounds of the ranges of the
attribute. The first component can have integer values 0, 1 or2,
which indicate the presence of the attribute in the antecedent
of the rule, the presence of the attribute in the consequent
of the rule, and the absence of the attribute from the rule,
respectively. The second and third components can take real
values from the corresponding attribute ranges. It is to be
noted that as MODENAR uses differential evolution as an
optimizer and works on real-valued chromosomes, the authors
used a round-off operator to handle the integer part of the
chromosome. A similar encoding scheme is adopted in NSGA-
II-QAR. The only difference is that in this case, the first part of
the chromosome, instead of using the values 0, 1, 2, adopts the
values 0, 1 and -1, respectively, to denote the same meaning.In
both cases, the algorithms used a Michigan encoding strategy,
i.e., each chromosome encodes one rule.

3) Objective Functions:MODENAR optimizes four crite-
ria of the rules [32]: support, confidence, comprehensibility
and amplitude of the intervals that make up the itemset and
the rule. Comprehensibility is used to bias the search process
toward shorter rules, under the assumption that shorter rules
provide more non-redundant information. They also proposed
that the amplitude of the intervals must be smaller for interest-
ing rules, but the rationale for this is not explained. In NSGA-
II-QAR [33], three objective functions are simultaneouslyopti-
mized: lift, comprehensibility and performance. Performance
is defined by the product of confidence and support. Lift is
defined as the ratio of support of the rule to the product of
the supports of the antecedent and the consequent of the rule
[101]. A high value for the lift measure indicates that the
rule is interesting, since its support is high with respect to
the supports of its antecedent and its confidence. The compre-
hensibility is defined simply as the reciprocal of the number
of attributes in the rule. In [33], an experimental comparison
between NSGA-II-QAR and MODENAR is provided.

4) Evolutionary Operators: MODENAR [32] used the
standard version of the crossover and mutation opera-
tors adopted by the version of differential evolution called
DE/rand/1. Additionally, a rounding operator is used to round-
off the first part of the attribute which requires an integer (0,
1, 2) for computing the objective function values. In NSGA-
II-QAR [33], a multi-point crossover is utilized. The two parts
of the chromosome undergoes two different mutations. In the
first part, where the chromosome can have a value of -1, 0 or
1, a random value is selected from the set{-1, 0, 1} and it
replaces the existing value. The other part of the chromosome
encodes the lower and upper bound of the chromosome. A
mutation in applied to this part by increasing or decreasing
these values randomly. In both of these studies [32], [33],
during mutation/crossover, it may happen that the lower bound
becomes larger than the upper bound, or they go outside the
bounds. For this, some repairing operators are also adoptedto
make the chromosome a valid one.

5) Obtaining a Final Solution: Both MODENAR and
NSGA-II-QAR used a Michigan approach of rule mining by
encoding one rule in one chromosome. Thus, the final non-
dominated set gives a set of numeric rules. Thus, there is no
need for any particular solution from the final non-dominated
set. All the solutions will serve as the final selected rule set.

C. Fuzzy Association Rules

One of the major problems of mining numeric association
rules is that these algorithms deal with sharp boundaries
between consecutive intervals. Thus, they cannot represent
smooth changes from one interval to another, which can
be easily handled by fuzzy association rules. A number of
MOEA-based fuzzy ARM techniques have been developed in
the past decade. Here, we describe several of these algorithms
and discuss different approaches that incorporate them.

The general form of a fuzzy association rule is as [34]:

If X = {x1, x2, . . . , xp} is A = {f1, f2, . . . , fp}

Then Y = {y1, y2, . . . , yq} is B = {g1, g2, . . . , gq}.
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HereX andY represent two sets of attributes andX∩Y = φ.
A and B represent the fuzzy sets (linguistic values) of the
corresponding attributes inX andY , respectively. Therefore,
if a rule is encoded in a chromosome, both the attributes and
their linguistic values should be encoded in it. A number of
studies have been done on the application of MOEAs for fuzzy
association rule mining. Here we review some of them.

1) Underlying MOEAs:Different MOEAs have been em-
ployed in various works on fuzzy ARM. In [34], [35], [36],
Kaya et al. used a variant of SPEA for fuzzy rule mining. In
[37], a multi-objective GA (MOGA) is used for this purpose.
In another work on fuzzy association rule mining, NSGA-II
has been employed [38]. However, in none of these studies,
relative comparison among different MOEAs for fuzzy rule
mining has been addressed.

2) Chromosome Representation:There are two categories
of chromosome representations for fuzzy ARM. In the first
approach, a chromosome represents a set of fuzzy clusters
corresponding to each attribute. The objective is to find a
suitable set of fuzzy clusters that partition the range of values
in each attribute domain. This approach is adopted in a series
of works done by Kaya et al. in [34], [35], [36]. In these works,
each chromosome represents the base values of the variable
number of membership functions representing the fuzzy sets
for each quantitative attribute. Standard triangular membership
functions are used to represent the fuzzy sets. Real-valued
representation of the chromosomes is used for this purpose.
Here a chromosome does not represent association rules. It
represents a suitable fuzzy clustering of the attribute domains.
The evolved fuzzy membership functions are then used as
the linguistic values of the corresponding attributes. Fuzzy
association rules are mined using standard algorithms based on
minimum support and minimum confidence criteria. A similar
encoding approach is adopted in [37].

The second approach directly encodes fuzzy association
rules in the chromosomes. This is a kind of Michigan approach
where each chromosome encodes a possible rule. In [38], such
an encoding is adopted to mine temporal fuzzy association
rules. Here, the authors used a mixed representation of chro-
mosomes combining integer and real values. The chromosome
encodes the lower and upper bounds of the temporal interval
in the rules as integers. The indices of the items participating
in the rule are also encoded as integers. Finally, the real-
valued parameters of the triangular membership functions
corresponding to each item are encoded in the chromosome.
Thus, this representation induces variable-length chromosomes
needing special evolutionary operators.

3) Objective Functions:In the works of Kaya et al. [34],
[35], [36], the authors optimize two criteria, viz., numberof
large itemsets and time spent to obtain the large itemsets.
Thus, here the objective is to evolve a possible fuzzy clus-
tering of the numeric attributes that maximizes the number of
large itemsets while minimizing the time required to obtain
all large itemsets given the clustering. After optimizing the
clustering, the authors then used the membership functionsas
the linguistic values for the fuzzy association rules extracted
based on minimum support and minimum confidence criteria.

In [37], where a similar encoding strategy is adopted as

in [34], two objective functions are optimized simultaneously.
The first objective function is stability of the encoded mem-
bership functions, which has two components, viz., overlap
factor and coverage factor. The stability is optimized to avoid
generation of too redundant and too separated fuzzy sets foran
item. The second objective is to maximize the total number of
large 1-itemsets for given minimum support values. Although
this work is a consequence of the works of Kaya et al.
with modifications in the objective functions and evolutionary
operators (described later), the authors did not compare their
results with those of Kaya et al. So, it is difficult to judge any
improvement of the performance over the previous approaches.

In [38], the authors used a direct approach to temporal fuzzy
association rule mining by adopting the Michigan form of
chromosomes. Thus, here the objective functions are related to
the optimization of the encoded rules. In this work, four objec-
tive functions, namely temporal support, temporal confidence,
fuzzy support and membership function widths, are optimized.
Whereas the first three objective functions are obvious, thelast
objective function is used to prevent a membership function
from covering the whole range of attribute values. Without
this objective function, the solutions could evolve to cover
the complete range of attribute values, since this gives higher
support values as it includes more number of items.

4) Evolutionary Operators: In the works of Kaya et
al. [34], [35], the authors have used standard multi-point
crossover operations. In [36], the authors used arithmetic
crossover. Also, they employed standard real-value mutation.
In [37], the authors used Max-min arithmetical crossover and
one-point mutation. This crossover operator generates four
offspring at a time out of which the two best offspring are
chosen. However, the authors did not describe the crossover
process in detail, and did not discuss its advantage over a
standard crossover operator. The mutation operator is usedto
slightly change the center of the fuzzy set being mutated. It
is to be noted that when mutation takes place at the center
of a fuzzy membership function, it may disrupt the order
of the resulting fuzzy membership functions. Hence, these
fuzzy membership functions need rearrangement according to
their center values after the mutation. In [38], for a Michigan
type of encoding, a modified uniform crossover operator is
adopted. For mutating the genes representing the lower and
upper bounds of the time interval, the values are generated
within the endpoint range (epr) where the midpoint is the
value of the current gene (g), such that the mutated value is a
member of the set{−epr/2, . . . , g, . . . , epr/2}. This is done
to reduce the effect of random sampling of the dataset.

5) Obtaining a Final Solution:As in [34], [35], [36], [37],
a chromosome encodes a possible fuzzy clustering of the
attribute values, it is necessary to select a suitable solution
from the final non-dominated set, based on which of the
final association rules are extracted. However, in [34], [35],
[37], this issue has been overlooked. In [36], the authors
presented an approach based on the lower bound of the
objective function values to identify interesting solutions. The
authors first determined a lower bound for an objective such
that the values under the located lower bound are infeasible
solutions for us. The lower bounds are the parameters that
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are varied by the optimizer to obtain multiple non-dominated
sets of solutions. Subsequently, the solution, which maximizes
the other objective in feasible space is chosen. However,
as the author mentioned, the lower bound must be chosen
carefully and it is not a trivial task. In [38], the authors used a
Michigan type of encoding of temporal fuzzy association rules.
Therefore, all the rules encoded in the final non-dominated set
are considered as extracted rules. There is no specific need of
choosing any particular solution from the non-dominated set.

D. Relative Comparison and Applications

In Table II, we provide a comparative overview of different
approaches for MOEA-based association rule mining. The
approaches are categorized in three types as discussed, viz.,
categorical rule mining, numeric rule mining and fuzzy rule
mining. Different methods are compared with respect to the
underlying MOO tool, encoding strategy, objective functions,
evolutionary operators and method for obtaining the final
solution from the non-dominated set. It is evident from the
table that most of the methods have used a Michigan encoding
and thus all the non-dominated solutions are treated as final
solutions without needing a particular solution from the set.
Although a number of different methods have been discussed
here, very few comparative studies of these methods are
available in the literature. Only in [33], two numeric rule
mining approaches using a MOEA, namely MODENAR and
NSGA-II-QAR, have been compared in terms of different
rule-interestingness metrics. However, in all the other works,
the authors have concentrated on comparing the performance
of their approaches with respect to existing single-objective
evolutionary and other non-evolutionary methods.

Although MOEA-based ARM algorithms have gained pop-
ularity in recent years, their use in real-life applications is
still fairly limited. The authors have mainly preferred to
demonstrate their methods on some UCI repository datasets.
It would interesting, however, to see applications of these
techniques in domains such as mining gene expression and
other biological data, financial databases and text mining.

IV. MOEA S FOROTHER DATA M INING TASKS

Most of MOEA-based data mining techniques have consid-
ered the four areas (feature selection, classification, clustering
and association rule mining) as discussed before (in Part-
I [1] and this part of the paper). However, besides these,
MOEAs have also been applied for many other data mining
tasks. These tasks include ensemble learning, biclustering/co-
clustering, etc. In this section, we discuss some of the MOEA-
based approaches that have been applied in these areas.

A. MOEAs for Ensemble Learning

Ensemble learning refers to the task of combining the
predictions of individual classifiers in some way to obtain
more robust predictions. The inherent strength of MOEAs to
produce a set of trade-off classifiers in the form of a non-
dominated set has made them popular in designing ensembles
of classifiers. The general idea is to use MOEAs to yield a

set of diverse classifiers encoded in the chromosomes of the
final non-dominated front, and then make the final prediction
by combining the predictions of these individual classifiers
through a majority vote. Integration of diverse classifiers
through ensemble learning may prevent overfitting and may
provide better classification accuracy and improved robustness
compared to the predictions based on a single classifier [102].

The general framework for ensemble classification design
is to produce a diverse set of classifiers by optimizing certain
contradictory criteria. A popular approach in this regard is
to optimize an artificial neural network-based classifier or
MLP with respect to the complexity of the classifier and
its predictive accuracy. The complexity of an MLP refers
to the number of hidden layer units and weights of the
connections. This approach has been adopted in [39], [40],
[41], [42], [43]. In [39], a Pareto-frontier differential evolution
(PDE) algorithm [103] is used to develop the Memetic Pareto
Artificial Neural Network (MPANN) method. In MPANN,
the authors performed a comparison between two multi-
objective formulations to the formation of neuro-ensembles.
In the first formulation, the training set is split into two non-
overlapping stratified subsets. The objectives are to minimize
the training error on each subset. In the second formula-
tion, they add random noise to the training set to form a
second objective. They also compared there algorithm with
a negative correlation learning (NCL) algorithm for training
an ensemble of ANNs using Backpropagation [104]. In [40],
the problem of regularization of neural network classifiersis
addressed and as a bi-product, a neural network ensemble is
generated. They compare the use of NSGA-II and a dynamic
weighted aggregation method in generating the ensemble by
optimizing two objectives, viz., training mean squared error
and number of network connections. A similar approach for
the generation of an ensemble of MLPs is found in [41]
with different objective functions to be optimized. Here the
authors minimized Type-I and Type-II errors simultaneously,
which refer to the number of false positives and number of
false negatives, respectively. The algorithm, called MG-Prop,
is designed based on the single front genetic algorithm (SFGA)
proposed in [105]. The authors showed that this ensemble
works well for class-imbalanced data. In [42], an algorithm
called DIVACE (DIVerse and Accurate Ensemble Learning Al-
gorithm) is proposed. DIVACE uses ideas from NCL [104] and
MPANN [39], and formulates the ensemble learning problem
as a multi-objective problem explicitly within an evolutionary
setup. The aim of the algorithm is to find good a trade-off be-
tween diversity and accuracy to produce an ensemble of neural
network classifiers. The diversity is modeled as a correlation
penalty [104]. The authors showed that DIVACE performs
better than the MPANN algorithm. In a recent work, a Multi-
objective genetic algorithm based Artificial Neural Network
Ensemble (MANNE) method is proposed in [43] for intrusion
detection. The authors optimized neural network classifiers
using NSGA-II with two objective functions, namely detection
rate and false positive rate to generate the ensemble. The
method was compared with a decision tree and its ensembles
using bagging and boosting methods.

Another popular approach for building MOEAs-based clas-
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TABLE II
COMPARISON OF DIFFERENTMOEAS FOR ASSOCIATION RULE MINING

Algorithm Underlying Type Encoding Objective functions Evolutionary operators Final solution from
MOO tool non-dominated front

Ghosh and Nath [27], MOGA Categorical Binary Confidence, comprehensibility, Multi-point crossover, None
2004 (Michigan) interestingness bit-flip mutation
Hu and Yang-LI [28], Pareto-based Categorical Binary Statistical correlation, Pareto neighborhood crossover, None
2007 coevolutionary (Michigan) comprehensibility combination, annexing
Khabzaoui et. al. [29], Non-standard Categorical Not mentioned Support, confidence, J-measure, Value exchange crossover, None
2008 interest, surprise insertion crossover,

value/attribute mutation,
insertion/deletion mutation

Anand et. al. [30], NSGA-II Categorical Binary Combination(3 at a time) of Crossover not mentioned, None
2009 (Michigan) support, confidence, interest, bit-flip mutation

comprehensibility, cosine,
attribute frequency

Qodmanan et. al. [31], Non-standard Categorical Integer Support, confidence Order-1 crossover, None
2011 (ARMMGA) (Michigan) random replacement mutation

Alatas et. al. [32], MODE Numeric Mixed (Integer + Support, confidence, comprehensibility DE/Rand/1 None
2008 (MODENAR) real) (Michigan) amplitude of interval
Martin et. al. [33], NSGA-II Numeric Real-valued Lift, comprehensibility, Multi-point crossover, random None
2011 (NSGA-II-QAR) (Michigan) performance (support× confidence) increase/decrease mutation,

random replacement mutation

Kaya and Alhajj [34], 2003 SPEA variant Fuzzy Real-valued Number of large itemsets, Multi-point crossover, Not mentioned
Kaya and Alhajj [35], 2004 (membership time taken to find all large itemsets standard real-value mutation

functions)
Alhajj and Kaya [36], SPEA variant Fuzzy Real-valued Numberof large itemsets, Multi-point crossover, Lower-bound
2008 (membership time taken to find all large itemsets standard real-value mutation based

functions)
Chen et. al. [37], MOGA Fuzzy Real-valued Number of large 1-itemsets, Max-min arithmetic crossover, None
2008 (membership suitability of membership functions one-point mutation

functions)
Matthews et. al. [38], NSGA-II Fuzzy Mixed (integer + Temporal support, temporal Modified uniform crossover, None
2011 (temporal) real) confidence, fuzzy support, random change mutation

(Michigan) membership function width

sifier ensembles is to encode a feature subset and other
parameters in a chromosome and use some classifier as a wrap-
per to compute the objective functions (usually classification
accuracy and feature subset size). The idea is to evolve a setof
non-dominated classifiers with respect to the trade-off between
accuracy and feature subset size. Each of them works on a
specific subspace of the dataset and can be used to form an
ensemble of classifiers [106], [107], [108]. In [106], Oliveira et
al. used MLP as the wrapper and the classification accuracy
and feature subset size as the two objective functions to be
optimized. In [107], the authors considered both the supervised
and the unsupervised cases. For the supervised case, they have
used MLP as the wrapper and as objective functions the same
defined in [106]. In the unsupervised case, they have used the
K-means clustering algorithm and usedDB index and number
of features as the objective functions. Experimental studies
established performance improvement compared to classical
bagging and boosting techniques. In [108], on the other hand,
three classifiers have been used as wrappers, namely decision
tree, SVM and MLP. Two objective functions used are average
accuracy of these three classifiers and consensus accuracy of
them. The authors demonstrated that the proposed method
outperforms single objective GA-based methods designed with
one of these classifiers as wrapper.

B. MOEAs for Biclustering

A variant of the clustering, called biclustering or co-
clustering [109], aims to capture local structures within a
dataset. A clustering algorithm groups similar objects where
the similarity is computed based on all attributes. On the
contrary, the goal of a biclustering algorithm is to find a group
of objects that are not necessarily similar over all the attributes,

but are similar based on a subset of attributes. Hence, bi-
clustering can be thought of as the simultaneous clustering
of objects and attributes. Biclustering algorithms have several
applications in different real-life domains such as text mining
[110], recommender systems [111] and collaborative filtering
[112]. However, almost all the MOEAs for biclustering are
applied for mining biclusters from microarray gene expression
data [109]. Here, we review some of these algorithms.

As the biclustering problem requires several objectives tobe
optimized such as mean squared residue (MSR) (a coherence
measure) [113], volume, row variance, etc., this problem
can be posed as a multi-objective optimization problem in a
straightforward manner. In recent years, a number of stud-
ies have been done in solving biclustering problems using
MOEAs. In [44], a multi-objective GA-based biclustering
technique is proposed. The authors use a binary string of
length G + C, whereG and C denote the number of genes
and number of conditions/samples/time points, respectively. If
a bit position is ‘1’, then the corresponding gene or condition
is selected in the bicluster and if a bit position is ‘0’, the corre-
sponding gene or condition is not selected in the bicluster.The
algorithm optimizes theMSR and volume of the biclusters
simultaneously, in order to obtain coherent and large biclusters.
The algorithm uses NSGA-II as the underlying multi-objective
optimization tool. Cheng and Church’s biclustering algorithm
[113] has been used as a local search strategy.

In [45], a different encoding policy is adopted. The al-
gorithm is termed as Multi-Objective GA-based Bicluster-
ing (MOGAB). Here, each string has two parts: one for
clustering the genes, and another for clustering the condi-
tions. If M and N denote the maximum number of gene
clusters and the maximum number of condition clusters,
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respectively, then the length of each string isM + N . The
first M positions represent theM cluster centers for the
genes, and the remainingN positions represent theN cluster
centers for the conditions. Thus a string, looks like follows:
{gc1 gc2 . . . gcM cc1 cc2 . . . ccN}, where eachgci,
i = 1 . . .M , represents the index of a gene that acts as a
cluster center of a set of genes, and eachccj , j = 1 . . .N ,
represents the index of a condition that acts as a cluster
center of a set of conditions. A string that encodesM gene
clusters andN condition clusters, represents a set ofM ×N
biclusters, taking each pair of gene and condition clusters.
Each pair< gci, ccj >, i = 1 . . .M, j = 1 . . .N , represents
a bicluster that consists of all genes of the gene cluster
centered at genegci, and all conditions of the condition cluster
centered at conditionccj. During the fitness computation, the
gene and condition clusters encoded in the chromosome are
updated through K-means at each iteration. Two objectives,
viz., MSR(I,J)

δ
and 1

1+V AR(I,J) are optimized simultaneously.
This approach also adopts NSGA-II for optimization. Single-
point crossover and random replacement mutation have been
used as the evolutionary operators. MOGAB also uses NSGA-
II as its underlying optimization tool. In [46], a fuzzy version
of MOGAB is proposed. Fuzzy versions ofMSR and row
variance have been simultaneously optimized.

In [47], the authors proposed the Sequential Multi-Objective
Biclustering (SMOB) algorithm. They adopted binary encod-
ing in this case. Three objective functions, viz., mean squared
residue, volume and row variance were optimized. In [48],
a hybrid multi-objective biclustering algorithm that combines
NSGA-II and a Estimation of Distribution Algorithm (EDA)
[114] for searching biclusters was proposed. The volume and
MSR of the biclusters are simultaneously optimized. In [49],
an NSGA-II based multi-objective biclustering algorithm was
proposed. This approach uses integer encoding. Here, the
integers represent the indices of the rows and the columns of
the dataset. The objectives optimized are the similarity within
the biclusters and the volume of the biclusters.

Although different biclustering approaches are proposed us-
ing MOEAs, there has been no effort to compare them system-
atically. MOEA-based biclustering algorithms have been com-
pared with respect to standard single-objective evolutionary
biclustering approaches as well as with respect to other non-
evolutionary algorithms based on several criteria. However,
comparative studies among different MOEA-based approaches
are practically non-existent. These algorithms differ in their
encoding strategies, objective functions, evolutionary operators
and underlying MOEAs. Therefore, some studies to compare
their performance would be beneficial for the users to select
the most suitable method for their applications.

C. Other MOEAs-based Data Mining Approaches

There are a few additional areas of data mining where
MOEAs have been applied, but they are not well-studied still
now. One of such areas is feature extraction and construction.
Feature extraction or construction refers to the task of creation
of new features from functions of the original features. Feature
selection can be considered as a special case of feature extrac-
tion. In [50], the problem of feature extraction for recognizing

isolated handwritten symbols is posed as a multi-objective
optimization problem, and a multi-objective genetic algorithm
is proposed to solve the problem. The proposed algorithm has
been shown to outperform human experts. However, not much
progress has been noticed in this area, using MOEAs.

Subgroup discovery is another data mining problem where
the aim is to mine fuzzy rules for subgroup discovery. These
fuzzy rules help to represent the knowledge about patterns of
interest which is explanatory and understandable to the expert.
A few MOEAs-based approaches have been proposed for this
purpose over the last few years [51], [52], [53]. The objective
is to optimize different rule-interestingness criteria asin ARM.

MOEAs have also been used for regression. In [54], a
MOEAs-based approach for obtaining linguistic fuzzy rule-
based regression models from imprecise data is proposed.
Here, each chromosome encodes one rule (Michigan ap-
proach), which competes with others in terms of maximum
coverage and fitting. The knowledge base is formed through
cooperation of individuals in the population. In a similar work
[55], the authors proposed a multi-objective genetic fuzzy
system (GFS) to learn the granularities of fuzzy partitions,
for tuning the membership functions (MFs), and for learning
the fuzzy rules for a regression problem. The proposed method
uses dynamic constraints. This enables three-parameter mem-
bership function tuning for improved accuracy and guarantees
the transparency of fuzzy partitions at the same time.

Another application of MOEAs has been found in outlier
detection. In [56], a multi-objective genetic algorithm ispro-
posed for outlier detection. The MOEA in this case is mainly
employed as an effective search method in unsupervised
learning for finding outlying subspaces from training data.
Besides this, MOEAs have also been used in soft subspace
clustering [57], [58]. However, MOEAs have been applied in
these areas only very recently and much more work is still
needed.

V. FUTURE DIRECTIONS

Although MOEAs are being applied in data mining tasks
over the past decade and the literature is already quite rich,
still some important future research issues remain open. Here,
we discuss some relevant and important research topics to
be addressed in the future. First of all, most of the studies
have focused on comparing the proposed MOEA-based data
mining techniques with existing non-evolutionary or tradi-
tional single-objective evolutionary techniques. However, as
discussed before, practically none of the studies have com-
pared the performance of different MOEA-based algorithms
for different data mining tasks in a systematic way. Thus,
for a novice user, it is difficult to judge which algorithm
he/she should use for a particular task in hand. Possible
reasons for unavailability of these studies may be the lack of
publicly available softwares/codes, difficulty in reproducing
the results, use of a variety encoding strategies, objective
functions, evolutionary operators and final solution selection.
Thus, a systematic comparison to guide new users to choose a
suitable method for his/her application would be very valuable
as it is still missing in the specialized literature.
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In the majority of the studies on MOEA-based data mining,
the performance of the algorithms has been reported based on
the quality of the obtained result in terms of some metrics.
However, to address large scale data mining problems using
MOEAs, such as clustering large images or selecting genes
from gene expression data containing several thousands of
genes, along with the quality measure, the efficiency of the
algorithm is also an important concern. Evolutionary algo-
rithms have long been criticized for consuming large amounts
of computational time as compared to other heuristics. More-
over, MOEAs typically require more computational time than
single-objective evolutionary algorithms. Almost none ofthe
MOEAs-based data mining studies reviewed here has consid-
ered to provide a systematic time complexity analysis. There-
fore, it is difficult to compare different MOEAs in terms of
time usage. Computational efficiency of MOEAs used in data
mining is, indeed another promising research area. For exam-
ple, one could incorporate local search strategies in MOEAsto
improve the convergence rate. Many of the MOEAs-based data
mining techniques currently available have already adopted
this strategy, specially in clustering [12] and biclustering [44].
Another possibility is the efficient parallelization of MOEAs
using multiple processors. A few studies in this regard have
been done for ARM [115] and clustering [116], but more
studies are needed to explore other application areas. Another
way to reduce the search time for the MOEAs used in data
mining is to use some appropriate stop criterion for them,
instead of a fixed number of generations (as traditionally
done). Some approaches are currently available for defining
stop criteria for MOEAs (see for example [117]), but none of
them have been adopted in data mining yet.

Most of the data mining problems have many objectives
to be optimized. For example, a rule mining problem has
objectives such as support, confidence, rule length, com-
prehensibility, interestingness, lift, etc., whereas a clustering
algorithm may optimize a number of cluster validity measures
simultaneously. However, few MOEA-based data mining prob-
lems have been posed with more than three objective functions
[81]. Traditional MOEAs such as NSGA-II, SPEA2 and PAES
are known to have difficulties to solve problems with 4 or more
objectives, and other approaches are required to deal with them
(see for example [82]). The use of such approaches in data
mining is, however, still missing in the specialized literature.

Another research direction that deserves attention is inter-
active data mining using MOEAs. In interactive data mining,
during the execution of a data mining algorithm, it interacts
with a human decision maker to learn in a gradual way.
This might be very useful to incorporate such interactions in
MOEA-based data mining algorithms when some expert user
is available for the problem at hand. Such an approach has
been proposed in [84], where the authors have developed an
interactive MOEA-based clustering approach called interactive
multi-objective clustering (IMOC). In IMOC, the algorithm
interacts with a human decision maker during its execution in
order to learn the suitable set of cluster validity indices for the
input dataset. Thus, different sets of validity measures may be
chosen for different datasets. The method has been shown to
perform well in clustering of gene expression data. Similar

interactive MOEAs may be developed for other data mining
tasks such as feature selection, classification and rule mining.

VI. CONCLUSIONS

In this two-part article, we have surveyed several MOEAs
used for four primary data mining tasks namely feature se-
lection and classification (in Part-I [1]), and clustering and
association rule mining (in Part-II). The main focus has been
on the chromosome representation, objective functions, evo-
lutionary operators, and final solution selection from the non-
dominated front. Moreover, a comparative overview among
different methods in each category along with some real-life
applications are provided. Additionally, in this Part-II of the
paper, several other MOEAs-based data mining tasks, such as
ensemble learning, biclustering, feature extraction, sub-group
discovery etc. have been reviewed. Finally we have discussed
a number of future research areas that deserve attention from
the researchers working on the development of MOEAs-based
data mining algorithms.
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