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Abstract—Nowadays, the solution of multi-objective optimiza-
tion problems in aeronautical and aerospace engineering s
become a standard practice. These two fields offer highly cophex
search spaces with different sources of difficulty, which &
amenable to the use of alternative search techniques such as

difficulties found in practice:

1) The design space is frequently multimodal and highly
non-linear.

metaheuristics, since they require little domain informafon 2) Evaluating the objective function (performance) for the

to operate. From the several metaheuristics available, mtit design candidates is usually time consuming, due mainly

objective evolutionary algorithms (MOEASs) have become paiicu- to the high-fidelity and dimensionality required in the

larly popular, mainly because of their availability, ease é use and - .

flexibility. This paper presents a taxonomy and a compreherige simulations. . S o

review of applications of MOEAs in aeronautical and aerospae 3) By themselves, single-discipline optimizations may-pro

design problems. The review includes both the characteriits of vide solutions which not necessarily satisfy objectives

the specific MOEA adopted in each case, as well as the features and/or constraints considered in other disciplines.

gf the problems being solved with them. The advantages and 4y The complexity of the sensitivity analyses in Multidis-
isadvantages of each type of approach are also briefly addssed. - . o .

We also provide a set of general guidelines for using and degiing ciplinary Design Optimization (MD§) increases as the

MOEAs for aeronautical and aerospace engineering problemsn number of disciplines involved becomes larger.

the final part of the paper we provide some potential paths for 5) In MDO, a trade-off solution, or a set of them, are

future research, which we consider promising within this aea.

I. INTRODUCTION

su

searched for.
Based on the previously indicated difficulties, designers

have been motivated to use alternative optimization teples

ch as Evolutionary Algorithms (EAs) [34], [86], [122].

Optimal design in aeronautical/aerospace engine_ering \Rulti-Objective Evolutionary Algorithms (MOEAs) have

by nature, a multiobjective-multidisciplinary and highdyffi-

gained an increasing popularity as numerical optimization

cult problem. Aerodynamics, structures, propulsion, 8608, tols in aeronautical and aerospace engineering durintpsihe
manufacturing and economics, are some of the disciplinggy years [4], [87], [120]. These population-based methods
involved in this type of problems. Even if a single discigliis imic the evolution of species and the survival of the fittest

considered, many design problems have competing objectiygq compared to traditional optimization techniques, they

(e.g., to optimize a wing’s lift and drag or a wing’s struhr present the following advantages:

strength and weight). During the last three decades, theepso

of engineering design has been clearly improved because o
the dominant role that computational simulations have quay
in this area [87] e.g., Computational Fluid Dynamics (CFD)
simulations to perform aerodynamic analysis [67] and Compu
tational Structural Dynamics/Mechanics (CSD/M) throulgé t
use of the Finite Element Method (FEM) to process structural
analysis [169]. The increasing demand for optimal and rbbus
designs, driven by economic and environmental constraints
along with an increasing computing power, has improved the
role of computational simulations, from being just analgti
tools until becoming design optimization tools.

In spite of the fact that gradient-based numerical
optimization methods have been successfully applied in
a variety of aeronautical/aerospace design problems [63],
[153], their use is considered a challenge due to the following
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Lt is worth noting that most of the applications using gratieased
methods have adopted them to find global optima or a singlepommise
solution for multi-objective problems.
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o Robustness: In practice, they produce good approxi-
mations to optimal sets of solutions, even in problems
with very large and complex design spaces. Instead of
a single-point search with gradient information, MOEAs
use a population of design candidates (i.e., they perform
a multi-point search) and are less prone to get trapped
in local optima. Additionally, they can manage non-
differentiable, mixed real-discrete and highly non-linea
objective functions/fitness landscapes.
o Multiple solutions per run: As MOEAs use a population
of candidates, they are designed to generate multiple
trade-off solutions in a single run. Evidently, the gen-
eration of more solutions also involves a higher compu-
tational time when dealing with expensive applications.
Thus, the number of solutions to be generated by a
MOEA in the applications discussed in this paper tends
to be low, unless surrogate models are adopted.

o Easy to parallelize: The design candidates in a MOEA

population, at each generation, can be evaluated in paral-

Multidisciplinary Design Optimization, by its nature, céwe considered
a multi-objective optimization problem, where each iglse aims to
imize a particular performance metric.



lel using diverse paradigms. This can be useful in prob-
lems involving objective functions that are costly to eval- hi(@)=0, 1=1,2,...,p 3)
uate (something common in aeronautical and aerOSp%vﬁ?er

]T
applications).

er = [x1,29,...,2,] IS the vector of decision vari-

SR I , _ables, f; : R" — R, i = 1,...,k are the objective functions
o Simplicity: MOEAs use only the objective function val dgih i R" R, i = 1,.,m, j — 1,...p are the

ues for each design candidate. They do not require a s . .
9 y q constraint functions of the problem.

stantial modification or complex interfacing for using a Th t of traints of th blem defi the feasibl
CFD or CSD/M code. This situation substantially reduces € set of constraints of Ine problem detines the feasible

the cost related to code writing and tuning every time F9'on I the search space of the problem. Any vector of

new application is envisaged. Furthermore, designers c\é?{'abl.esx wh|ch satisfies _all the_ constraints is considered
Ifea5|ble solution. In their original version, an EA (and

easily make use of in-house developed and/or commerd: . ) i
codes previously validated. a'?so a MOEA) lacks a mechanism to deal with constrained

. Easy to hybridize: Along with the simplicity previ- search spaces. This has motivated a considerable amouat of r

ously stated, MOEAs also allow an easy hybridizatioﬁ’earch regardipg the design and implementation of constrai
with alternative methods, e.g., memetic algorithms, whic pndling techniques for both EAs and MOEAs [23], [108].

additionally introduce specifities to the implementatio
without influencing the MOEA simplicity.

« Novel solutions:In many cases, gradient-based optimiza-
tion techniques converge to designs which have litt
variation even if produced with very different initial

n Regarding optimal solutions in MOPs, the following
definitions are provided:

efiniton 1. A vector of decision variablest € R"
ominates another vector of decision variablgse R",

setups. In contrast, the inherent explorative capabiliti&jgnemi,q byx1< g)k'f ?nq f’nli’ |f.:v#|s/\ %a_‘rt'a")l’ Iesskthr?m
of MOEAs allow them to produce, some times, nove}’_ 1., ’_EA{ vk} fi(@) < fi(y) A Fie {1, k)
and non-intuitive designs. i(%) < fi(9)-

The important volume of information that has beefefinition 2. A vector of decision variableg € X ¢ R"
published on the use of MOEAs in aeronautical and nondominated with respect toX’, if there does not exist

—

aerospace engineering applications (mainly motivatedhly tynotherz” € X' such thatf(z') < f().
advantages previously addressed) has led us to write this ’ ’
paper, which provides a review of this work in an organizefefinition 3. A vector of decision variableg* € F c R” (F

and classified manner. As we will see later on, MOEAs hayg the feasible region) iBareto-optimal if it is nondominated
been used in a variety of design stages and in diverse preblegi, respect tar.

The remainder of this paper is organized as follow§efinition 4. The Pareto optimal setP* is defined by:
In Section Il, some basic concepts on multi-objective

optimization are presented. Section Ill briefly describesis P* = {& € F|Z is Pareto-optimal

of the MOEAs that have been most commonly used in _ )

the specialized literature. Section IV presents a taxonorRgfinition 5. The Pareto front P7* is defined by:
of applications of MOEAs in aeronautical and aerospace L o .
engineering. Such applications are explained in more Idetai PF* ={f(Z) e R*|Z € P*}

Section V. After that, in Section VI, possible future res#ar the goal on a MOP consists on determining the Pareto optimal
paths are highlighted. Finally, Section VIl presents thémmaget from the setr of all the decision variable vectors that
conclusions of this review. satisfy (2) and (3).
Thus, when solving a MOP, we aim to find not one, but
the set of solutions representing the best possible tréfde-o
Il. BASIC CONCEPTS among the objectives (the so-called Pareto optimal set).

A Multi-Objective Optimization Problem (MOP) can be ||| M yLTi-OBJECTIVE EVOLUTIONARY ALGORITHMS

mathematically defined as follots It is worth indicating that traditional EAs require some mod

ifications in order to deal with multi-objective optimizari
L - . . problems. The main two are the following:
minimize f(Z) := [f1(2), f2(2). ..., fi(D)] @ 1) All the nondominated solutions should be considered
equally good by the selection mechanism. This means
that a different notion of fitness is required for dealing
with multi-objective optimization problems. The most
popular mechanism to deal with this problem is called
- _ o _ _ Pareto ranking and was introduced by Goldberg [51].
Without loss of generality, minimization is assumed in ttadlofving . . .
definitions, since any maximization problem can be tramséat into a Th|3 approach.a35|gns a rank to each sqlutlon baseq on
minimization one. its Pareto dominance, such that nondominated solutions

subject to:



are all sampled at the same rate. However, in the eadither in an external archive or in the main population.
days of MOEAs, several mechanisms not based onThe most representative non-elitist MOEAs are the follow-

Pareto optimality were adopted with EAs [24].
EAs tend to converge to a single solution if run long
enough, because of stochastic noise [51]. Therefore,
a mechanism to maintain diversity is required. This
component is known as theéensity estimatorFitness
sharing [52] was the earliest density estimator, but
many others have been proposed over time, including
clustering [189], entropy [41], adaptive grids [81] and
crowding [32], among others.

2)

MOEAs can be classified in several ways [24]. However, for

the purposes of this survey, we decided to adopt a simple high

level classification that considers only two types of MOEAsS:

(&) Non-Pareto-based and (b) Pareto-based. The first group

contains MOEAs that do not adopt the concept of Pareto
optimality in their selection mechanism, whereas the seécon
comprises those MOEASs that adopt Pareto optimality in their

selection mechanism. Some of the most popular non-Pareto-

based MOEAs are the following:
« Lexicographic method The user ranks the objectives of

ing:
o Nondominated Sorting Genetic Algorithm (NSGA): It

the problem in a decreasing order and the optimization®
proceeds from higher to lower order objectives, one at
a time. Once an objective is optimized, the aim is to
improve as much as possible the following objective(s)
without decreasing the quality of the previous one(s)
[24]. This sort of approach normally generates a single
nondominated solution, but if instead of using a fixed
objective as the most important, it is randomly chosen,
several solutions can be generated in one run.
Aggregating functions All the objectives are added up
into a single (scalar) value which constitutes the objectiv
to be optimized. Since objectives tend to be defined
in very different ranges, a normalization is normally
required. Also, weights tend to be assigned to each®
objective in order to define preferences from the user [24].
Varying the weights during the run allows, in general,
the generation of different nondominated solutions in one
run [59], [71].

Population-based methods A number of sub-
populations (usually as many as the number of objective

was proposed by Srinivas and Deb [160]. It is based on
several layers of classifications of the individuals. Befor
selection is performed, the population is ranked on the
basis of nondomination: all nondominated individuals
are classified into one category (with a dummy fitness
value, which is proportional to the population size, in
order to provide an equal reproductive potential for these
individuals). To maintain the diversity of the population,
these classified individuals are shared with their dummy
fitness values. Then this group of classified individuals is
ignored and another layer of nondominated individuals
is considered. The process continues until all individuals
in the population are classified. Since individuals in the
first front have the maximum fitness value, they always
get a higher selection probability than the rest of the
population.

Niched-Pareto Genetic Algorithm (NPGA): Proposed

in [62]. It uses a tournament selection scheme based on
Pareto dominance. The basic idea of the algorithm is
the following: Two individuals are randomly chosen and
compared against a subset from the entire population
(typically, around 10% of the population). If one of
them is dominated (by the individuals randomly chosen
from the population) and the other is not, then the
nondominated individual wins. When both competitors
are either dominated or nondominated (i.e., there is a
tie), the result of the tournament is decided through
fithess sharing [52].

Multi-Objective Genetic Algorithm (MOGA): Proposed

in [46]. In this approach, the rank of a certain individual
corresponds to the number of individuals in the current
population by which it is dominated. All nondominated
individuals are assigned the lowest possible rank (i.e.,
one), while dominated ones receive as rank the number
of individuals that dominate them plus one.

functions of the problem) are generated from a main Among the most popular Pareto-based elitist MOEAs, we
population of an EA. Each sub-population optimizes have the following:

single objective function and then all the sub-populations
are merged and mixed. The aim is that, when performing
crossover, individuals that are good in one objective
will recombine with individuals that are good in another
one [149]. This sort of approach produces several
nondominated solutions in a single run, but it typically
misses good compromises among the objectives because
of the way in which individuals are selected in each
population [24].

Among the Pareto-based methods, there are two sub-classes:
the
MOEAs do not retain the nondominated solutions that they
generate and could, therefore, lose them after applying the
evolutionary operators. Elitist MOEASs retain these solns

non-elitist MOEAs and the elitist MOEAs. Non-elitist

« Strength Pareto Evolutionary Algorithm (SPEA): In-

troduced in [189]. It uses an archive containing nondom-
inated solutions previously found (the so-called external
nondominated set). At each generation, nondominated
individuals are copied to the external nondominated set,
removing the dominated solutions. For each individual
in this external set, a&trengthvalue is computed. This
strength is similar to the ranking value of MOGA, since
it is proportional to the number of solutions to which a
certain individual dominates. The fithess of each member
of the current population is computed according to the
strengths of all external nondominated solutions that
dominate it. In SPEA, instead of using niches based on
distance (as MOGA and NPGA), Pareto dominance is



adopted to ensure that the solutions are properly dis-
tributed along the Pareto front. Although no niche radius
is required, the effectiveness of this approach relies on
the size of the external nondominated set, since such a set
participates in the selection process of SPEA. Because of
this, the authors decided to adopt a technique that prunes
the contents of the external nondominated set so that its
size remains below a certain threshold. The approach
adopted for this sake was a clustering technique called
“average linkage method” [112].

Strength Pareto Evolutionary Algorithm 2 (SPEA2):
SPEA2 has three main differences with respect to i
predecessor [188]: (1) it incorporates a fine-grained fit-
ness assignment strategy which, for each individual, takess
into account both the number of individuals to which it
dominates and the number of individuals that dominate it;
(2) it uses a nearest neighbor density estimation technique
which guides the search more efficiently, and (3) it has
an enhanced archive truncation method that guarantees
the preservation of boundary solutions.

Pareto Archived Evolution Strategy (PAES): This algo-
rithm was introduced in [83]. PAES consists of a (1+1)
evolution strategy (i.e., a single parent that generates a
single offspring) in combination with a historical archive
that records the nondominated solutions previously found.
This archive is used as a reference set against which each
mutated individual is being compared. Such a histori-
cal archive is the elitist mechanism adopted in PAES.
However, an interesting aspect of this algorithm is the
procedure used to maintain diversity which consists of
a crowding procedure that divides objective space in a
recursive manner. Each solution is placed in a certain
grid location based on the values of its objectives (which
are used as its “coordinates” or “geographical location”).
A map of such grid is maintained, indicating the number
of solutions that reside in each grid location. Since the
procedure is adaptive, no extra parameters are required
(except for the number of divisions of the objective
space).

Nondominated Sorting Genetic Algorithm 1l (NSGA-

I1): This approach was introduced in [32] as an improved
version of the NSGA. In the NSGA-II, for each solution «
one has to determine how many solutions dominate
it and the set of solutions to which it dominates. The
NSGA-II estimates the density of solutions surrounding
a particular solution in the population by computing the
average distance of two points on either side of this point
along each of the objectives of the problem. This value
is the so-calleccrowding distanceDuring selection, the
NSGA-Il uses a crowded-comparison operator which
takes into consideration both the nondomination rank
of an individual in the population and its crowding
distance (i.e., nondominated solutions are preferred over
dominated solutions, but between two solutions with the
same nondomination rank, the one that resides in the
less crowded region is preferred). The NSGA-II does not
use an external memory as the other MOEASs previously
discussed. Instead, the elitist mechanism of the NSGA-II

consists of combining the best parents with the best
offspring obtained (i.e., au(+ A)-selection). Due to its
clever mechanisms, the NSGA-II is much more efficient
(computationally speaking) than its predecessor, and its
performance is so good, that it has become very popular
in the last few years, becoming a landmark against
which other MOEAs have to be compared [187].

There are several other multi-objective metaheuristics
available. The two following are discussed here because the
are adopted by some of the applications discussed here:

Particle Swarm Optimization: This metaheuristic is
inspired on the choreography of a bird flock which
aim to find food [77]. It can be seen as a distributed
behavioral algorithm that performs (in its more general
version) a multidimensional search. The implementation
of the algorithm adopts a population of particles, whose
behavior is affected by either the best local (i.e., within
a certain neighborhood) or the best global individual.
Particle swarm optimization (PSO) has been successfully
used for both continuous nonlinear and discrete binary
optimization [40]. For extending PSO to deal with MOPs,
the main issues are: (1) how to select particles (to be used
as leaders) in order to give preference to nondominated
solutions over those that are dominated?, (2) how to
retain the nondominated solutions found during the search
process in order to report solutions that are nondominated
with respect to all the past populations and not only
with respect to the current one?, and 3) how to maintain
diversity in the swarm in order to avoid convergence to
a single solution? Normally, mechanisms very similar
to those adopted with MOEAs (namely, Pareto-based
selection and external archives) have been adopted in
multi-objective particle swarm optimizers (MOPSOs).
However, the addition of other mechanisms (e.g., a mu-
tation operator) is also relatively common in MOPSOs.
An important number of multi-objective versions of PSO
currently exist (see for example [140]), and this remains
as a very active area of research.

Differential Evolution: This metaheuristic was proposed
by Kenneth Price and Rainer Storn [130], [161] to
optimize problems over continuous domains. The core
idea is to use vector differences for perturbing a vector
population, and it aims to estimate the gradient in a
region (rather than in a point). Differential Evolution
(DE) performs mutation based on the distribution of the
solutions in the current population. In this way, search
directions and possible step sizes depend on the location
of the individuals selected to calculate the mutation
values. Several DE variants are possible, and they differ
in the way in which the parents are selected and in
the form in which recombination and mutation takes
place (see [130] for more information on DE). The high
success of DE in single-objective optimization has made
it an interesting candidate for solving MOPs. The main
issues for extending DE to multi-objective optimization



are very similar to those of PSO (i.e., how to select
parents, how to store nondominated solutions and how to

maintain diversity in the population). As with MOPSOs, 2)

very similar mechanisms to those adopted by MOEAs
have been use with multi-objective differential evolution

that they are heading into the correct design path, guar-
anteeing to meet all design’s performance requirements.
2D geometries and airfoil shape optimization In

these applications the dimensionality of the problem
is reduced, and the physics for the simulations can be

considered as two-dimensional.

3D complex physics/shape optimization3D complex

physics, 3D complex geometries or the combination of

both are considered in this class of applications.

Structural optimization: Considering the design of

lighter and stronger structures as the premise of aeronau-

tical/aerospace design, this class of application looks fo
the best trade-off between these two objectives, clearly
in conflict.

) Multidisciplinary design optimization : These applica-
tions cover those where two or more disciplines are
involved, each one with specific objectives to accomplish
or to optimize.

6) Aerospace system optimization Applications focused

on space systems such as spacecrafts and satellites.

(MODE). A variety of MODE approaches currently exist
(see for example [110]), and this also remains as a very3)
active area of research. It is worth noting that MODEs
are often considered MOEAs [24].

Although many other MOEAs exist (see for example [25], 4)
[186]), it is not the intention of this paper to be comprehen-
sive. The interested reader may refer to [24], [31] for more
information on this topic.

The main advantages of MOEAs are their generality, ease
of use and the fact that they require little or no specific doma °
information to operate. Also, they are less susceptiblenéo t
specific features of the problem (e.g., shape or contindity o
the Pareto front) than traditional mathematical prograngmi
techniques [24].

Although the performance of MOEAs has been traditionally
assessed using a variety of quantitative measures (see fof) Control system design These applications are used for
example [24], [190]), few of them have been adopted in the ~ Parametric design in different control laws.
applications discussed in this paper. This is probably due t The different approaches in each one of these classes will be
the high computational cost of these applications and the felescribed in the following section. It is worth mentionimgt
nondominated solutions that are normally produced. This tisis review of the state-of-the-art is focused on Pareteta
the reason why the use of such performance measures is M@EAs. This decision was made based on the fact that the
discussed in the applications reviewed here, except if dnermimber of references of non-Pareto-based approaches would
them is adopted in the selection process (e.g., SMS-EMOt allow a careful description of each approach.
adopts a selection mechanism based on a performance measure

called hypervolumg10]). V. APPLICATIONS

A. Conceptual design optimization

Traditionally, the aeronautical/aerospac&onceptual

Aeronautical/aerospace engineering design process cddesignphase has been conducted with the help of databases,
prise three phases: (Lonceptual design(ii) Preliminary statistics, and regression/low-order engineering models
design and (iii) Detailed desigri13]. In each of these phaseswell as company’s/designer’s accumulated experience. The
design concepts are analyzed to determine their compliamaain outcome of this design phase has been to determine a
with the performance requirements, as well as their manufdew promisingDesign Conceptto be further analyzed in the
turability and economical viability. The design processruat Preliminary Designphase, in which numerical simulations
be considered as serial, but as a cyclic process, in whishexperimental setups are developed to verify and refine the
many design iterations are required. This iterative predss design. Additionally, tradeoff analyses are performedriten
mainly executed between the first two phases. Applicatiots identify unreasonable or conflicting requirements. This
surveyed in this article cover the spectrum ©@dnceptual latter task has been limited because of the large desigrespac
designand Preliminary designwhere numerical optimization that need to be explored, and a holistic (multidisciplinary
has its greatest impact, and where the goal of optimizatigision of the design is required when multiple disciplines
is to refine the design, prior to tHeetailed desigrphase in are involved in the design. Nowadays, with the increasing
which design production is initiated (see Figure 1). computing power available, low-cost/fidelity numerical

Although very interesting ways of classifying complexsimulations have spread toward t@enceptual Desigiphase,
MOPs have been proposed in the past (see for example thaking it possible to benefit from thexploration of large
approach described in [73]), the taxonomy adopted in thiesign spaces with reduced time and low computational cost.
article aims to reflect the optimization problem complexitdditionally, it is possible to envision performingade-off
degree in terms of three main features: (i) physics-modahalysis of the multi-objective and/or multidisciplinary
fidelity, (ii) the number of disciplines involved, and (iifhe designs. Both of these characteristics are inherent in see u
associated computational cost needed to perform the gatimiof MOEAs for the present class of applications reported :next
tion process. The classes considered are the following:

1) Conceptual design optimization Being this the earliest - Oyama and Liou [124] addressed the conceptual design
phase of the design process, it has an emphasis on of rocket engine pumps, for a centrifugal single and multi-
finding the bestDesign Conceptsensuring designers stage pump design. In both cases two objectives were de-

IV. A TAXONOMY OF APPLICATIONS



Fig. 1.

Aeronautical/Aerospace engineering design

Conceptual Design Phase
Characteristics: Characteristics:
- Explore widest possible
design space
Analysis of numerous
alternative concepts
Extensive trade-off

Low computational cost
development

UAV/MAYV design
Turbine design
Satellite constellation
design

Preliminary Design Phase

Design/Analysis of subsystems

Use of high fidelity CFD and FEM models
Multiple-discipline interaction

Robust design considerations

High dimensional search space

analysis High computational cost

Many Need for parallelization
objectives/disciplines u Use of surrogate and approximation u
analysis models

Use of low order/fidelity

physics models Goals:

Freeze the design for full scale

Goals: Establish confidence for building time
Assess and improve and costs
design requirements
Define few promising Examples:
concepts 2D airfoil/blade design
Wing-Body airplane configuration
Examples: Wing structural/flutter design
Supersonic aircraft Turbine blade aero-thermodynamic
design design

Spacecraft orbital trajectory design
Aircraft control system design

FABRICATION

Detailed Design Phase

fined: (i) maximization of total head in the pump, and (i)
minimization of the pump input power. Side constraints
were considered for the design variables range, defining
the pump geometry. An additional operating constraint
was imposed for the static pressure at the rotor tip in
order to detect the inception of cavitation, being crucial
to prevent this condition for the optimal design. The
authors adopted MOGA with fitness sharing [52], blended
crossover (BLX&) and uniform random mutation. Con-
ceptual designs were evaluated using a one dimensional
meanline pump flow-modeling method, which provides a
fast modeling of turbopumps for rocket engines at very
low computational cost. For the first conceptual design
case, a total of 498 different nondominated solutions
were obtained, while 660 were found in the second
case. Authors noted that improvements in the objective
functions were within 1% in both objectives with respect
to a reference design.

Buonanno and Mavris [15] addressed the conceptual
design of a small supersonic aircraft, considering seven
objectives: (i) weight, (ii) range, (iii) takeoff balanced
field length, (iv) loudness, (v) overpressure, (vi) flight
Mach number, and (vii) cabin size. Some of them were
minimized, while others were maximized. An application
example presented by the authors comprised a set of
up to 64 design variables (both continuous and dis-
crete variables were considered), describing the aircraft

Graphical representation of the three stages ofjdesi aeronautical/aerospace engineering

geometry and the mission requirements. The authors
used a parallel hybrid subjective/quantitative MOEA, in
which the fitness of an individual was a combination
of both quantitative and qualitative metrics, with the
latter being defined by a human evaluator. A parallel-
MOEA) (pMOEA), based on the injection island genetic
algorithm [36], was adapted for this MOP. The strategy
consisted on assigning one objective function per island
and solving a two-objective optimization problem. The
second objective for each island was constructed as a
goal attainment metric based on the mission requirements
for the aircraft. In this way, each island obtained a
set of solutions excelling in its assigned objective and
representing a trade-off with respect to the project goals.
After a certain number of generations, the nondominated
solutions from the islands were sent to a central island
which solved the seven-objective problem formulated as
a goal attainment problem. Each island used SPEAZ2.
The nondominated solutions from the central island were
transferred back to each of the islands and the process was
repeated until satisfactory solutions were obtained. The
authors used physics-based analysis tools for performance
prediction. Low-order/fidelity models were used for the
involved disciplines: aerodynamics, propulsion, stapili
and control, economics, aeroelasticity, manufacturirdy an
acoustics, along with modules for weight estimation and
geometry parameterization.



- Valliyappan and Simpson [175] solved a conceptual de-
sign optimization for a general aviation aircraft product
family of small propeller driven GAA (General Aviation
Aircraft) to be scaled around the, 4, and 6 seats
configurations, and which can cruise frons0 to 300
knots and have a range fro®0 to 1000 miles. The aim

of this study was to explore the design space in order
to find the trade-off between platform commonality and -
individual product performance within the aircraft family
The MOP comprised four objective functions which were
defined by means of a goal programming formulation,
where the deviations of each goal from their targets were
minimized. For this sake, a set af goals (aspiration
levels), and a set df constraints were defined. The first
two objectives measured the technical and economical
related goals within the family, respectively; while the
third objective measured the total constraint violation fo
the whole family; finally, objective four measured the
variance index or degree of commonality in variables
within the product family. Design candidates were defined
with a set of 14 continuous/discrete design variables, and
the evaluation of the aircraft performance was done via
NASAs GASP (General Aviation Synthesis Program).
The authors used the NSGA-Il. A special encoding
was adopted in order to contain a set of commonality
controlling genes (one gene per variable), followed by a
concatenation of genes defining the design variables of
each product in the product family.

Rajagopal et al. [135] investigated an Unmanned Aerial
Vehicle (UAV) conceptual design. Two objectives were
considered: (i) the maximization of the endurance (the
time an airplane can fly given a payload and a given fuel
weight) and (ii) the minimization of the wing weight. -
Six design variables were used, four of them being wing-
geometry related parameters (aspect ratio, wing loading,
taper ratio, thickness to chord ratio) and the other two
being UAV’s operational parameters (loiter velocity and
altitude). Additionally, constraints were imposed on the
performance parameters of the UAV design. These in-
cluded: (1) wing weight, (2) rate of climb, (3), stall speed,
and (4) maximum speed at sea level condition. NSGA-II
with real-numbers encoding and the SBX crossover oper-
ator was adopted. This MOEA was coupled to Raymer’s
RDS software, which is based on the design methods
described in [138], in order to evaluate the performance of
each design candidate. The authors reported that a Parete
front was obtained with a total of 11 solutions.

Kuhn et al. [88] developed a multidisciplinary conceptual
design methodology for its application to hybrid airship
design (aerostatic lift and aerodynamic lift). Two ob-
jectives were considered: (i) minimization of the tota‘Lr

Strategies (ES). The evaluation of the objective functions
was done with models varying in fidelity, ranging from
interpolation models to FEM models. The latter was
used for the structural analysis using a FEM commercial
software. A Hybrid Universal Ground Observer (HUGO)
airship demonstrator was designed, with a total of 10,000
design candidates being evaluated.

Jing and Shuo [74] presented the conceptual design of
an air-breathing hypersonic cruise vehicle. Five design
objectives were considered: (i) maximization of the lift-
to-drag ratio, (i) minimization of the stagnation temper-
ature, (iii) maximization of the thrust-to-drag ratio, Xiv
maximization of the airframe volume, and (v) minimiza-
tion of the Radar Cross Section (RCS). Constraints were
imposed on variables ranges, flow flux and Mach number
at inlet conditions, trimmed angle of attack and rolling
angle, and static stability and maneuverability margins
as well. 21 design variables were used to define the
geometry of the design candidates. The authors adopted
MOGA with the following features: real numbers encod-
ing, arithmetic crossover, Gaussian mutation, steadg-sta
reproduction and fithess sharing. Constraint handling was
done by an accurate penalty strategy. Additionally, for
further improvement of the solutions, a simulated anneal-
ing algorithnf was adopted as a local search engine. The
objectives were evaluated using simplified models with
reduced computational cost. Only three globally non-
dominated solutions could be generated. Such solutions
were further evaluated and compared against a reference
design. The authors noted that these solutions were better
in all the objectives than the reference design (i.e., they
dominated it).

Xiaoging et al. [184] evaluated the multiobjective op-
timization of hypersonic waverider shape generation.
Three objectives were considered: (i) lift-to-drag ratio,
(i) vehicle’s volume, and (iii) vehicle’s volumetric rati

No information is given, concerning constraints, thus it
is assumed that only side constraints on variable ranges
are considered. The base section of the waverider was
defined by means of analytical shape functions (i.e.,
fourth-order polynomials), keeping to a minimum the
number of design variables. The authors explored two
different techniques: (a) cone derived waverider, and (b)
osculating cone derived waverider. The authors adopted
the NSGA-II with an improved crowding mechanism.
Theisinger and Braun [170] identified hypersonic entry
aeroshell shapes in order to find trade-off designs with
increased landed mass capabilities. Three objectives

“4Kirkpatrick et al. [79] pointed out the analogy between amrfealing”
ocess and optimization: a system state is analogous tcsdhgion of

mass, and (i) maximization of the payload. Thirteean optimization problem; the free energy of the system (tartieimized)
constraints were imposed related to stress levels in tfREresponds to the cost of the objective function to be dpéd) the slight

components. A set of 18 mixed real/discrete variabl

erturbation imposed on the system to change it to anothé&r sbrresponds
a movement into a neighboring position (with respect ® Ital search

were used to represent the geometry of the airship andsdtate); the cooling schedule corresponds to the controharésm adopted
structural properties. The optimization tool adopted wayy the search algorithm; and the frozen state of the systemesmonds to

a MOEA called GAME (Genetic Algorithm for Multi-

the final solution generated by the search algorithm (usipgpulation size
of one). These analogies led to the development of the $edcsimulated

criteria Engineering) [90], which is based on Evolutiorannealingalgorithm.



were considered: (i) drag-area, (ii) static stability anteviewed above. A remarkable exception is the work reported
(i) volumetric efficiency. This particular spacecraftin [15] in which the authors deal with a problem having seven
design problem was driven by planetary entry-descembjectives. The authors adopt in this case a parallel MOEA
landing performance requirements and thermal/structutzsed on the concepts of co-evolution of multiple poputetio
limitations, which are naturally conflicting. All object This approach seems to produce acceptable results in this
were maximized and two constraints were imposed to tigh-dimensional objective search space. Another issue
volumetric efficiency and on the lift-to-drag ratio. Sidghat seems to be a common concern in this first group of
constraints were applied to the design variables in ordapplications is the encoding of the decision variablesc&in

to obtain designs fitting with the current launch systemthis sort of application normally has mixed decision vaesb
Aeroshell shape was described by a bi-parametric, culfieg., discrete and continuous), authors tend to propose
by quadratic, non-uniform rational B-spline 3D surfaceheir own ad-hoc encodings, which also require specialized
allowing them to define the optimization problencrossover and mutation operators associated to them. ulgho
with 20 design variables, including the aeroshell angkdso be evident that in this first type of applications, autho
of attack. The authors adopted the version of theaid little or no attention to the fine-tuning of parametefs o
NSGA-II available in thelSIGHT commercial software. their MOEAs. This may be due to the obvious difficulties
Additionally, the objective function evaluations werdo perform a careful statistical analysis when dealing with
performed with the estimated flowfield around the&ery expensive objective functions. However, other pdesib
aeroshell using a physics-based simulation, namely thkernatives such as self-adaptation or on-line adaptatio
Newtonian impact theory. The Mars Science Laboratohave not been properly addressed by researchers in this
Aeroshell was adopted as a reference design. The authamsa yet [174]. If such self-adaptation and on-line adaptat
found several design candidates that performed bettaechanisms are unaffordable, at least the use of relatively
than the reference design in the three objectives undegh mutation rates is suggested, combined with a plus

consideration. selection mechanism that combines the population of psrent
with the population of offspring and retains the best half.
Analysis of the use of MOEAs in conceptual design: This will increase the selection pressure but will maintain

enough diversity as to avoid premature convergence. jnall

Table | summarizes the application of MOEASs in conceptudl is worth mentioning the use of external files (or archives)
design optimization problems. From this table and the joevi as a viable alternative to reduce objective function evana
review, it can be observed that the NSGA-Il is the mostnd perform a more accurate search. This sort of mechanism
frequently adopted approach. The common use of Pareten be particularly useful when combined with relaxed
based approaches seems to corroborate the hypothesis fforms of Pareto dominance such aslominance [94], which
some authors regarding the suitability of Pareto optipdtt allows to regulate convergence, and has not been adopted by
drive the search at the preliminary stages of design [1&1].researchers working in this first group of applications.
should be clear that the use of MOEAs is computationally
expensive, which is the reason why analytic and/or low-orde
engineering models are adopted in most cases. Only in a fgw
applications, researchers seem to rely on low-order piysic
based models [15], and variable-fidelity physics-basedeisod Aeronautic and aerospace systems are, in general, complex
[88]. Nevertheless, we believe that in the near future, M@E/ANJineering systems. Their analysis and design is a very
will become a standard practice, as the computing powel-av&°omplex task. There exist, however, many enginering deglgn
able continues to increase each year. It is also worth notif@ses where this complexity can be tackled by analyzing
that MOEASs are flexible enough as to allow their coupling tBasic components of the complete system, on which re-
both engineering models and low-order physics-based reod@ayced/simplified models can be used as the basis for anglyzin
without major changes. They can also be easily parallelizéfe Whole system. Examples of these conditions are themlesig
since MOEAs normally have low data dependency. Finally, @ 3D complex shapes such as wings and turbine blades,
is worth indicating the advantage of incorporating a subjec where the analysis of their 2D building sections (airfoiks)
evaluation scheme for cases in which the search must fiRAuently performed prior to the analysis of the complete
controlled, disallowing the generation of impractical iges 3D geometry. In other cases, the geometry for the system
solutions as reported by Buonanno and Mavris [15]. can be such that its operating conditions can be estimated

An aspect that is important to emphasize is the pogy analyzing its sectional properties. Examples of thigetat
scalability of Pareto-based MOEAs as we increase tf@ndition are the aircraft engine inlets/nozzles, wheeeflibw
number of objectives [82]. Many of the application§an be assumed as two-dimensional or axisymmetrical. In
previously described considered a low number of conflictiri§is section, some applications of MOEAs for these types of
objectives (two or three in most cases). Although MOEARroblems are presented.
can still be used in high-dimensional objective spacess it i - Yamaguchi and Arima [185] dealt with the optimization
required to use mechanisms different from the traditional of a transonic compressor stator blade in which three
Pareto-based selection [64]. This issue, however, does not objectives were minimized: (i) pressure loss coefficient,
seem to be a major concern in most of the applications (ii) deviation outflow angle, and (iii) incidence toughness

2D geometries and airfoil shape optimization



[ Ref ] NObj [ NCons [ NVars [ VarType [ Algorithm | Operators [ Physics Model [ NPop | Gmax [ Remarks |
[124] 2 s.C. 11 Continuoug MOGA Fitness sharing, BLXx | Mean line pump flow| 120 30 None
crossover, uniform ran{ modeling
dom mutation, Best-N
selection
[15] 7 s.C 64 Mixed SPEA2 Hierarchical —crossoverl Multiple disciplines low | N/A N/A Island based parallel in{
continu- operator order/fidelity models teractive GA with sub-
ous/discrete jective evaluation
[175] 4 s.C 14 Mixed NSGA-II SBX crossover and poly| Low order models 20 150 Objectives defined by
continu- nomial mutation means of goal program
ous/discrete ming technique
[135] 2 4 6 Continuoug NSGA-II SBX crossover and poly-{ Multiple disciplines, low | N/A N/A None
nomial mutation order and database mod-
els
[88] 2 s.C. 18 Mixed GAME Evolution strategies’ mu-| Multiple disciplines with 400 25 None
continu- tation operator low fidelity and FEM
ous/discrete models
[74] 5 6 21 Continuoug MOGA Arithmetic ~ crossover,| Multiple disciplines sim-| 300 300 Constraint handling
gaussian mutation,| plified models using exact penalty|
fitness  sharing and method, and simulated
steady-state reproductiol annealing as a local
search operator
[184] 3 s.C. 5 Continuoug NSGA-II SBX crossover, polyno-| Inviscid flow model N/A N/A None
mial mutation and im-
proved crowding mecha{
nism
[170] 3 2 20 Continuoug NSGA-II SBX crossover and poly|{ Newton impact theory N/A N/A None
nomial mutation

NObj = Number of objectives; NCons = Number of constraint¥alé = Number of design variables; VarType = Type of variahPop = Population size; Gmax = Maximum
number of generations; N/A = Not available; s.c. = Only sidestraints are adopted.

TABLE |

SUMMARY OF MOEAS APPLIED TO CONCEPTUAL DESIGN OPTIMIZATION PROBLEMS

The last objective function can be considered as a robust
condition for the design, since it is computed as the
sum of the pressure loss coefficients at two off-design
incidence angles. The airfoil blade geometry was defined
by twelve design variables. The authors adopted MOGA
with real-numbers encoding, fitness sharing and interme-
diate crossover. Aerodynamic performance evaluation for
the compressor blade was done using Navier-Stokes CFD
simulations. The optimization process was parallelized,
using 24 processors in order to reduce the computational
time required. In order to promote diversity, during
the first few generations, parents were selected from
individuals with the first two lowest rank values (i.e.,
dominated individuals were also selected) and later on,
only nondominated individuals were selected. -

- Benini and Toffolo [9] addressed the development of

high-performance airfoils for its application in axial
flow compressors. They minimized two objectives: (i)
nondimensional pressure ratio, and (ii) the pressure loss
coefficient reduced from the unit value. Constraints were
imposed on the design conditions, and were evaluated at
5 different flow-field points, in order to obtain airfoils
being at least equal in performance to the reference
airfoils adopted by the authors. The airfoil geometry was
defined using three Bézier curves. In total 9 designs
variables were used to define the airfoil geometry, its
length, pitch, and incidence. A special procedure was
used to avoid generating either useless or invalid airfoll
geometries. The MOEA used by the authors is based
on an elitist(x + 1) evolution strategy, which adopted
binary encoding. In their implementation, offspring
were generated using crossover and were mutated with

a random-based mechanism. Repeated solutions (clones)
were replaced by randomly-generated individuals. In the
selection process, the combined population of parents
and offspring were Pareto-ranked but considering also
a diversity metric defined as a function of the mini-
mal normalized Euclidean distance (in decision variable
space) of each individual to its closest neighbor. The
best 1 individuals were retained as members of the
following generation. The evaluation of the objective
functions was done by means of CFD simulations with
a high computational cost. The nondominated solutions
generated by the authors were found to be superior in
performance to the reference airfoils, using NACA 65
family airfoils.

Naujoks et al. [113] addressed an airfoil design problem
in which extreme Pareto optimal solutions were defined
for two operational design points (two competing ob-
jectives): one for high lift performance at low speed
condition and the other one for low drag performance
at high speed condition. The airfoil was represented by
two Bézier curves, and a total of 12 design variables were
adopted. No constraints were defined, other than side con-
straints (upper and lower limits for the design variables).
The authors used an approach called MODES (Multi
Objective Derandomized Evolution Strategy). In this case
a (1+10)-DES (Derandomized Evolution Strategy) was
adopted, which means that only one parent was used
to produce the offspring. The aerodynamic evaluation of
the design candidates is performed using a CFD Navier-
Stokes simulation with a high computational cost. It is
worth noting, however, that for the examples presented
by the authors, a budget of only 1000 evaluations was



considered. Although this was a very small humber of
objective function evaluations, the authors reported the
generation of good approximations of the Pareto front.
In a further paper, Naujoks et al. [114] proposed to use
a (20+20)-MODES strategy, along with an additional se-
lection mechanism inspired on the NSGA-II. The results -
presented with this additional selection mechanism were
very similar to those obtained before, both in terms of
quality of the Pareto approximation and in terms of the
spread of the nondominated solutions along the Pareto
front.

Beume et al. [10] poposed the SMS-EMOA (SMS stands
for S-metri® selection) strategy. The approach was used
to solve a multi-objective airfoil design problem. As in
the previous case, Pareto extreme solutions were defined
by three operational conditions for lift, drag and pitching
moment coefficients. The optimization problem was to
find trade-off solutions minimizing the drag values for the
three flow conditions, while not losing lift and keeping the
pitching moment within &% range from the reference
design points. Additionally, geometrical constraints ever
included for the airfoil shape. These last constraints
were treated in a direct manner, discarding all infeasible
solutions, previous to a CFD simulation. Results for
this application were presented and compared with those
obtained by using NSGA-II, in both cases with a limited
budget of 1,000 function evaluations.

Rai [133] dealt with the robust optimal aerodynamical
design of a turbine blade airfoil shape, taking into ac-
count the performance degradation due to manufacturing
uncertainties. Two objectives were considered: (i) to
minimize the variance of the pressure distribution over
the airfoil’s surface, and (ii) to maximize the probability
of constraint satisfaction. Only one constraint was con-
sidered, related to the minimum thickness of the airfoil
shape. The constraint-handling technique adopted was
the one developed by the same author and reported in
[132]. The airfoil shape parameterization consisted of
eight decision variables but in the experiments presented,
only two of them were used for perturbing one airfoll
side (the pressure side). The author adopted a multi--
objective differential evolution (MODE) approach [130].
Its main features included a mechanism to reduce the
set of nondominated solutions in case its size exceeded a
certain (pre-defined) threshold. This was done to promote
diversity in the population. It also adopted an intermesliat
population whose size was twice as large as the original
and which was Pareto ranked so that only the first half
was retained for the next generation. The author used
a high-fidelity CFD simulation on a perturbed airfoil
geometry in order to evaluate the aerodynamic character-
istics of the airfoil generated by MODE. The simulation

5The hypervolume (also known as the& metric or the Lebesgue Measure)
of a set of solutions measures the size of the portion of tibgespace
that is dominated by those solutions collectively. It hagrbgroved that
the maximization of this performance measure is equivatentinding the
Pareto optimal set [45], and this has also been empiricallfied by some
researchers [38].
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follows a probability density function that is observed for
manufacturing tolerances. This process required a high
computational cost, which the author attempted to reduce
by using an artificial neural network [150] Response
Surface Model (RSM).

Ray and Tsai [136] considered an airfoil shape design
optimization problem with two objectives to be mini-
mized: (i) the ratio of the drag-to-lift squared coefficignt
and (ii) the squared moment coefficient. Constraints were
imposed on the flow Mach number and angle of attack.
Airfoil shapes were defined by the PARSEC representa-
tion [158]. This airfoil representation allowed to define
the geometry of an airfoil with 1 design variables which
are more related to its aerodynamic performance than in
other type of airfoil representations. The optimizer used
is a multi-objective particle swarm optimizer (MOPSO)
[3]. A particular feature of this application was that the
particle swarm scheme was based on movements for
the particles of one position to another in the design
space, rather than on an update of an individual’s velocity
as done in the standard particle swarm optimization
algorithm. The aim of this scheme was a reduction in the
number of user-defined inputs. The flow solver utilized
corresponds to an Euler code which was able to capture
nonlinearities in the flow such as shock waves. In their
results, the authors obtained a set with 32 nondominated
solutions. In a related work, Ray and Tsai [137] presented
a parallel implementation of this MOPSO for airfoil
shape optimization. This approach was also hybridized
with a gradient-based algorithm. Contrary to standard
hybridization schemes where gradient-based algorithms
are used to improve the nondominated solutions obtained
(i.e., as alocal search engine), in this approach the aathor
used the gradient information to repair solutions not sat-
isfying the equality constraints. This repairing algomith
was based on the Marquardt-Levenberg algorithm [100],
[106]. During the repairing process, a subset of the design
variables was used, instead of the whole set, in order to
reduce the dimensionality of the optimization problem to
be solved.

Obayashi et al. [117] studied the aerodynamic design of
cascade airfoils shapes. The problem considered three
objective functions: (i) pressure rise, (ii) flow turning
angle, and (iii) total pressure loss. The first two objedive
were maximized and the third one was minimized. The
authors used a real-coded MOGA. Objective evaluation
was performed using a 2D Navier-Stokes code for flow
evaluation. The same MOEA was also used for the design
of a four-stage compressor [117], [123]. In this second
application, two objective functions were maximized: (i)
total pressure ratio and (ii) isentropic efficiency. The
MOP consisted of 80 design variables, and one constraint
on the flow conditions, in order to avoid designs with
flow separation. The evaluation was done using flow
simulations based on the streamline curvature method
in which solutions are obtained iteratively, causing a
high computational cost even when an engineering model
is used. The nondominated solutions obtained by the



authors outperformed a baseline design in both objective
functions by an amount of 1%.

D’Angelo and Minisci [29] solved a subsonic airfoll
shape optimization problem, in which two objective func-
tions were minimized: (i) drag force coefficient, and (ii)
lift force coefficient difference with respect to a referenc
value. The airfoil geometry was parameterized using
Bézier curves both for its camber line and for its thick-
ness distribution. Five design variables were used and
constraints were imposed on the extreme values of the
objective functions. The authors adopted MOPED (Multi-
Objective Parzen-based Estimation of Distribution) [27],
which uses the Parzen method to build a probabilistic
representation of the nondominated solutions, with mul-
tivariate dependencies among the decision variables. The
authors included three modification to improve MOPED:
(@) the use of a Kriging model by which solutions
were evaluated without resorting to costly computational
simulations, (b) the use of evolution control to keep
the evolution from converging to false Pareto fronts,
and (c) the hybridization of the algorithm with some
mechanisms from NSGA-Il (selection and ranking of
solutions). Aerodynamic evaluations were performed by
using a CFD simulation code, tailored for aerodynamic -
airfoil analysis. The authors indicated that this subsonic
airfoil shape optimization problem presented difficulties
associated to more complex problems: The true Pareto
front was discontinuous and partially converged solutions
(when divergence was detected, the iterative process
was stopped) from the aerodynamic simulation code
introduced irregularities in objective function spaceeTh
approximation model reduced the number of objective
function evaluation in a significant manner (to one sixth
of their original value).

Bing et al. [11] presented the aerodynamic shape op-
timization for a 2D Hypersonic inlet and 2D SERN
(Single-Expansion-Ramp Nozzle) used in scramjet en-
gines. Two applications were presented, one with two
objectives and the other with three objectives. For the
first optimization example a 2D Hypersonic engine inlet
was considered, and the aim was to maximize the two
following objectives: (i) pressure recovery, and (ii) &at
pressure rise. Constraints on the design variables, inlet
geometry and flow condition at exit, were imposed. The
inlet geometry was defined using four decision variables.
The evaluation of the design performance required high
fidelity CFD Navier-Stokes simulations since the flow
physics was highly nonlinear for the operating flow -
conditions indicated. The results of both the NSGA-
Il and the Neighborhood Cultivation Genetic Algorithm
(NCGA) [182] were compared. The second problem
considered the same inlet design previously defined, with
the additional objective of minimizing the inlet drag
coefficient. From the results presented by the authors, in
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of a scramjet inlet considering two objectives: (i) total
pressure recovery factor, and (ii) variation of pressure
recovery factor for at 5% change in free stream Mach
number. The first objective was maximized, while the
second was minimized. According to the design problem,
geometric constraints were defined in order to remove
physically unrealistic solutions. Additionally, opexaial

flow constraints were considered to guarantee the auto-
ignition in the engine. This condition required a certain
range for pressure, temperature and Mach number in the
flow at specific locations. The inlet was considered as
a 2-D geometry and consisted of three flat ramps and
a cowl at the combustion chamber inlet. In this case,
12 design variables were adopted. The MOEA adopted
used a selective breeding process that ranked solutions
according to the constraints, and also on the basis of
the desirability of the values of the objectives (accord-
ing to the user’'s preferences). The objective functions
consisted of hypersonic flow conditions in which strong
shock waves were present. The authors did not report
the cardinality of the set of nondominated solutions that
they obtained, but they reported the generation of a
considerably high number of nondominated solutions.
Congedo et al. [26] dealt with the airfoil shape optimiza-
tion for transonic flows of Bethe-Zel'dovich-Thompson
(BZT) fluids. In this case, two design conditions were
explored, both for a non-lifting airfoil, and for a lifting
airfoil. In the second case, the MOP considered two de-
sign objectives: (i) maximization of lift at BZT subcritica
conditions, and (ii) minimization of wave drag while
maximizing lift for supercritical BZT flow conditions.
The geometry of the airfoil shape was represented with a
Bézier curve with 16 2D control points, i.e., 32 decision
variables, from which 10 are constants used to control
the leading edge and trailing edge positions as well
as the leading edge slope. Thus, the problem consisted
of 22 variables. The only constraint included was the
thickness to chord ratio of the airfoil, which was adjusted
to its specified value, once a design was generated, and
prior to the flow solution. The authors used the NSGA
with a sigma-share formula given in [131], which takes
into account the population size and the number of
objectives. They chose parameters such that less than
1,000 objective function evaluations were performed. The
authors reported that all the solutions that they obtained
outperformed the baseline design as well as the designs
obtained using traditional design methods.

Shimoyama et al. [156] developed a novel optimization
approach for robust design. In their approach, a design for
multi-objective six-sigma (DFMOSS) [155] was applied
for the robust aerodynamic airfoil design of a Mars
exploratory airplane. The core of the design methodology
was, on the one hand, the concepRufbust Desighand,

both cases, the NCGA algorithm performed better than®Robust design takes into account the fact that in real-werlgineering
NSGA-II, obtaining more nondominated solutions with gesigns, performance of a design can vary from its expedctevdue mainly

b d al he P f to errors and uncertainties in the design and/or manufagtyrocess, and/or
etter spread along the Pareto front. L . inthe operating conditions. Therefore, the aim is to findtthde-off between
- Brown et al. [14] addressed the optimization desigihe optimality of the design and its robustness.
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on the other, its multi-objective nature. The idea of the of the decision variables. The objective functions were
DFMOSS methodology was to incorporate a MOEA to  evaluated using a CFD simulation code. The authors
simultaneously optimize the mean value of an objective obtained feasible solutions with improvements on the
function, while minimizing its standard deviation due  order of 10%, 8% and 7-10% for the first, second and
to the uncertainties indicated above. The airfoil shape third objectives, respectively, with respect to a refeeenc
optimization problems considered two cases: a robust airfoil design.

design of (a) airfoil aerodynamic efficiency (lift-to-drag

ratio), and (b) airfoil pitching moment constraint. In bothAnalysis of the use of MOEAs in 2D geometries and
cases, only the variability in the flow Mach number waairfoil shape optimization:

taken into account. The authors adopted MOGA. The

airfoil geometry was defined using Bézier curves both for Table 1l summarizes the application of MOEAs in 2D
the upper and for the lower surfaces. 6 control points wegeometries and airfoil shape optimization problems. Friois t
used, resulting in 12 design variables. The aerodynanéble and the previous discussion, we can see that, as before
performance of the airfoil was evaluated by CFD simua wide variety of Pareto-based elitist MOEAs have been used
lations using the Favre-Averaged compressible thin-layer this domain. It is also worth noting the use of MOEASs in
Navier-Stokes equations. Eighteen robust nondominatedbust designin which solutions are evaluated with off-design
solutions were obtained in the first test case. From this seperating conditions and manufacturing tolerances. Soeh s
almost half of the population attained the condition. In lutions are thus representing more realistic designs. r8eve
the second test case, more robust nondominated solutiaashors report improved designs when adopting MOEAs, but
were found, and they satisfied a sigma level as high aasuccessful cases have also been reported. The cases in
250. which MOEAs fail to produce improved designs seem to
Szollos et al. [162] addressed the aerodynamic shape associated to situations in which the baseline design had
optimization of the airfoil geometry of a standard-clasbeen already improved in a significant manner, or when the
glider, considering three objectives: (i) maximize gliglin search space is so highly constrained that it is difficult to
ratio at high flight speed, (i) maximize gliding ratiomove to better regions. Again, the high computational cost
at average weather conditions, and (iii) minimize sinkssociated to the use of MOEAs is evident. In spite of the
rate at low turning speeds. All these objectives amdvantages of Pareto-based MOEAs, it is also evident that,
specified in terms of airfoil's aerodynamic lift andwhen dealing with expensive objective functions such aseho
drag coefficients as well as flight operating conditionsf the above applications, the use of careful statisticalyais

in terms of the Reynolds numbeR¢) and the Mach of parameters is unaffordable. Thus, the parameters of the
number (/). Constraints are considered for: (a) airfoilSMOEASs discussed in this section were simple guesses or taken
maximal lift coefficient at landing flight conditions, (b)from values suggested by other researchers. It is also tator
maximum airfoil's thickness to chord ratio, (c) trailingto note that some researchers have suggested clever apgsoac
edge thickness, and (d) pitching moment coefficiethat allow the use of very small population sizes, although
(Ci,) which is required not to be worse than a referencirrogate models have also been employed, as in the previous
airfoil design. The authors introduced a new MOEAection. Nevertheless, the use of other simpler technisues
calledmulti-objective micro-genetic algorithm with rangeas fitness inheritance or fithess approximation [139] seems t
adaptation, based ore-dominance or exARMOGA. be uncommon in this domain and could be a good alternative
This approach is inspired on the Adaptive Range&hen dealing with high-dimensional problems. Additiogall
Multi-Objective Genetic Algorithm (ARMOGA) [143]. the authors of this group of applications have relied on very
ARMOGA incorporates two archiving techniques: aimple constraint-handling techniques, most of which atidc
global archive, which stores all the best solutionmfeasible individuals. Alternative approaches existjalibcan
obtained so far, and a recent archive, which storesploit information from infeasible solutions and can make
the best solutions of the past previous generatiorss.more sophisticated exploration of the search space when
Solutions from the second archive participate in theealing with constrained problems (see for example [108])
parent selection processpyARMOGA introduces two and this has not been properly studied yet. Finally, it isttvor
additional mechanisms. The first corresponds to the usmphasizing that, in spite of the difficulty of these probéem
of a small population size (i.e. the use of a micro-genetand of the evident limitations of MOEAs to deal with them,
algorithm as in [25], [85]), coupled with the use ofmost authors report finding improved designs when using
an external file for storing the nondominated solution8IOEAs, even when in all cases a fairly small number of fit-
obtained so far. The second mechanism correspondsntgss function evaluations was allowed. This clearly itatsts

the use of the concept efdominance [95], which is a the high potential of MOEASs in this domain.

relaxed form of Pareto dominance that has been used as o

an archiving strategy that allows to regulate convergende. 3D complex physics/shape optimization

The authors initialized the population using a Latin Sophisticated aeronautical/aerospace systems possess in
Hypercube Sampling (LHS) technique, and the maimost cases, complex three-dimensional shapes and/or are
population was reinitialized at every certain number afesigned to operate in complex physical environments. Exam
generations, based on the average and standard deviagitas of such complex three-dimensional shapes are those of
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[ Ref [ NObj [ NCons [ NVars | VarType [  Algorithm Operators [ Physics Model [ NPop | Gmax | Remarks |
[185] 3 s.C. 12 Continuoug MOGA Intermediate  crossovel Navier-Stokes 100 30 Robust design optimiza-|
and fitness sharing tion
[9] 2 5 9 Discrete (n + p)-ES Gaussian mutation,| Navier-Stokes 100 200 None
Goldberg’s Pareto
ranking, crowding based
on euclidian distance in|
decision space
[113] 2 s.C. 12 Continuoug (1+10)-MODES | Adaptive derandomized Navier-Stokes 1 N/A Use of a maximum of
mutation strategy, selec 1,000 designs
tion based on the NSGA-
1l
[10] 3 2 12 Continuoug SMS-EMOA Adaptive derandomized Navier-Stokes 20 N/A Use of a maximum of
mutation strategy, 1,000 designs
steady-state selectio
based on hypervolume
measure
[133] 2 1 8 Continuoug MODE DE’s crossover and mu{ Navier-Stokes 10 25 Robust design optimiza-|
tation operators tion, use of ANN RSM
136 2 2 11 Continuoug MOPSO N/A Euler model 100 50 None
117 3 s.C. N/A Continuoug MOGA N/A Navier-Stokes 64 75 None
123 2 1 80 Continuoug MOGA N/A Streamline curvature] 300 1000 [ None
method
[29] 2 s.C. 5 Continuoug MOPED N/A Coupled boundary layerl N/A N/A Use of Kriging model
potential  flow panel
method
[11] 3 2 4 Continuoug NCGA N/A Parabolized Navier-[ 100 50 None
Stokes
[14] 2 N/A 12 Continuoug N/A Elitist selective inter-| Navier-Stokes 100 100 None
breeding, ranking of
solutions according to|
constraints and use
defined preferences
weighted variable
recombination
[26] 2 1 22 Continuoug NSGA-II SBX crossover and poly-| Euler flow with ther- 36 24 None
nomial mutation modynamical model for
dense gases
[156] 2 s.C. 12 Continuoug MOGA Stochastic universal sam{ Favre-Averaged 64 100 Robust design optimiza-|
pling, blended crossover| compressible thin-laye tion based or6o
uniform mutation, best-N| Navier-Stokes
selection
[162] 3 4 12 Continuoug e¢pxARMOGA SBX crossover, no mu- Coupled boundary layel 4 2000 | Reinitialization of popu-
tation is used, external potential flow panel lation is used for diver-
file storage based om- | method sity preserving, instead
dominance of mutation

NObj = Number of objectives; NCons = Number of constraint¥al = Number of design variables; VarType = Type of variablPop = Population size; Gmax = Maximum

number of generations; N/A = Not available; s.c. = Only sidestraints are adopted.

TABLE I

SUMMARY OF MOEAS APPLIED IN2D GEOMETRIES AND AIRFOIL SHAPE OPTIMIZATION PROBLEMS

turbine/propeller blades, and complete aircraft configona.

Complex three-dimensional physics are present for highdpe

flow over wings and turbine/propeller blades, in which shock
waves can arise, affecting the design performance. Foethes

cases, the MOP cannot be simplified by the use of reduced
models, such as two-dimensional simulations, as done in the
applications of the previous section. Next, we will discuss
applications of MOEAs in which their authors deal with these
3D complex physics/shape optimization problems.

- Sasaki et al. [145] and Obayashi et al. [118] solved

a multi-objective aerodynamic wing shape optimization
problem in which they minimized three objectives: (i)
drag coefficient for transonic cruise, (ii) drag coefficient
for supersonic cruise, and (iii) bending moment at the
wing root for supersonic cruise condition. The set of
constraints comprised lift coefficient at both transonid an
supersonic cruise conditions, wing area and maximum
airfoil thickness. The variables for this design were 66
in total, and defined the wing planform shape, airfoil

chord and thickness distribution at several wing stations,
as well as wing twist angles at the same airfoil locations.
The authors adopted MOGA and the design candidates
were evaluated by a high-fidelity Navier-Stokes CFD
flow simulation. The evaluation process was parallelized
using the master-slave paradigm. In a further paper,
Sasaki et al. [146] used the same algorithm for the
aerodynamic optimization of a supersonic transport wing-
body configuration. In this application, two objectives
were considered: (i) drag coefficient and (ii) difference
in Darden’s equivalent area distribution. Constraints on
the lift coefficient were imposed during the optimization,
and on the length and volume of the fuselage. The aim
of the second objective was to achieve low sonic boom
characteristics. For this problem, the number of variables
increased to 131, as the fuselage geometry was added
in this case. The aerodynamic evaluation for the first
objective was performed by an Euler CFD simulation
to considerably reduce the computational time with re-



spect to the use of a Navier-Stokes CFD simulation.
Nonetheless, the optimization process was parallelized
using the master-slave paradigm. Two test cases were
considered, each one having different upper/lower limits
for the section nearby the wing-body intersection.

Sasaki and Obayashi [147] solved a problem similar to
the previous one [146] and obtained analogous results,
but in this case, the ARMOGA algorithm was used. Also,
and in order to incorporate constraints, an extended Pareto
ranking method based on constraint-dominance was used
[47].

Ng et al. [115] addressed a multiobjective wing platform
and airfoil shape optimization problem. The MOP aimed
to redesign the reference ONERA M6 wing minimizing
two objectives: (i) W/Wo, which is the ratio for the design
wing weight with respect to the reference ONERA M6
wing weight, and (i) CD/CDo, which is the ratio of the
design wing drag coefficient with respect to that of the
reference wing. The first objective was evaluated using a-
semi-empirical equation, while the second was obtained
from a multigrid Euler CFD simulation. Constraints were
imposed on the flow Mach number and constant lift
coefficient. No special constraint handling technique was
used, but the CFD code was instructed to vary the angle
of attack, subjected to a tolerance, in order to satisfy
this equality constraint. This technique can be seen as
a mechanism to repair solutions. The wing platform
was represented by 5 design variables: (a) taper ratio,
(b) wing sweep angle, (c) twist angle, (d) aspect ratio,
and (e) thickness-to-chord ratio. The airfoil used for the
wing corresponded to the symmetric airfoil used in the
ONERA M6 wing, and was the same across the wing. The -
optimizer used was based on the PSO algorithm described
in Ray et al. [136]. The authors presented results for two
test cases: the first with 4 steps and the second with 8
steps. In the first case 10 nondominated solutions were
obtained, while 11 were found in the second case. In
both cases, all the nondominated designs were better in
the first objective function compared to the reference
wing, and for the second objective, almost half of the
population were better while the rest were worse, with
respect to the reference wing. An Adaptive Search Space
Operator (ASSO) technique was used by the authors to
give the algorithm the possibility of adapting decision
variables bounds by shrinking/expanding the boundaries
of the design space.

Lian and Liou [101] addressed the optimization of a
three-dimensional rotor blade, namely the redesign of the
NASA rotor 67 compressor blade, a transonic axial-flow
fan rotor, which was the first of a two-stage compressor
fan. Two objectives were considered in this case: (i) max-
imization of the stage pressure rise, and (ii) minimization
of the entropy generation. Constraints were imposed on
the mass flow rate to have a difference less than 0.1%
between the new one and the reference design. The blade
geometry was constructed from airfoil shapes defined at
four span stations, with a total of 32 design variables.
The authors adopted MOGA. The optimization process
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was coupled to a second-order RSM, which was built
with 1,024 design candidates using the Improved Hy-
percube Sampling (IHS) algorithm. 12 design solutions
were selected from the RSM-Pareto front obtained, and
such solutions were verified with a high fidelity CFD
simulation. The objective function values slightly ditéer
from those obtained by the approximation model, but
all the selected solutions were better in both objective
functions than the reference design. Similar work was
presented by Lian and Liou [102] but minimizing the
blade weight instead of the entropy generation. Similar
performance results were obtained with lighter blades.
More recently, Kim and Liou [78] presented the design
of three new MOEAs, including addtitional mechanisms
to the basic MOGA algorithm indicated before. Such
mechanisms included: an elite-preserving approach (EP-
MOGA), a modified sharing function (EP-MOGAS), and

a gradient-based directional operator (EP-MOGAS-D).
Holst [61] presented the aerodynamic optimization of a
wing-body configuration in which two objective func-
tions were maximized: (i) lift-to-drag ratio, and (ii)
configuration volume. Constraints were imposed on the
operating flow condition at transonic Mach number and
at a fixed lift. The problem had 66 decision variables
which controlled the wing geometry, its position along
the fuselage and the section shape of the fuselage at some
specified fuselage stations. The author adopted MOGA.
The proposed approach was able to reduce the fuselage
cross section in the vicinity of the wing-fuselage juncture
which is a common practice in aerodynamic design for
the transonic flow regime.

Sasaki et al. [142] solved an aerodynamic MOP for a
turbine compressor stage. The main aim was to improve
three aerodynamic objectives, by identifying the trade-
offs among them in the baseline condition: (i) isentropic
efficiency, (ii) blockage, and (iii)) flow loss. Equality
constraints on the design were imposed, intended mainly
to maintain the flow and operating conditions similar
to those of the baseline geometry: Stage loading, mass
flow rate, stage exit whirl angle and pressure ratio. Such
equality constraints were transformed into inequalities,
and thresholds were reduced as the optimization pro-
ceeded. The three-dimensional shape of the blade was
re-designed from the baseline geometry, by defining
parameters that allowed: (a) axial movement of sections
along the engine axis, (b) circumferential movement of
sections, (c) solid body rotation of sections based on
trailing edge position, and (d) control on the number
of blades. In total, 28 design variables were used per
compressor stage. The authors adopted ARMOGA. The
aerodynamic evaluation was performed with high fidelity
Reynolds-Averaged Navier-Stokes CFD tools to analyze
a compressor stage. The CFD analysis comprised the
rotor/stator interaction. The authors presented two appli
cation examples, the first of which had a fixed number
of rotor/stator blades. The optimization process was able
to improve the baseline design while 8 designs satisfied
all the constraints. Efficiency was improved within 1%,



even when infeasible solutions were considered. After
analyzing the trade-off among the objectives from the first
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using 40 parameters, from which 33 were considered
design variables. The authors adopted the NSGA-II with

test case, a second test case was proposed, considering thea commercial CFD software for evaluating the three-

number of rotor/stator blades as an additional variable,
and changing the approximation function in the radial
direction. In this case, a B-spline function was used
instead of the cubic-spline adopted in the previous case.
Results from this second test case achieved an efficiency
improvement of 1.5%. In this case, 14 feasible designs
were generated, from which only 4 were nondominated.
Benini [8] extended a previous work from Benini and
Toffolo [9] for a three-dimensional transonic compressor
rotor design optimization problem in which two objective
functions were maximized: (i) total pressure ratio, and
(ii) adiabatic efficiency. Constraints were imposed on the
design conditions as to obtain the mass flow of a reference
design, the NASA Rotor 37. The blade geometry used
in the transonic compressor rotor was parameterized by
Bézier curves defining the mean camber line and the
thickness distribution. Three profiles along the blade
span were defined: at hub, midspan and tip. A total of
23 decision variables defined the 3D compressor rotor
geometry. The author used the MOEA described in [9], -
which is based on evolution strategies. The performance
evaluation of the designs was done using high fidelity
Navier-Stokes CFD simulations. The authors noted that
the nondominated solutions produced were clustered
around the reference design point, due to a tight constraint
imposed on the flow mass rate, which did not allow the
algorithm to explore a wider region of the search space.
Nevertheless, the author was able to obtain improvements
in both objective functions using the proposed approach.
Chiba et al. [17] explored the trade-offs among four
aerodynamic objective functions in the optimization of
a wing shape for a Reusable Launch Vehicle (RLV). The
objective functions were: (i) the shift of the aerodynamic
center between supersonic and transonic flight conditions,
(i) pitching moment in the transonic flight condition, Jiii
drag in the transonic flight condition, and (iv) lift for
the subsonic flight condition. The first three objectives
were minimized while the fourth was maximized. These
objectives were selected for attaining control, stahility
range and take-off constraints, respectively. The RLV
definition comprised 71 design variables to define the
wing platform, wing position along the fuselage and
airfoil shape at prescribed wingspan stations. The authors
adopted ARMOGA, and the aerodynamic evaluation of
the RLV was done with a Reynolds-Averaged Navier-
Stokes CFD simulation. A trade-off analysis was con-
ducted with 102 nondominated individuals generated by -
the MOEA.

Song and Keane [159] performed the shape optimization
of a civil aircraft engine nacelle. The primary goal of the
study was to identify the trade-off between aerodynamic
performance and noise effects associated with various
geometric features for the nacelle. For this, two objec-
tive functions were defined: i) scarf angle, and ii) total
pressure recovery. The nacelle geometry was modeled

dimensional flow characteristics. Due to the large size of
the design space to be explored, as well as the simulations
being time consuming, a Kriging-based surrogate model
was adopted in order to keep the number of designs
being evaluated with the CFD tool to a minimum. The
authors reported difficulties in obtaining a reliable Paret
front (there were large discrepancies between two con-
secutive Pareto front approximations). They attributed
this behavior to the large number of variables in the
design problem, and also to the associated difficulties to
obtain an accurate Kriging model for these situations.
In order to alleviate this situation, they performed an
analysis of variance (ANOVA) test to find the variables
that contributed the most to the objective functions. After
this test, they presented results with a reduced surrogate
model, employing only 7 decision variables. The authors
argued that they obtained a design similar to a reference
one, but requiring a lower computational cost because of
the use of this reduced Kriging model.

Jeong et al. [69] investigated the improvement of the
lateral dynamic characteristics of a lifting-body type re-
entry vehicle in transonic flight condition. Two objectives
were minimized: (i) the derivative of the yawing mo-
ment, and (ii) the derivative of the rolling moment. The
MOP involved four design variables, and two solutions
were sought: The first one without constraints, and the
second one constraining the lift-to-drag ratio for the
lifting-body type re-entry vehicle. The authors adopted
the Efficient Global Optimization for Multi-Objective
Problems (EGOMOP) algorithm developed by Jeong et
al. [68]. This algorithm was built upon the ideas of the
EGO and ParEGO Algorithms from Jone et al. [76] and
Knowles et al. [80], respectively. For the exploration of
the nondominated solutions, the authors adopted MOGA.
Due to the geometry of the lifting body and the operating
flow condition of interest, namely high Mach number
and strong vortex formation, the evaluation of the objec-
tives was done by means of a full Navier-Stokes solver.
Since the objectives were actually derivatives, multiple
flow solutions were required to determine their values
in a discrete manner, considerably increasing the total
computational time due to a large number of calls of the
CFD code. The authors were able to find better geometry
configurations than the baseline one, with better lateral
dynamic characteristics, both for the unconstrained and
for the constrained instances.

Lee et al. [98] presented the robust design optimization
of an ONERA M6 wing shape. The robust optimization
was based on the concept of the Taguchi method in
which the optimization problem is solved considering
uncertainties in the design environment, in this case, the
flow Mach number. The problem had two objectives: (i)
minimization of the mean value of an objective function
with respect to variability of the operating conditionsgdan
(i) minimization of the variance of the objective function



of each candidate solution, with respect to its mean
value. In the sample problems, the wing was defined
by means of its planform shape (sweep angle, aspect
ratio, taper ratio, etc.) and of the airfoil geometry, at
three wing locations (each airfoil shape was defined with
a combination of mean lines and camber distributions),
using a total of 80 design variables to define the wing
designs. Geometry constraints were defined by upper
and lower limits of the design variables. The authors
adopted the Hierarchical Asynchronous Parallel Multi-
Objective Evolutionary Algorithm (HAPMOEA) [54],
which is based on evolution strategies, incorporating the
concept of Covariance Matrix Adaptation (CMA). The
aerodynamic evaluation was done with a CFD simulation.
It is worth noting that HAPMOEA uses, during the
evolutionary process, a hierarchical set of CFD models, -
varying the grid resolution of the solver (three levels are
used), as well as different population sizes (depending on
the grid resolution). The authors presented two solutions,
with and without uncertainties. In the latter case the
problem considered two design points (at two different
operating conditions), and the algorithm found the trade-
off solutions between these two design points. For the
case of the design with uncertainties, the optimization
problems found the trade-off solutions considering the
minimization for the mean value of the objective function
(the inverse of the lift-to-drag ratio for the wing) and
its variance with respect to the mean value. From the
results presented by the authors, the Pareto fronts were
continuous and exhibited a concave geometry for the
trade-off solutions. 12 solutions were obtained in the
robust design of the wing and all the nondominated
solutions presented a shock-free flow both at the upper
and at the lower surface of the wing. Additionally, the
nondominated solutions showed a better behavior, in
terms of aerodynamic performance (lift-to-drag ratio)
with a varying Mach number, as compared to the baseline
design. In these examples, the authors used three grid-
levels (model resolution): fine, intermediate, and coarse.
During the evolutionary process, the individuals were
moved from the coarse to the fine levels and viceversa.
A total of 1100 individuals were evaluated.

Oyama et al. [126] applied a design exploration tech-
nique to extract knowledge information from a flapping
wing MAV (Micro Air Vehicle). The flapping motion

of the MAV was analyzed using multi-objective design -
optimization techniques in order to obtain nondominated
solutions which were analyzed with Self Organizing
Maps (SOMs) in order to extract knowledge about the
effects of the flapping motion parameters on the objective
functions. The conflicting objectives considered were: (i)
maximization of the time-averaged lift coefficient, (ii)
maximization of the time-averaged thrust coefficient, and
(iif) minimization of the time-averaged required power
coefficient. The problem had five design variables and the
geometry of the flying wing was kept fixed. Constraints
were imposed on the averaged lift and thrust coefficients
so that they were positive. The authors adopted MOGA.

16

Due to the nature of the complex flow in this prob-
lem, the objective functions were obtained by means of
CFD simulations, solving the unsteady incompressible
Navier-Stokes equations. Objective functions were aver-
aged over one flapping cycle. The purpose of the study
was to extract trade-off information from the objective
functions and the flapping motion parameters such as
plunge amplitude and frequency, pitching angle amplitude
and offset, and phase difference. In order to minimize
the turnaround computational time, the evaluation of
the objective functions was parallelized using a cluster
of workstations. From the results obtained, the authors
extracted extreme nondominated solutions which were
further analyzed to understand their flow physics for each
objective in particular.

Arabnia and Ghaly [5] presented the aerodynamic shape
optimization of turbine stages in three-dimensional fluid
flow, so as to minimize the adverse effects of three-
dimensional flow features on the turbine performance.
Two objectives were considered: (i) maximization of
isentropic efficiency for the stage, and (ii) minimization
of the streamwise vorticity. Additionally, constraintsnge
imposed on: (1) inlet total pressure and temperature,
(2) exit pressure, (3) axial chord and spacing, (4) inlet
and exit flow angles, and (5) mass flow rate. The blade
geometry, both for rotor and stator blades, was based on
the E/TU-3 turbine which is used as a reference design
to compare the optimization results. The multi-objective
optimization consisted of finding the best distribution
of 2D blade sections in the radial and circumferential
directions. For this, a quadratic rational Bézier curvithw

5 control points was used for each of the two blades.
The authors adopted NSGA. Both objective functions
were evaluated by using a 3D CFD flow simulation. The
authors adopted an artificial neural network (ANN) based
RSM. The ANN model with backpropagation, contained
a single hidden layer with 50 nodes, and was trained
and tested with 23 CFD simulations, sampling the design
space using the LHS technique. The optimization process
was undertaken by using the ANN model to estimate both
the objective functions, and the constraints. Finally, the
nondominated solutions obtained were evaluated with the
actual CFD flow simulation. The authors indicated that
they were able to obtain design solutions which were
better than the reference turbine design.

Tani et al. [168] solved a rocket engine turbopump
blade shape optimization design which considered three
objective functions: (i) shaft power, (ii) entropy rise
within the stage, and (iii) angle of attack of the next
stage. The first objective was maximized while the
others were minimized. The design candidates defined
the turbine blade aerodynamic shape and consisted
of 58 design variables. The authors adopted MOGA.
The objective function values were obtained from
a CFD Navier-Stokes flow simulation. The authors
reported solutions that were better than a baseline design
turbopump blade shape. Indeed, improvements on the
three objective functions were of 8%, 30% and 40%,
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respectively, as compared to the baseline design. In spite of the large number of constraint-handling tech-
niques currently available for evolutionary algorithms3]2
Analysis of the use of MOEAs in 3D complex physics/shape [108], in most of the works reported in this section there is a
optimization: noticeable lack of them. The use of good constraint-hagdlin
techniques is particularly useful when the optimum sohgio
Table Il summarizes the application of MOEAs in 3Dliie on the boundary between the feasible and the infeasible
complex physics/shape optimization problems. For thisigroregions, which is normally the case in multi-objective epti
of applications, a common point is that 3D complex shapesization [24]. Their use can contribute to a better (i.e.reno
and/or complex physics models are considered, which regjuirefficient and effective) exploration of the search spacehin t
in most cases, the use of high dimensional design spacerangf@sence of constraints.
sophisticated simulation tools. For both cases, the degign
timization search becomes highly computationally expensip. Structural optimization
(some authors report times in the order of days or even month

L Mince its origins, aeronautical and aerospace engineering
for the problems that they solved). Such applications mqu'design has adopted, as a premise, the design of lighter and

approaches that can minimize their high computational.cog{ronger structures, which are two objectives that arelgléa

Somiz authors Ie“ii;n iarglltellza?on techr|1||q|ues foﬁm@ conflict. The applications of MOEASs in structural optimizet
(see for example [ ). An in ergs mg paraile apprq € that are reviewed in this section make evident that these
one reported by Lee et al. [98], in which the evaluation of th

o : . . (?esign goals are still pursued by researchers in aeroahutic
objectives is done in an asynchronous manner, with a sche - h
: aerospace engineerifg.
that resembles an island model [24]. Such asynchronous

. o . . - Langer et al. [91] applied an integrated approach using
parallel MOEAs are uncommon in the specialized literatime, . ; . .
spite of their high potential in the sort of applicationsogpd Computer Aided Design (CAD) modeling with a MOEA

in this section. Another alternative is the use of surrogate for structural shape and topology optimization problems.

models, which are adopted by a number of works reported The ?‘“th‘_’rs dealt with the structura! optimization of
in this section. For example, Lian and Liou [101], [102], a t_ypu_:al mstrument_ panel_ of ?‘.Se?t‘?”'te n \.Nh'Ch two
used a second order RSM, Song and Keane [159] used a objectives were d-e_zfmed:. ('.) minimizing the nstrument
Kriging-based model, Lee et al. [98] adopted hierarchidaDC panel mass, and ("). maX|m|2|ng.the f|rst. elgenfrequelncy.
models (i.e., models with varying mesh sizes, which produce Thte probI(?m hadt.elght cg.rt{stralnts, .Wlhlch Werbe d(teﬁned
approximations at a reduced computational cost), and Aaabn ![n ermsto operda ng cc;n tons, rr|1a|n|y given |>|' Stress,
and Ghaly [5] adopted an artificial neural network. The use emperature and eigenirequency 1evels, as Well as geo-
of approximate models can be seen as an advantage, but metric c_onstralnts. 'I_'he problem had 17 deS|gr! variables
also presents drawbacks, for example, for large dimenkiona from Whlc.h 2 were d|scre_te and the rest were m!xed (con-
design spaces, as indicated by Song and Keane [159]. Another t|nuous/d|scr§te). The dlsc.rete variables considered the
alternative is to adopt simpler approximation mechanisms ntu_mber of s:[trmglers_rtho uI\S/I%IIrE]At\hde palnel, an? t?ﬁ pIatt(;and
such as fitness inheritance [109] and fitness approximation E”O?%?r rfn"ﬁ era S'f te o e\(;e ope ]Y ell_al: ors
[164]. Another aspect worth emphasizing is that most asthor ad the toflowing features. it used a mix of realiinteger

adopted MOEAs with real-numbers encoding, rather than with repri§eTtat|ondfor contlnuousdand td|;s_crete Va“?bles’ re-
binary encoding. This is relatively common when dealing Spectively, and Crossover and mutation operators were

with engineering applications having a high number of de- appligd diferently for each type of variable. Bgsides, th.e
cision variables. The lack of modern diversity maintenance algorithm used Pareto dominance-based ranking to assign

approaches such as archiving techniques (see for example f|:netss to 4a7n individual ind_ tthﬁ %(I)_als tan(:] prlontle_zrsh
[60], [94], [151]) is also evident within the application$ o stra egy.[ ] as a constraint-handiing technique. 1he
this section, although there are some interesting exagptio nondormnated solut|or_1$ Obt"’."”ed at e.ach generation were
For example, Sasaki and Obayashi [147] adopted two external tsrt]ored Iln ?n external file, \f[\;]h'Ch cons.t|tutt§d, atfttkt:e T:)nd ?f
archives for their MOEA. Also interesting is the proposal of et_evci u |§>nary prctacgsbs, the iﬂpgrEO:'rrat'ﬁn_ 0 T_ ?_re 0
Holst [61] of using “bins” (this approach is similar in its op |ma| € t?]enerat\he y Ied h ) tn _elrt_app |cab||on
operation to the adaptive grid adopted in PAES [83]). Howeve examples, the authors solved the optimiza |on. probiem
it is worth noting that both, Sasaki & Obayashi’'s and Holst’s folr three_shape and topology optlmlzgtlon cases: (a) panel
approaches quickly degrade their performance as the number W'th.qm instruments, (b) pa.neI.W|th mstruments.at fixed
of objectives increases. positions, and (c) panel with instrumental placing. The

An interesting area worth exploring is the design of mecha- evaluation of th_e obj_ective funct?ons comprised four Ipad
nisms that allow a better (i.e., more intelligent) explanat CaseS:_(a) ql.Jas".Stat'C acceleratlon,‘(b) modal analgis, ,
of the search space. For example, Sasaki [143], and Ng smusmdgl vibration loads, and (q) pseudo temperature
et al. [115] use statistics gathered from the population in |°ad.' This latter load case, restricted t.he. posmonmg of
order to guide the search. Such approach, however, requires the instruments on thg _pe}nel, due to I|m|t!ng operating
a good diversity maintenance mechanism in order to avoid temperature for a specific instrument. The first three load
an excessive selection pressure that would produce prematurgy, 5 good survey of the use of MOEAs in structural optimiatithe
convergence. interested reader is referred to [73].
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[ Ref [ NObj [ NCons | NVars | VarType [ Algorithm [ Operators [ Physics Model [ NPop | Gmax [ Remarks
[145] 3 4 66 Continuoug MOGA Fitness sharing, BLXx | Navier-Stokes 64 30 None
crossover, best N select
tion
[118] 3 4 66 Continuoug MOGA Fitness sharing, averagef Navier-Stokes 64 70 None
crossover, best N select
tion
[146] 2 3 131 Continuoug  MOGA Fitness sharing, BLXx | Euler/Navier-Stokes 64 20 None
crossover, best N select
tion
[147] 2 3 131 Continuoug ARMOGA Fitness sharing, BLXx | Euler/Navier-Stokes 64 20 Design variables range
crossover, best N select are adapted everyM
tion generations, based on the
statistics of the archive
and current population
[115] 2 2 5 Continuoug MOPSO Adaptive Search Spacing Euler N/A N/A The ASSO operator al
Operator (ASSO) lows to extend the initial
design space
[101] 2 1 32 Continuoug MOGA Fitness sharing, BLXx | Reynolds-Averaged N/A N/A Use of RSM
crossover, best N set Navier-Stokes
lection, random uniform
mutation
[61] 2 2 66 Continuoug  MOGA Masking array to ac-| Potential flow 34 N/A None
tivate/deactivate the de
sign variables, selectior]
based on bins of the non
dominated archive, ran
dom average crossover,
local and global mutation
operators
[142] 3 4 28 Continuoug ARMOGA Stochastic universall Reynolds-Averaged 16 20 Grid-enabled parallel
sampling, SBX | Navier-Stokes computation
crossover,  polynomial
mutation, best N
selection, Pareto ranking
incorporating constraints|
[8] 2 1 23 Discrete (n + p)-ES | Gaussian mutation,| Navier-Stokes 20 100 None
Goldberg’s Pareto
ranking, crowding based
on Euclidian distance in
the decision space
[17] 4 s.C. 71 Continuoug ARMOGA Fitness sharing, BLXx | Reynolds-Averaged 8 30 None
crossover, best N select Navier-Stokes
tion
[159] 2 s.C. 33 Continuoug  NSGA-II SBX crossover, polyno-| Navier-Stokes 60 20 Use of Kriging model
mial mutation
[69] 2 1 4 Continuoug  MOGA N/A Navier-Stokes N/A N/A None
[98] 2 s.C. 80 Continuoug HAPMOEA | ES mutation operatorl Navier-Stokes * N/A * Population sizes are
with Covariance Matrix 20, 40 and 60 for fine,
Adaptation (CMA-ES), medium and coarse CF[
distance dependen mesh grids, 1100 design
mutation,  tournament| candidates evaluated
selection
[126] 3 2 5 Continuoug  MOGA Fitness sharing, roulettg¢ Navier-Stokes N/A N/A Knowledge  extraction
wheel  selection,BLX- from the multi-objective
« crossover, random optimization process
uniform mutation,
Pareto based constrairt
handling
[5] 2 5 10 Continuoug NSGA N/A Navier-Stokes N/A N/A ANN model
[168] 3 s.C. 58 Continuoug MOGA Stochastic universal samr Navier-Stokes 16 50 None
pling, BLX-« crossover,
best N selection

NObj = Number of objectives; NCons = Number of constraint¥al = Number of design variables; VarType = Type of variabPop = Population size; Gmax = Maximum

number of generations; N/A = Not available; s.c. = Only sidestraints are adopted.

TABLE Il

SUMMARY OF MOEAS APPLIED IN3D COMPLEX PHYSICYSHAPE OPTIMIZATION PROBLEMS



cases were evaluated in parallel using a FEM simulation
on a cluster of workstations. In the first application ex-
ample, the Pareto front was approximated and presented
small regions of discontinuity. For the second example,
the Pareto front changed radically its sh&peith more
regions of discontinuity. Finally, for the third case, the a
thors did not present a Pareto front but indicated that this
case presented difficulties to generate feasible solytions
due to the tight constraints defined. This condition was
alleviated by introducing a solution repairing algorithm.
Langer et al. [92] extended the previous MOEA using
RSM in order to reduce its associated computational
cost. One important feature in this application is that a
clustering technique was used to build multiple response
surfaces over continuous subspaces of the complete de-
sign space.

Voutchkov et al. [180] solved a robust structural design
of a simplified FEM jet engine model. This application -
aimed at finding the best jet engine structural configura-
tion minimizing the variation of reacting forces under a
range of external loads, the mass for the engine and the
engine’s fuel consumption. The authors considered the
minimization of four objectives: (i) standard deviation
of the internal reaction forces, (ii) mean value of the
internal reaction forces, (iii) engine’s mass, and (iv) mea
value of the specific fuel consumption. The FEM model
comprised a set of 22 groups of shell elements, and
the thickness corresponding to 15 of these groups were
considered as design variables. The authors adopted the
NSGA-Il. The evaluation of the structural response was
done in parallel by means of FEM simulations. The
computational time was reduced using a Kriging-based
RSM. The first two objectives were computed over 200
external load variations. The authors reported finding a
good compromise (and robust) design.

Todoroki and Sekishiro [173] proposed a new optimiza-
tion method for composite structural components. The
problem consisted of two objectives: (i) minimize the
structural weight of a hat-stiffened wing panel, subject
to buckling load constraints, and (ii) maximize the prob-
ability of satisfying a predefined buckling load. The
problem was described by a set of mixed real/discrete
design variables. The real variables corresponded to the
stiffener geometry definition, while the discrete variable
were related to the number of plies for the composite
panel. Constraints were imposed on the dimensions of
the stiffener, but they were automatically satisfied in the
definition of the decision variables’ ranges. The authors
adopted MOGA coupled to a Kriging model, in order
to reduce the number of objective function evaluations,
and to a Fractal Branch and Bound (FBB) method [172]
for the stacking sequence optimization needed in laminar
composites structures. The authors noted that the first
objective was not computationally costly, since it could be

8|f the problem was transformed into one that considered tmnmization
of both objectives, this change in geometry for the Paretmtfrwould
correspond to a change from a convex to a concave shape. yiesof
geometry is challenging to traditional mathematical pangming techniques.
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computed once the geometry of the design candidates was
defined. On the other hand, the buckling load constraint
demanded a large computational cost, since it needed a
FEM simulation. For this reason, a Kriging model was
adopted and initialized with sampling points obtained
by the LHS technique. The optimization cycle consisted
of two layers. The upper layer was driven by MOGA
and the Kriging model, where the optimization of the
structural dimensions took place. At the lower layer,
the stacking sequences of the stiffener and panels were
optimized by means of the FBB method. From the results
obtained, a comparison of different designs was made.
The solution obtained with the evolutionary algorithm
was 3% heavier than a previous design obtained with
a conventional (deterministic) method, but required only
301 FEM analysis compared to the tens of thousands
required by the previous design.

Olympio and Gandhi [121] applied a hybrid MOEA
to generate a constrained topology optimization design
for morphing aircraft structures. The problem consisted
mainly on finding the trade-off for cellular structures
with voids, meeting the following four objectives:
(i) high recoverable strain capability to allow several
cycles of morphing, (i) low work necessary to morph
for minimal additional need on the actuation system,
(i) high bending stiffness to reduce out-of plane
deformation due to surface pressure and (iv) low mass.
Constraints were defined on local strains in order to
prevent plastic deformations or material failure. In this
application, comprising the distribution of material in
the structural element, a FEM analysis was performed
to evaluate the objective functions related to strain
and stiffness for the material. Mesh elements were
considered as the design variables which are discrete
in nature. Special techniques were used to suppress
non-connected regions of material. The cardinality of the
design variables vector depended on the discretization
of the finite element mesh used in solving the problem.
The authors adopted theNSGA-II of Kollat and Reed
[84]. This MOEA can be seen as an improved version
of the NSGA-II, which incorporates-dominance [94],
dynamic population sizing, and an automatic termination
criterion. The e-NSGA-II was hybridized with a local
search procedure, which consisted of flipping elements
adjacent to actual structural elements and evaluating its
sensitivity. This can be seen as a specialized operator
which acts only on void elements adjacent to structural
elements. In the application examples, this local search
procedure was limited to a user-defined number of
iterations, and was incorporated after a specific number
of generations. Additionally, the authors proposed the
use of a variable mutation rate, in which the mutation
rate was increased or decreased from its current value,
depending on the improvement of the solutions. The
authors presented two application examples. The first
corresponded to a one-dimensional flexible skin using
a mesh grid size of20 x 20 elements (400 design
variables), and the second example corresponded to a



shear-compression flexible skin using the same mesh size.

Analysis of the use of MOEASs in structural optimization:

Table IV summarizes the application of MOEASs in struc-
tural optimization problems. The problems presented is thi
section are characterized by the use of mixed variable types
which in some cases required that the MOEA adopted special
representations and operators. There were also sevefal pro
lems that involved the solution of a combinatorial optintiza
problem. It is worth emphasizing that traditional MOEAsIsuc
as NSGA-II do not necessarily perform well in multi-objeeti
combinatorial optimization problems, since they were -orig -
inally designed to solve continuous optimization problems
Additional elements such as a good local search engine are
normally required when solving combinatorial optimizatio
problems. In fact, there is a wide variety of MOEAs that
have been designed to solve multi-objective combinatorial
optimization problems (see for example [37], [48]). Howgve
many of them do not support mixed problems such as those
described in this section. This seems to indicate that the
solution of multi-objective structural optimization piems
such as those described in this section is a research lihestha
worth exploring in the future. The use of the so-called multi
objective memetic algorithms [50], which hybridize MOEAs
with powerful local search engines seems to be an obvious
choice to tackle the problems described in this section, but
they have been scarcely used in this field until now.

Another interesting topic is the use of advanced archiving
techniques that allow us to limit the number of nondominated
solutions to be stored in a clever way. TRNSGA-II of
Kollat and Reed [84] is an example of such clever archiving
techniques. However, other alternatives exist which haste n
been properly exploited in the context of aeronautical and
aerospace engineering (see for example [151]).

E. Multidisciplinary design optimization )

As indicated before, aeronautical and aerospace designs

are typically multidisciplinary, involving disciplinesush as
aerodynamics, structures, propulsion, acoustics, matufag

and economics, among others. Normally, each of the disci-
plines involved aims at optimizing one specific performance
metric, which makes multidisciplinary design multi-okjee

in nature. Next, we present some applications of MOEAs in
multidisciplinary design optimization (MDO).

- Obayashi et al. [119], [120] and Takahashi et al. [165]
addressed the MDO of a wing platform. Three objectives
were considered: (i) aerodynamic drag, (ii) wing weight,
and (iii) fuel weight. Constraints were imposed on lift
and on wing structural strength. No special constraint-
handling mechanism was adopted, and for any solution
that violated the constraints, its rank was lowered, by
using a constant penalty value of 10. Three design
variables were considered for the wing planform: sweep
angle, chord length at the kink and chord length at the tip.
Other variables such as the wingspan, root chord length
and position of the kink took a fixed value. The authors
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adopted MOGA. Two disciplines were considered: aero-
dynamics and structures. The aerodynamic evaluation was
performed with the potential CFD solver FLO27, from
which only induced and wave drag could be obtained. For
the wing weight, an algebraic model was used, and for
the last objective, the volume of the wing was calculated
to estimate the amount of fuel that could be stored in
the wing tanks. The first two objectives were minimized
while the third was maximized. The structural analysis,
evaluated the skin thickness required, as well as the stress
distributions which was considered as a constraint in the
problem.

Choi et al. [20] solved a MDO problem involving Super-
sonic Business Jet design. The goal was to obtain a trade-
off design having good aerodynamic performances while
minimizing the intensity of the sonic boom signature at
the ground level. Three objectives were considered: (i)
the aircraft drag coefficient, (ii) initial pressure ris@¢m
overpressure), and (iii) ground perceived noise level. In
this case, the disciplines involved were aerodynamics
and aeroacoustics. Constraints were imposed on some
geometrical parameters, and on aircraft's operational con
ditions. No special constraint-handling mechanism was
used other than discarding infeasible candidates. The
geometry of the aircraft was defined by 17 design vari-
ables, allowing the modification of the wing platform,
its position along the fuselage, and some cross sections
and camber for the fuselage. The authors adopted the
NSGA-II. For evaluating the objective functions, a high-
fidelity Euler simulation was obtained with a very fine
grid close to the aircraft’s surface. In order to reduce the
computational time required by the optimization cycle,
Kriging models were employed, one for each objective
function. Its initial definition was formed with a LHS of
the design space with 232 initial solutions including both,
feasible and infeasible candidates. The authors were able
to find solutions that were better than a baseline design.
In related publications, Chung and Alonso [21] and
Chung et al. [22] solved the same MDO problem de-
scribed before, but using the GA algorithm from Coello

and Toscano [25]. This change aimed at reducing the
total number of function evaluations performed during
the optimization process. The-GA algorithm uses a
population of only 4 individuals, an external file and a
reinitialization process. In one study [21], the design cy-
cles were performed using a Kriging model. Two design
cycles were executed, each consisting of 150 solution
candidates using the LHS technique, around a base design
in the first cycle. The second cycle was performed around
the best solution obtained in the previous cycle aiming to
improve it. In the other study [22], the authors proposed
and tested the Gradient Enhanced Multiobjective Genetic
Algorithm (GEMOGA). The basic idea of this MOEA

is to enhance the nondominated solutions obtained by
a genetic algorithm with a gradient-based local search
procedure. One important feature of this approach was
that the gradient information was obtained from the
Kriging model. Therefore, the computational cost was not
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[ Ref ] NObj [ NCons [ NVars [ VarType [ Algorithm [ Operators [ Physics Model [ NPop | Gmax [ Remarks |
[91] 2 8 17 Mixed N/A Arithmetic crossover| FEM structural analysis | 200 20 Topological shape opti-|
continu- and Gaussian mutation mization, use of external
ous/discrete for continuous variables, archive for keeping non-
two-point and uniform dominated solutions
crossover for discrete
variables, Pareto ranking
[180] 4 s.C. 15 Discrete NSGA-II SBX crossover and poly-| FEM structural analysis | N/A N/A Robust design
nomial mutation optimization, use of
Kriging model
[173] 2 s.C. 7 Mixed MOGA Fitness sharing,| FEM structural analysis | 100 300 Use of Kriging model
continu- SBX crossover and
ous/discretp polynomial mutation for
continuous variables,|
Two-point crossover and
uniform  mutation for
discrete variables
[121] 4 s.C. 400 Discrete e-NSGA-II Dynamic population siz-| FEM structural analysis [ N/A N/A Topological shape opti-|
ing, variable mutation mization, use of local
rate, SBX crossover and search procedure for im
polynomial mutation proving solutions

NObj = Number of objectives; NCons = Number of constraint¥alé = Number of design variables; VarType = Type of variahPop = Population size; Gmax = Maximum
number of generations; N/A = Not available; s.c. = Only sidestraints are adopted.

TABLE IV

SUMMARY OF MOEAS APPLIED IN STRUCTURAL OPTIMIZATION

considerably increased. In both studies, the authors re-
ported obtaining very good approximations of the Pareto
optimal set.

- Kumano et al. [89] addressed the MDO of the wing

shape of a small jet aircraft. In this study, four objectives
were minimized: (i) drag at the cruise condition, (ii) drag
divergence between cruising and off-design condition,
(i) pitching moment at the cruising condition, and (iv)
structural weight of the main wing. Additionally, two
constraints were considered, related to the wing’s rear
spar heights, and the strength and flutter margins. The
wing geometry was defined by airfoil sections at four
wingspan stations, and wing twist at five wing stations.
A total of 109 design variables were required. The au-
thors adopted MOGA. Aerodynamics and structures were
the two disciplines needed for evaluating the objective
functions. Since high-fidelity CFD and CSD simulations
were used, demanding a very high computational time,
the optimization process was performed by means of
a Kriging model. The authors were able to obtain an
improved design with respect to a reference solution.

- Chiba et al. [16] performed a MDO design exploration.

The aim of this study was to find the trade-offs for -
the design of a wing for its use in a silent supersonic
transport application. Five objectives were considered:
minimization of (i) pressure drag (ii) friction drag, (iii)
boom intensity at supersonic condition, and (iv) com-
posite structural weight of the wing; and maximization
of (v) lift at subsonic condition. In these objectives,
aerodynamics and structural dynamics were the main dis-
ciplines under consideration. The constraints of this prob
lem were mainly geometrical, and no special constraint-
handling mechanism was required other than discarding
any solution that violated the geometrical constraints.
The geometry of the wing was defined by 58 design
variables. The authors adopted a hydrid MOEA consisting

of a combination of two algorithms: ARMOGA and

a MOPSO. The motivation of this hybridization was
to exploit, on the one hand, the ability for performing
global search of ARMOGA, and, on the other hand, the
ability of the MOPSO for performing local search. Both
algorithms used real-coded design variables. One half of
the population was handled by ARMOGA, with a further
subdivision, assigning one quarter of the population to
each crossover method indicated above. The other half
of the population at each generation was handled by the
MOPSO. The evaluation of the aerodynamic properties
was done via an Euler solution with TAS-Code, coupled
to a simplified model for estimating the friction drag,
reducing in this way the computational cost of this dis-
cipline. The structural properties (composite strengtth an
modal analysis) were verified with the commercial code
NASTRAN. Finally, the intensity of the sonic boom was
also evaluated. The authors obtained 75 nondominated
solutions on which a data mining method was applied,
using ANOVA and SOM methods, in order to reduce
them to a set containing only 24 solution from which
the designer was able to select only one.

Chiba et al. [18] addressed the MDO problem of a wing
shape for a transoic regional-jet aircraft. In this case,
three objective functions were minimized: (i) block fuel
for a required airplane’s mission, (i) maximum takeoff
weight, and (iii) difference in the drag coefficient between
transonic and subsonic flight conditions. Additionally,
five constraints were imposed, three of which were related
to the wing’s geometry and two more to the operating
conditions in lift coefficient and to the fuel volume
required for a predefined aircraft mission. The wing
geometry was defined by 35 design variables. The authors
adopted ARMOGA. The MDO process was done with
high fidelity CFD/CSD simulations. The disciplines in-
volved included aerodynamics and structural analysis and



during the optimization process, an iterative aeroelastic
solution was generated in order to minimize the wing
weight, with constraints on flutter and strength require-
ments. Also, a flight envelope analysis was done, i.e.,
obtaining high-fidelity Navier-Stokes solutions for vari-
ous flight conditions. The population (consisting of only
eight individuals) was reinitialized at every 5 generasion
for range adaptation. In spite of the use of such a reduced
population size, the authors were able to find several
nondominated solutions outperforming the initial design.
They also noted that during the evolution, the wing-box
weight tended to increase, but this degrading effect was
redeemed by an increase in aerodynamic efficiency, given
a reduction in the block fuel of over one percent, which
would be translated in significant savings for an airline’s
operational costs.

Sasaki et al. [144] solved a MDO for a supersonic
wing shape. In this case, four objective functions were
minimized: (i) drag coefficient at transonic cruise, (ii)
drag coefficient at supersonic cruise, (iii) bending mo-
ment at the wing root at supersonic cruise condition, and
(iv) pitching moment at supersonic cruise condition. The
problem was defined by 72 design variables. Constraints
were imposed on the variables ranges and on the wing
section’s thickness and camber, all of them being geo-
metrical constraints. Thus, no special constraint-haugdli
techniques were required, other than discarding any in-
feasible solution, and generating a new one using the
genetic operators, until a valid solution was obtained.
The authors adopted ARMOGA, and the aerodynamic
evaluation of the design solutions, was done by high-
fidelity Navier-Stokes CFD simulations. No aeroelastic
analysis was performed, which considerably reduced the
total computational cost. The objective associated with
the bending moment at wing root was evaluated by
numerical integration of the pressure distribution over
the wing surface, as obtained by the CFD analysis. The
authors indicated that among the nondominated solutions
there were designs that were better in all four objectives -
with respect to a reference design.

Lee et al. [97] utilized a generic framework for MDO
[53] to explore the improvement of aerodynamic and
radar cross section (RCS) characteristics of an Unmanned
Combat Aerial Vehicle (UCAV). In this application, two
disciplines were considered, the first concerning the aero-
dynamic efficiency, and the second one, dealing with
the visual and radar signature of an UCAV airplane. In
this case, three objective functions were minimized: (i)
inverse of the lift-to-drag ratio at ingress condition) (i
inverse of the lift-to-drag ratio at cruise condition, and
(iii) frontal area. The number of design variables was 100
and only side constraints were considered in the design
variables. The first two objective functions were evaluated
using a potential flow CFD solver (FLO22) coupled
to FRICTION code to obtain the viscous drag. The
authors adopted the Hierarchical Asynchronous Parallel
Multi-Objective Evolutionary Algorithm (HAPMOEA).
The authors reported a processing time of 200 hours
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for their approach, on a single 1.8 GHz processor. It
is important to consider that HAPMOEA operates with
different CFD grid levels (i.e., approximation levels):
coarse, medium, and fine. In this case, the authors adopted
different population sizes for each of these levels. Also,
solutions were allowed to migrate from a low/high fidelity
level to a higher/lower one in an island-like mechanism.
In further work, Lee et al. [96] solved the same previously
defined UCAV MDO problem, but considering a robust
design methodology (the Taguchi method [163]) to incor-
porate uncertainties in the operation environment of the
UCAV. The MDO problem considered two cases, each
with three objectives. The first case corresponded to a
mono-static RCS and its aerodynamic shape optimization,
and the objectives to be minimized were: (i) radar cross
section for the mono-static case, (i) mean value for the
inverse of the lift-to-drag ratio, and (iii) variance for
the inverse of the lift-to-drag ratio with respect to its
mean value. The second case was a mono/bi-static RCS
and aerodynamic shape optimization, with the following
objectives to be minimized: (i) mono-static RCS (i) bi-
static RCS, and (iii) both, the mean value of the inverse
lift-to-drag ratio, and its variance. For this latter olijee,

an aggregating function was used, instead of extending
the optimization problem to one with four objectives.
In both cases, the robust design considered uncertainties
in operating conditions such as flying Mach number,
angle of attack and radar signal orientation with respect
to the UCAV. In both test cases, the authors adopted
HAPMOEA. The MDO problem comprised more than
100 design variables, with constraints imposed on the
thickness of the airfoil sections for structural concern.
From the results, a set of 15 nondominated solutions was
obtained in the first case and a set of 10 solutions was
obtained in the second case. From these solutions, the
designers were able to select one which had superior per-
formance in all the objectives with respect to a baseline
design (this happened for the two cases considered).
Pagano et al. [127] presented an application for the MDO
of an aircraft propeller. The aim was to improve the
propeller performance. Basically, two conflicting objec-
tives were considered: (i) minimizing the noise emission
level, and (i) maximizing aerodynamic propeller effi-
ciency. For this industrial problem, several disciplines
were considered: aerodynamics, structures, and aeroa-
coustics. For each of these disciplines, specialized com-
puter physics-based simulation codes were employed.
Each design solution evaluation comprised an iterative
procedure among these simulation codes in order to
evaluate a more realistic operating condition. Therefore,
the optimization process was computationally demanding.
In order to reduce the burden of this high computational
cost, the authors opted for the use of design of experi-
ments techniques, and RSM for efficiently exploring the
design space. The geometry for the propeller blade was
considered as the output for this optimization process, and
was parameterized using 14 design variables which in-
cluded blade twist, sectional chord and leading edge line



definition, all, at several prescribed blade radial station
The MDO problem contained constraints on the geometry
design variables, and on propeller shaft power at two
flight conditions: takeoff and cruise, respectively. The
authors adopted The Nondominated Sorting Evolutionary
Algorithm+ (NSEA+) as implemented in the OPTIMUS -
commercial software. The authors were able to obtain
design solutions which performed better than a reference
propeller design. Approximately 20 nondominated solu-
tions were obtained, all of which were better than the
reference design in both objectives.

Nikbay et al. [116] presented a coupling of techniques for
multidisciplinary analysis and optimization, particjar
addressing the aeroelastic optimization problem inclgdin
aerodynamics and structures as the main disciplines.
The authors adopted the NSGA-Il and a MDO problem
which aimed to improve the reference experimental wing
AGARD 455.6. For this problem, the wing geometry was
defined in terms of wing taper ratio and wing quarter
chord swept angle, which were considered as the design
variables. The objective functions were: (i) maximization
of the lift-to-drag ratio and (ii) minimization of the
wing’s weight. Also, one constraint was included in the
maximal aeroelastic wing’s tip deformation, which was
prescribed as a function of the wingspan. In this approach,
both the aerodynamic and the structural simulation were -
performed with high fidelity CFD and CSD commercial
codes. A special iterative process was defined in order
to couple the multiple-discipline effects presented in the
optimization, i.e., exchanging parametric CAD definition,
pressure loads and deformations, between the software
used for each discipline. From their application example,
the authors obtained 14 nondominated solutions, from
which the extremes of the Pareto front were extracted.
Johnson et al. [75] performed a MOEA-based MDO for
the aerodynamic and heat transfer performances of heat
shields for blunt body reentry vehicles. The authors were
interested in obtaining trade-offs among the performance
parameters (objectives) of the vehicles, which included:
(i) peak heat flux, (ii) total head load, and (iii) maximum
cross range. The optimization was performed with the
University of Maryland Parallel Trajectory Optimization
Program (UPTOP), which is based on a differential
evolution scheme, and allows the analysis of reentry
trajectory vehicles with three degrees of freedom to be
coupled with the analysis for vehicle’s aerodynamic and
heat transfer performances. Even when three objectives
were considered in the problem, the authors performed
experiments with only two of them at a time. The design
variables for the optimization problems were 13 or 14,
depending on the definition of the axial profile of the
vehicle (three different axial profiles were used). The
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rates were varied randomly from zero to one, with the aim
of maximizing the range of the nondominated solutions
produced. From the results presented, the authors selected
optimal trajectory/vehicle configurations for two reentry
conditions.

Rajagopal and Ganguli [134] addressed the MDO pre-
liminary design of an UAV wing. In their study, the
authors aimed at optimizing two conflicting objectives:
UAV endurance and wing’s structural weight. In this case,
the involved disciplines are aerodynamics and structural
analysis. Two objective functions were considered: (i) the
maximization of the endurance (the time an airplane can
fly given a payload and a given fuel weight) and (ii) the
minimization of the wing weight. A total of ten design
variables were used for defining the wing’s geometry
as well as its structural properties. Constraints were
imposed on the aerodynamic performance and geometry,
both for the airfoil shape and for the complete wing.
Also, constraints were imposed on the minimal structural
strength and stiffness of the wing. The authors adopted
the NSGA-II, and the objective functions were evaluated
using CFD and CSD simulation codes. This required a
very high computational cost, which led the authors to
the use of Kriging-based models. The authors reported
finding only 5 feasible nondominated solutions.

Jagdale et al. [65] applied a MOEA for the conceptual
multidisciplinary design of a bendable UAV wing. Such
types of wings, constructed from composite materials,
have two conflicting structural requirements: first, the
complete wing must be able to be folded for its storage
in a container and, second, it must be stiff enough to
withstand the aerodynamic loads during flight operation,
in order to avoid buckling, due to an excesive material
strength and large deformation. For the multidisciplinary
design, two major analysis disciplines were considered:
aerodynamics and structures. Two objectives were
considered: (i) maximize the lift-to-drag ratio of
the wing, (i) maximize the wing’s buckling speed.
Additionally, a set of four constraints was included
comprising: a minimum cruising speed, a positive lift
coefficient, a stability margin, and the desired rolled wing
diameter range. Both objective functions were evaluated
using CFD and CSD simulation codes. The authors
adopted the NSGA-Il. Ten design variables were used:
seven to define the wing geometry and three to define its
composite plies orientation. The wing geometry related
variables are continuous, but the authors indicated that
they used a discretization for them. The authors reported
finding trade-off solutions that were able to outperform
a reference design in both objectives.

constraints set consisted of nine constraints, which cofip@lysis of the use of MOEAs in multidisciplinary design
sidered trajectory design limits, theory limitations, an@Ptimization:

aerodynamic moments limits. The crossover and mutation

Table V summarizes the application of MOEAs in multi-
disciplinary design optimization. A common feature of the

INSEA+ adopts the selection mechanism of the NSGA-II and thtation L) ) " ¢ ) .
applications discussed in this section was the interactitwo

operator of the evolution strategies.
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[ Ref [ NObj | NCons [ NVars | VarType [ Algorithm | Operators [ Physics Model [ NPop | Gmax [ Remarks |
3 2 3 Continuoug MOGA Weighted averaged Potential flow model and| 100 30 Penalty-based constraint
[120] crossover, Paretq FEM model handling
[119] ranking, fithess sharing
[165] best N selection
[20] 3 N/A 17 Continuoug NSGA-II SBX crossover and poly{ Euler and aeroacousti¢ N/A N/A Use of Kriging model
nomial mutation models
[21] 3 N/A 17 Continuoug p-GA N/A Euler and aeroacousti¢ N/A N/A None
models
[22] 3 N/A 17 Continuoug GEMOGA | N/A Euler and aeroacousti¢ N/A N/A Use of Kriging for gradi-
models ent calculation
[89] 4 2 109 Continuoug MOGA N/A Navier-Stokes CFD and N/A N/A Use of Kriging model
FEM structural model
[16] 5 N/A 58 Continuoug ARMOGA | BLX-a and PCA-BLX- | Euler CFD flow and 20 12 Population is divided
and « crossover operators; FEM models among the algorithms|
MOPSO fitness sharing, Paret used as well as theg
ranking crossover operators
[18] 3 5 35 Continuoug ARMOGA | Fitness sharing, Paretd Navier-Stokes CFD and 8 20 None
Ranking, best N selec{ FEM models
tion
4 2 72 Continuoug ARMOGA | Fitness sharing, BLXx | Navier-Stokes CFD and 64 30 None
[144] crossover, Pareto rank; simplified structural
ing, best N selection models
[97] 3 N/A 100 Continuoug HAPMOEA ES mutation operatorl Potential flow CFD * N/A * Population sizes are|
with Covariance Matrix | and Radar Cross Sectioh 40, 40 and 60 for fine,
Adaptation (CMA-ES),| (RCS) estimation modelq medium and coarse CF[J
distance dependen mesh grids, 1550 design
mutation,  tournament] candidates evaluated
selection
[96] 2 1 100 Continuoug HAPMOEA ES mutation operatorl Potential flow CFD * N/A * Population sizes are|
with Covariance Matrix | and Radar Cross Sectioh 15, 40 and 60 for fine,
Adaptation (CMA-ES),| (RCS) estimation modelq medium and coarse CF[J
distance dependen mesh grids, 1100 de
mutation,  tournament] sign candidates evalu
selection ated. Robust design opti
mization
2 2 14 Continuoug NSEA+ ES mutation operatord Simplified aerody-| 20 17 Use of RSM
[127] and NSGA-Il selection| namics, FEM and
mechanism aeroacoustic models
2 1 2 Continuoug NSGA-II N/A Navier-Stokes CFD and 12 17 None
[116] structural FEM models
[75] 3 9 14 Continuoug DE based | N/A Aerodynamic and ther- 130 N/A Random variation of mu-
modynamic models tation rate
2 4 10 Continuoug NSGA-II SBX crossover and poly- Simplified aerodynamics 50 100 Use of Kriging model
[134] nomial mutation and structural FEM mod-|
els
[65] 2 4 10 Discrete NSGA-II N/A Simplified aerodynamics| 30 70 None
and structural FEM mod-|
els

NObj = Number of objectives; NCons = Number of constraint¥alé = Number of design variables; VarType = Type of variahPop = Population size; Gmax = Maximum

number of generations

TABLE V

SUMMARY OF MOEAS APPLIED IN MULTIDISCIPLINARY DESIGN OPTIMIZATION

or more disciplines in the evaluation of the objective fumes. been properly addressed yet (see for exampe [108]).
This was combined in some cases with a high-dimensional

search space, leading to very costly computer simulatioais t
required the use of surrogate models and/or parallelizatio’

Aerospace system optimization

techniques. The need for highly efficient MOEAs specially APart form atmospheric flight, aerospace engineering
tailored for this sort of problems is quite evident. Althougdeals with the design of spacecraft and space systems such
some authors reported using very small population sizes (& Satellites. The use of MOEAs in these applications is
cluding micro-genetic algorithms), the computationaltoofs reviewed next.

the MOEAs adopted remains as their main limitation. Thus,

this area clearly needs further research aimed at producing Hartman et al. [57] and Coverstone-Carroll et al. [28]

efficient and effective MOEAs that can produce good approx-
imations of the Pareto optimal set requiring only a very low
number of objective function evaluations. The use of adednc
archiving techniques can also be advantageous [151].1%inal
the lack of properly designed constraint-handling techegjs

also evident. Such approaches can help to reduce the overall
computational cost of the evolutionary process, but has not

presented the application of a MOEA to the design of
low-thrust spacecraft trajectories. The authors consid-
ered two study cases: a) Earth-Mars rendevouz [28],
[57], and b) Earth-Mercury rendevouz [28]. The authors
adopted the NSGA [160] and considered three objectives:
i) maximize spacecraft mass delivery at rendevouz, ii)
minimize the spacecraft mission flight time, and iii)

maximize the spacecraft heliocentric revolutions. Three



constraints were also imposed on the MOP, from which
two were related to the minimum and maximum values
for the heliocentric revolutions (i.e., they constrain the
range value that the third objective can attain). The third
constraint was the convergence error that results from
solving a two-point boundary value problem (TPBVP),
which includes two sets of seven nonlinear and coupled
differential equations each. Since for this case there is no
closed form solution, a numerical approximation, based
on the calculus of variations is used. In fact, this latter
process corresponds to an optimization process by itself,
since it involves computing the optimal spacecraft thrust
schedule as well as the thrust orientation, along with
the optimal orbit that maximizes the delivered weight
at the rendevouz point, with its specific constraints at -
launch/rendevouz points as well as along the transfer
orbit. This last optimization process corresponds to the
objective function evaluation, which is computationally
intensive, since many of the solutions generated by the
MOEA might not be feasible. The NSGA was hybridized
with a local search procedur® based on a gradient
method implemented in NASAs JPL SEPTOP (Solar
Electric Propulsion Trajectory Optimization Program)
software. So, the MOEA (NSGA in this case) is used for
the global search, and the parameters obtained for each
individual in the population, are used as input parameters
for the SEPTOP software. It is interesting to note that,
as reported by Hartmann [58], after applying the local
search, the individuals are not updated in their parame-
ters, but only in their fitness values (i.e., the authors adop
a Baldwinian learning strategy). Thus, the authors argue
that diversity is preserved in the population. The authors
adopt a penalty function to handle the constraints of the
problem. The authors were able to find several families
of optimal trajectories for the two spacecraft missions
analyzed, including some novel trajectories.

Lee et al. [99] addressed a low-thrust orbit transfer
from a geostationary orbit to a retrograde Molnya-type
orbit. The challenge in this problem is that it requires
to modify five out of six orbital parameters, which is
performed with low-thrust applied during long periods of
time. The authors considered two objectives: i) minimize
the required propellant mass, and ii) minimize the toal
flight time. The authors relied on the Q-law (a Lyapunov
feedback control law) theory, which requires the tuning of
13 control parameters defining the decision vector. Three-
different MOEAs were adopted: 1) NSGA [160], 2) The
Pareto-based Ranking Genetic Algorithn(iPRGA), and

3) the Strength Pareto Genetic Algoritth{SPGA). The
results obtained by these three MOEAs are compared
based on two performance measures: the size of the
dominated space, and the coverage of two Pareto fronts.
For each candidate solution in the MOEA's population,
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an optimal orbital transfer was estimated, using the Q-
law, such that it satisfied the orbital’'s initial and final
boundary conditions, while minimizing the total flight
time. Once the schedule and orientation of the thrust
along the orbit are obtained, the required propellant mass,
and the flight time, allow to evaluate the two objective
functions previously indicated. From their comparative
study, the authors concluded that both NSGA and SPGA
had a similar performance with respect to the measures
adopted. These two MOEAs outperformed PRGA. It is
worth noting, however, that the authors performed only
three runs with each algorithm, because of the high
computational cost involved in the evaluation of the
objective functions of this problem.

Luo et al. [104] solved the problem of rendez-vous
trajectory parameter optimization. In this case, three
objective functions were considered: (i) the time of flight
for the spacecrafts to accomplish the rendez-vouz, (ii)
the total velocity characteristic which is a function of
multiple impulses performed by the chaser spacecraft, and
(i) the trajectory safety performance index, which is a
measure of the distance the chaser spacecraft attains in
“free path” with respect to the target spacecraft, in case
the thrust control ceases. A simplified model (linearized)
was adopted for solving the trajectory of the rendez-
vouz problem. The problem consisted of a decision
vector that could vary in size due to the number of
impulses considered in the optimization problem. In the
application problems presented, the authors used either
three or four impulses, originating decision vectors of
seven or eight variables, respectively. Constraints were
imposed on the times of applying the impulse and the
interval time between two consecutive impulses. The
authors adopted the NSGA-II. The constraint-handling
mechanism incorporated into the NSGA-Il was adopted
without any changes. The evaluation of the objective
functions was obtained by an iterative method, i.e., a
set of differential equations, governing the spacecraft
motion. The example problems presented by the authors
were for three and four impulses rendez-vouz trajectory
optimization. In each case 10 runs were performed and
a “global” Pareto front was constructed considering the
Pareto fronts obtained in each execution. The authors did
not report the number of nondominated solutions obtained
in any case.

In a similar work, Luo et al. [103] extended their ap-
plication for the multiple-impulse rendez-vouz trajegtor
optimization problem, but in this case using a more
sophisticated model (non-linear) for evaluating the objec
tive functions. Additionally, constraints on the path were
included to solve a problem with more realistic opera-
tional conditions. As before, the NSGA-II was adopted.
The problems that were solved corresponded to a three
and four impulses rendez-vouz trajectory optimization. In

10In Hartmann [58] the approach is call®SMA which stands for Non-
dominated Sorting Memetic Algorithm.

11The description of this algorithm provided by the authorer@sponds to
MOGA [46].

12This is really SPEA [189].

both cases, trade-offs were obtained among the time of

flight, the propellant cost, and the trajectory safety for

rendez-vouz missions, with and without path constraints.
- Ferringer et al. [43] addressed the problem of satellite



constellation design. The authors looked for a three-
satellite constellation which minimized two objective: (
Maximum Revisit Time (MRT), and (ii) Average Revisit
Time (ART). Both objectives were influenced by satellite
orbital parameters: (a) inclination, (b) right ascensién o
the ascending node, and (c) mean anomaly, which were
used as design variables. Orbital height was not treated as
a variable but fixed at an altitude guaranteeing horizon-
horizon visibility among satellites. The evaluation of the
objective functions was obtained by modeling satellite
constellation visibility to ground locations, defined by
discrete grid points and overlaying the land area of
interest. The authors adopted the NSGA-II with binary
encoding.

In more recent work, Ferringer et al. [44] addressed the
problem of satellite constellation reconfiguration using a
MOEA. The problem solved by the authors considered
the Global Positioning System (GPS) constellation for
two degrading cases: (a) loss of one satellite, out of 24
comprising the constellation, and (b) loss of one plane of
satellites, out of a total of six planes (loss of 4 satelites
The GPS constellation was designed to provide global
average coverage greater than 99.9% in ideal operating
conditions, and greater than 96.9% in the worst case.
This coverage was calculated by considering a visibility
of at least 4 satellites above & &ngle over the Earth’s
horizon. For the application problem, a total of six
objective functions were defined: (i) four-fold average
daily visibility time, (ii) four-fold worst-case-point dig
visibility time, (iii) total time of flight, (iv) maximum
AV required by any maneuvered satellite, (v) sum of
the AV variance of the maneuvered satellites, and (vi)
satellites maneuvered. All these objectives comprised
constellation performance objectives, constellation
reconfiguration costs, and satellite maneuver risk. The
first two objectives were maximized, while the others
were minimized. The authors adopted theNSGA-II
algorithm of Kollat and Reed [84]. Additionally, the
authors indicated the use of a technique called time
continuation which was applied during several runs of
the algorithm. When using this mechanism, the initial
population for every successive run was formed by -
keeping 25% of nondominated solutions of the previous
run and the other 75% solutions were created randomly.
The optimization problem was defined with a vector of
24 or 21 design variables depending on the degrading
cases indicated above. The design variables corresponded
to the mean anomaly and integer phasing orbits for the
satellites in the constellation.

Vasile and Croisard [107] addressed the robust prelim-
inary and multidisciplinary design for an interplanetary
spacecraft mission, namely, ttigepiColombomission.
The robust design considered uncertainties in several

B3In orbital mechanics, AV, corresponds to the impulse or change in
velocity needed to make an orbital change of the satellitanyr spacecraft.
This AV is given by the propulsion system.
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design parameters, and aims at reducing the impact of
these on the optimal value for the design criteria. Unlike
other approaches presented above, which make use of
the Taguchi method as the robust design framework, in
this case, the authors make use of Evidence theory [33],
[154]. This allows to model both, stochastic and epistemic
uncertainties (i.e., the authors assume a poor or incom-
plete knowledge of the design parameters). The latter
situation is commonly present in the preliminary design
phase of the spacecraft mission considered. The authors
considered two objectives in this case: i) maximize the
Cumulative Belief Function (CBF) (i.e, a measure of
the maximum confidence that a design is better than a
certain threshold, in the cost function), and ii) minimize
a given cost function, which in the examples presented,
corresponds to minimizing the wet mass (related to the
mass of propellant required to perform the low-thrust
transfer) of the spacecraft being designed. The MOEA
used by the authors was the NSGA-II [32]. In the solution
of robust design problems, design candidates are not
evaluated at fixed values of the design parameters, but
considering uncertainties in them. In this case, three
uncertain parameters were considered with four threshold
intervals and a corresponding BPA (Basic Probability
Assignment) each. Thus, for evaluating the CBF, a total of
64 Focal Elementgintersection threshold regions for all
the uncertain parameters with different BPAs each), had
to be searched for. In each of these threshold regions, a
local optimizer was used to estimate the maximum of the
system’s function. Thus, if the whole evolutionary process
is considered, it is evident that this is a computationally
expensive application. Furthermore, the authors reported
the use of a Kriging model for approximating the relation
between the spacecraft maximum thrust and the power to
be generated by the solar arrays, with the Delta budget
(AV), which is an important value for the objective
function evaluation. The authors compared the use of
the NSGA-Il to a reference (nearly optimal) solution,
and concluded that their hybrid approach was very useful
for estimating the optimum and for narrowing down the
search in the presence of uncertainties.

Minisci et al. [111] dealt with the robust multi-
disciplinary preliminary design of a small scale Un-
manned Space Vehicle (USV), which was planed to
be used for space re-entry operations. In this case, the
simultaneous optimization of both, the spacecraft shape,
and its trajectory control profile, are required. The awhor
considered three objectives: i) minimize the mean value
of heat flux in the USV, ii) minimize the mean value
of the estimated internal spacecraft temperature, and iii)
minimize the weighted sum of the variances of the first
two objectives, which were evaluated along the re-entry
trajectory, considering uncertainties in two aerodynamic
forces (lift and drag), and in the thermal conductivity
and the specific heat of the material used for building
the spacecraft. Two constraints were also included in the
maximum attainable values for the variance of the heat
flux and in the estimated internal spacecraft temperature.
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The authors adopted an approach called MOPED [2Tiajectories [178], to the robust design optimization ofiHo
which is based on an Estimation of Distribution Algothrust transfers, and aerocapture manoeuvres [176]; to the
rithm (EDA) [93]. MOPED makes use of nondominatediesign of an integrated space and terrestrial solar power
sorting and crowding (taken from NSGA-11 [32]) and wagplant [177] and to the design of satellite formation [105].
used to search on the spacecraft geometry parameters fgiother interesting issue that arises in the problems diseal

in total). Additionally, an optimal control subproblem wasn this section is the size of the feasible region, which can
solved for finding the optimal re-entry trajectory (i.e., tde very small with respect to the entire search space. In this
determine the angle of attack profile along the trajectorydense, some techniques for pruning the search space have
from a set of dynamic equations, formulated by nonlirbeen proposed [152] and have been succesfully applied in
ear differential equations and a set of initial/boundarhe context of low-thrust gravity-assist trajectory desighis
conditions that had to be satisfied. The authors adopteanstitutes another promising research topic, to be censid
variable fidelity meta-models, or surrogates, whith thehen designing MOEAs for space applications.

aim of reducing its high computational cost. Atrtificial
neural networks (ANNs) were used as meta-models, at
the beginning of the evolutionary process, being trained
only with a low fidelity analytical aerodynamic model. In this final group, the applications are those in which
Towards the end of the evolutionary process, the ANNGOEAs are used to find the parameters involved in control

Control system design

were traided with high fidelity CFD solutions. systems.
Analysis of the use of MOEAs in aerospace system
optimization:

Table VI summarizes the application of MOEAs in

aerospace system optimization.

From the above applications described, it is worth noticing
that MOEASs applied to aerospace systems cover a wide variety

of problems, including multiple disciplines and the use @f r
bust design techniques. Also, it is important to emphagiae t
most of the applications discussed in this section invohes t
use of a coupled global-local search optimization scherhis T

is to say that a MOEA is used to find a set of good solutions,

perhaps at a coarse granularity (e.g., without consideaxlhg

the decision variables), which are further improved using a
local search engine (gradient-based techniques are rigrmal
used for this sake). For example in [111], the MOEA is used
at an upper level, with a subset of the decision variables and

without incorporating any constraints, while the constsi

and all the decision variables are considered and solved at a
lower level, in which a gradient-based optimization praces
is used to find feasible solutions. Although memetic MOEAs
have existed for several years in the specialized litegatur
[50], the development of specific MOEA-based approaches
that properly combine a global and a local search scheme
in an efficient and effective way when dealing with space
applications, is still an open research area. Issues such as
how to couple the global search engine with the local search
engine, how to handle the constraints (particularly when -
dealing with large scale applications having many nonlinea
constraints), how to handle mixed problems that combine, fo
example, integer and real-numbers decision variablescfwhi
could be handled separately or at different granularitigs b
the global the local search engines), how to make the search
less expensive (computationally speaking) are some of the
possible paths for future research in this area. In thisrtega

Vasile and Zuiani [178] have recently proposed an intemgsti

- Chipperfield and Fleming [19] described the use of a

MOEA in the design of a control system for gas-turbine
aero-engines. This application evaluated populations of
candidate control systems and modes, aiming at selecting
sensors and defining a suitable controller for a manoeuvre
about a particular operating point while meeting a set of
strict design criteria including stability, sensitivitpéthe
accommodation of degradation with engine ageing. The
application example presented by the authors considered
attaining nine design objectives comprising the engine’s
time response, thrust level, and turbine blade tempera-
ture, among other criteria, in response to a change in
thrust demand. The control system was evaluated using
a linearized model of a reference engine. The authors
adopted MOGA with mating restrictiots and fitness
sharing in objective function space. From their results,
the authors obtained trade-off information which allowed
them to look into the positive and/or negative aspects of
different control schemes.

In a similar research work, Thompson et al. [171] used
the same version of MOGA previously indicated for
the multi-objective optimization of an aircraft engine
controller architecture, particularly for a military aiedt
engine, where many inputs and outputs were duplicated,
increasing considerably the number of sensors and actu-
ators inputs (240 approximately) to be considered in the
controller design.

Aranda et al. [6] used a MOEA for the design of an
aircraft flight control system. The application concerned
the design of control laws, which were further used
for evaluating control designs. The MOEA adopted
was based on Pareto ranking. The flight controller
took several input signals, and after their evaluation
it returned system performance in a vector of control
response metrics. This vector comprised 21 parameters.

approach based on the collaboration of multiple agentss Thi4Several researchers within evolutionary multi-objectipgimization have
approach blends a number of metaheuristics includingdmrt experimented with schemes that impose rules on the indilgdthat can be

swarm optimization and differential evolution. This apgech,

recombined. However, there is no clear evidence of the grjigrof this sort
of mating scheme with respect to the use of a traditional onehich no

has been succesfully applied to the design of multi-impulgsstrictions are imposed on the individuals to be recombii24].
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[ Ref [ NObj | NCons [ NVars | VarType [ Algorithm [ Operators [ Physics Model [ NPop| Gmax] Remarks |
3 3 8 Continuoug NSGA Single point crosover,| Orbital mechanics and 150 30 Use of binary encoding,
[28], uniform mutation, | rocket equation models a local search mecha
[57] stochastic universal nism and a Baldwinian
sampling, fitness sharing learning strategy.
in decision space, and
Pareto ranking
[99] 2 N/A 13 Continuoug NSGA, PRGA | N/A Orbital mechanics and 1000 | 200 None
(MOGA), and rocket equation models
SPGA (SPEA)
3 N/A 718 Continuoug NSGA-II Arithmetical ~ crossover| Linearized orbital me-| 100 200 None
[104] and nonuniform | chanics model
mutation
3 N/A 718 Continuoug NSGA-II Arithmetical ~ crossover| Nonlinear orbital me-| 100 200 None
[103] and nonuniform | chanics model
mutation
[43] 2 s.C. 3 Discrete NSGA-II SBX crossover and poly{| Orbital mechanics mode| 32 400 Island-based parallel im{
nomial mutation plementation of NSGA-
1]
[44] 6 s.C. 21/24 | Continuoug e-NSGA SBX crossover and poly- Orbital mechanics model 48 250 None
nomial mutation
2 N/A N/A Continuoug NSGA-II SBX and polynomial-| Orbital mechanics and 20 N/A Results are presented far
[107] based mutation rocket equation models 100,000, 500,000, and
1,000,000 total function
evaluations.
3 2 6 Continuoug MOPED Nondominated sorting,| Analytical,  structural, | 60 50 Use of ANNs as meta-
[111] crowding and CFD models model.

NObj = Number of objectives; NCons = Number of constraint¥alé = Number of design variables; VarType = Type of variahPop = Population size; Gmax = Maximum
number of generations; N/A = Not available; s.c. = Only sidestraints are adopted.

TABLE VI
SUMMARY OF MOEAS APPLIED INAEROSPACESYSTEM OPTIMIZATION

The design variables for the optimization were thanalyzed are typically very high dimensional, having large
elements of the two control law gain matrices X 5 complex and poorly understood search spaces, which make
and 2 x 2 matrices) for the inner loop controller.them intractable using traditional mathematical prograngm
14 design variables were considered, being thetarhniques. In fact, the high computational cost assatitie
variables floating point numbers. The authors presentsdme of these problems makes the use of MOEAs infeasible,
results for both, longitudinal and lateral flight controfie unless alternative techniques are adopted. The most common
ones are the use of response surface models (or approximatio
Analysis of the use of MOEAs in control system design: models), the use of parallel programming (mainly to evaluat
the population’s fitness values), and the use of other meta-
Table VIl summarizes the application of MOEAs in controheuristics that are better suited for continuous optinozat
system design. The applications described in this sectien &1an genetic algorithms (e.g., differential evolutionoleion
also computationally inexpensive, allowing the use of moférategies and particle swarm optimization). Additiopalther
elaborate MOEAs and archiving techniques which, apparentRuthors have hybridized their MOEAs with gradient-based
have not been used so far within this domain. However, aftethods, aiming to combine the strengths of the global bearc
other interesting feature of the problems described hetteais Performed by an evolutionary algorithm with the local séarc
the approaches developed to solve them may be extrapoldi€gformed by a gradient-based technique.
to other domains, since control systems are commonly used-rom the applications analyzed in this paper, the following
in a wide variety of engineering disciplines (see for exampkalient issues have been identified as requiring furtheareh:
[66]). This should motivate the development of more redearc

within this area « Alternative chromosome encodingsMost of the appli-

cations analyzed here mention the use of specific chro-
mosome representations but, in general, it is assumed that
vectors of real numbers or binary numbers are normally

As evidenced in this survey, the use of MOEASs for solving  adopted (with a set of associated crossover and mutation

VI. FUTURE RESEARCHPATHS

aeronautical and aerospace engineering optimizationgmreh operators). However, other encodings exist, which could
is already a mature area which has spread over a broad range of probably help to improve the performance of a MOEA.
application subdomains. Most of the applications reviewed Such alternative encodings include the use of matrix or

this paper are based on a genetic algorithm, being MOGA and structured/hierarchical representations (see for exampl
NSGA-II the most frequently used (both of them with diverse  [30], [179]), which could be particularly useful for 3D
modifications). All the applications reviewed in this paper complex geometrietsee for example [12]).

represent real-world application problems, which requine « Use of small population sizesOne possible choice for
many cases, the use of expensive computational simulations reducing the total number of objective function eval-
to evaluate the objective functions. Additionally, the lplems uations performed by a MOEA is to use very small



[ Ref [ NObj | NCons [ NVars | VarType [ Algorithm | Operators [ Physics Model [ NPop | Gmax [ Remarks
[19] 9 s.C. 6 Discrete MOGA Structured chromosome Control mode analysis 70 N/A None
representation,  mating
restrictions, fitness
sharing
[6] 20 s.C. 14 Continuoug MOGA Binary tournament selec{ Control mode analysis N/A N/A None

tion, multiple crossover,
operators, Pareto rank|

ing, fitness sharing
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NObj = Number of objectives; NCons = Number of constraint¥alé = Number of design variables; VarType = Type of variahPop = Population size; Gmax = Maximum
number of generations; N/A = Not available; s.c. = Only sidestraints are adopted.

TABLE VI

SUMMARY OF MOEAS APPLIED IN CONTROL SYSTEM DESIGN

population sizes with proper mechanisms to maintain
diversity. This is normally not done because the use of
such small population sizes normally causes premature
convergence of EAs due to a sudden loss of diversity [72],
[129]. However, with carefully designed mechanisms that
can maintain diversity, it is possible to use very small
population sizesAn example of this are the micro-genetic
algorithms for multi-objective optimization, which have
been already used in aeronautical engineering [21], [162].
It is worth noting, however, that several other metaheuris-
tics that have a high potential in aeronautical engineering
have been only scarcely used with very small population
sizes (e.g., differential evolution and evolution strétsy

Use of techniques to improve efficiencyThe use of
response surface models presents difficulties as the num-
ber of decision variables increases, mainly because the
number of samplings required for obtaining a high fidelity
model increases, too. A possible way of dealing with
this problem is to build local response surface models.
as proposed by Emmerich et al. [39] and Giannakoglou
[49]. and to use them for a pre-screening process in the
selection process (i.e., to select promising members at
each generation which will be evaluated by the exact
model, reducing, in consequence, the overall compu-
tational cost). Another possible option for improving
efficiency is to adopt knowledge extraction techniques
and then reuse this information during the evolutionary
search. Although such techniques have been normally
used in ara posteriorimanner (adopting self-organizing
maps and ANOVA, as in [18], [125], [126], [159]), it is
also possible to use them as arpriori technique. For
example, Graning et al. [55] successfully applied thietyp
of approach to the single-objective optimization of 3D
turbine blade geometries. The extension of this type of
approach to aeronautical/aerospace multi-objective- opti
mization problems is, indeed, a very promising research
path.

There are, however, other approaches that can reduce the
number of objective function evaluations without having
to build an approximate model of the problem. Perhaps
the most well-known choices within the evolutionary
algorithms literature are fitness inheritance [157] and
fithess approximation [70]. Both of them have been used
with MOEAs (see for example [139]), but their use in
real-world applications is still scarcgsee for example

[128]), mainly because practitioners are either not aware
of them, or do not trust their reliability in highly nonlinea
search spaces [35]. It is also worth remarking that several
other approaches exist for improving the efficiency of a
MOEA, but most of them remain unused in real-world
applications (see for example [1], [166]).

Efficient constraint-handling techniques Most of the
applications reviewed in this paper dealt with problems
subject to constraints. In most cases, infeasible solsition
were discarded and generated again, or a simple exter-
nal penalty function was adopted. However, many other
constraint-handling approaches exist, which could be very
useful in multi-objective optimization, since they can ex-
plore the boundary between the feasible and the infeasible
region in a more efficient way than traditional penalty
functions (see for example [108], [148})would also be
interesting to design approaches that can efficiently deal
with problems having many nonlinear constraints.
Alternative selection schemesMost modern MOEAs
rely on Pareto-based ranking [51]. However, this sort of
selection scheme has certain limitations, from which its
poor scalability is perhaps the most remarkable [82]. Re-
cently, and mainly motivated by this scalability problem,
a number of alternative selection schemes for MOEAs
have been introduced in the specialized literature. From
them, perhaps the most remarkable approaches are those
based on a performance measure knownhggervol-
ume (see for example [38]) and those based on re-
laxed forms of Pareto dominance (see for example [42]).
Such approaches have been scarcely used in aeronauti-
cal/aerospace engineerigee for example [10]).
Alternative parallelization techniques: Due to the high
computational cost required by many aeronautical and
aerospace engineering optimization problems, the use of
parallelism is relatively common. However, more elab-
orate parallelization techniques based, for example, on
coevolution [167], cellular computing [2]GPU-based
computing [183nd asynchronous techniques [7] are still
scarce in this area and more work in that direction is
expected in the next few yearshese techniques have
been adopted in other costly applications arising in areas
such as genetic programming [56].



VII. CONCLUSIONS [8]

This paper has presented a survey of applications of MOEAs
in aeronautical and aerospace engineering. A taxonomy of9]
approaches together with a a short review of applications in
each of the categories contained in it, have been presented

The main conclusion from this review is that MOEAs
are widely accepted as an alternative numerical optingnati
tool in this area, mainly because of their ease of use a
their effectivity (several authors reported finding salas that
improved the reference design).

The main drawback of MOEAs is clearly the high computa-
tional cost associated to applications in which these dlgos  [12]
must be coupled to complex physical simulations such as CFD
and CSM. Although several authors report using surrogate
models and parallelization techniques in such costly appli [13]
tions, new approaches are required, as indicated in the final
part of this paper in which some possible alternatives td de%m]
with this problem have also been providédnally, another
issue that certainly deserves attention is the need fong#o
theoretical foundations for MOEAs. Issues such as not being
able to (mathematically) prove that the solution produced bi1i5]
some specific MOEA is optimal may be seen with skepticism
by some researchers in this area. Although some important
work has been done in this regard (see for example [141]he6]
much more work is still needed.
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