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Abstract  

In the current paper, high reliability in the presence of uncertainty is of 

interest. Therefore, no violation of constraints, by any solution, although 

uncertainty exists, is mandatory. In the paper uncertainties, in which, the 

boundaries of uncertainty are known, are treated.  

To allow a high reliability, the notion of worst-violation set is 

introduced. Moreover, two possible measures to assess the extent of the 

violation of the constraints by a solution, which is subjected to 

uncertainty, are suggested. One of these measures is then introduced into 

a multi-objective evolutionary algorithm (MOEA) in order to search for 

optimal reliable solutions. 

It is shown that the approach applies a search towards solutions with 

optimal performances while taking into account high reliability. The 

suggested approach is the only one available so far (to the authors’ best 

knowledge), which treats reliability through evolutionary multi objective 

search, while not assuming any probability distribution of the uncertainty.     

 

Keywords: Reliability, Multi-objective optimization, Worst-case 
optimization. 
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1   Introduction 

Multi-criteria decision making concerns the selection of solution(s) for multi-

objective problems. Such a decision commonly involves comparing the solutions' 

representations in the objective space. The representation of a solution in the objective 

space may involve its performances as calculated by utilizing the problem's objective 

functions. If there is no uncertainty involved with the problem, the mapping between 

decision variable space and objective function space is a one-to-one mapping with the 

solution being represented by a single point in objective space. The solutions' 

representations are utilized for the evolutionary process, which aims to produce the 

problem's Pareto front (Pareto, 1896). The obtained Pareto front is associated with the 

optimal solutions set, which is termed the Pareto optimal set. It is noted that the 

notion of Pareto optimality inherently comprises the uncertainty of the designers 

towards their preferences of the objectives. Such preferences are sometimes referred 

to as range-based preferences (e.g., Deb, 2001). 

 According to a recent review by Coello (2005a), Evolutionary Multi-objective 

Optimization (EMO) has reached a mature stage.  Its development has consistently 

been followed by applications in engineering, product development, management, and 

science. The development of Pareto-based evolutionary algorithms has been initiated 

by the procedure suggested by Goldberg (1989). Surveys and descriptions of such 

algorithms can be found in several references (e.g., Kicinger, 2005, Deb, 2001). 

According to Zitzler et al. (2004), advanced Pareto-based algorithms, such as SPEA2, 

in Zitzler et al. (2001), and NSGA-II, in Deb et al. (2000) involve three major 

elements. The first element concerns the creation of a search pressure towards the 

Pareto optimal set. This is commonly achieved by one of the known Pareto-based 

fitness assignment (dominance-based) techniques. The second element is set to avoid 

convergence to a single solution and preserve diversity. The third element is elitism, 

which helps to prevent losing non-dominated solutions, which are diversified. 

When the problem includes uncertainties, which are associated with the design 

variables/environmental parameters, the mapping between the design space and the 

objective space for each solution is a many-to-many mapping. This is due to the 

solution being associated with set of (finite or infinite) scenarios, forming a cluster of 



performances in the objective space. In such a case, the solution may be represented 

in the objective space by the mean value of the cluster (e.g., Deb et al., 2007) or by a 

set of its worst scenarios (e.g., Avigad and Branke, 2008). For the evolutionary 

process, the approaches utilizing the mean value apply some extra knowledge on the 

cluster (e.g., standard deviation). Thus, the evolution is influenced both by the level of 

non-dominance of the mean performances point value and by the standard deviation. 

As a result of considering the uncertainty, the nominal front may be shifted towards a 

less (or partially less) optimal set. Considering the shifted set, some of the solutions 

may be removed from being represented to the decision makers as they become 

dominated in the new setting (e.g. Deb and Gupta, 2005). 

In many engineering related multi-objective optimization problems (MOPs), the 

MOP involves not only uncertainty, but also constraints. In such a case, it is required 

to consider reliability, where the cluster has to be checked for constraint violation by 

considering the extent of the required reliability (e.g., Deb et al., 2007).  In Deb et al. 

(2007), two approaches amalgamating classical reliability optimization techniques 

with EMO are suggested.  It  is  noted  that  both  deal  with  problems  where  the 

uncertainties  are  not  bounded, which  is  in  contrast  to  the  current paper.  

According to Demopoulos2, "a major component of success involves avoiding making 

any major mistakes. Instead of focusing exclusively on implementing “Best 

Practices,” I suggest avoiding “Worst Practices.” You can do almost everything 

perfectly, but if you do one thing horribly wrong you can negate everything. A soldier 

greatly increases his chances in a firefight by doing things right, but one serious 

mistake and his odds of surviving plummet. Fatal flaws and mistakes are often exactly 

that – FATAL!" In such cases where fatality is involved, a reliability of 100% is 

desired. Similar declarations might be found as also related to engineering (Anderson 

2008) and as related to software design (Viega and McGraw, )Relying on an 

assumption of a statistical distribution is problematic. According to a well-known 

practitioner, Thomas Pyzdek (Pyzdek 2007): "After nearly two decades of research 

involving thousands of real- world manufacturing and non-manufacturing operations, 

I have an announcement to make: Normal Distributions are Not the Norm!"  Some 
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engineering examples of non Gaussian distributions may be found in Rouillard, 

(2007) and in Choi et al. (2004).  This means that if a variance is not a reliable 

statistical measure of the distribution, or that an uncertainty function can not represent 

the distribution, then, counting on an estimation of them to assess reliability might be 

dangerous. This makes the search for the worst obligatory, in order to ensure such a 

high reliability. It is therefore vital to ensure that the selected solutions do not involve 

any scenario that might violate the constraints even on the cost of extended 

computational time. It is important to note that, although reliability is important, the 

motivation to find optimal solutions still exists.   

The current paper is motivated by the requirement to find highly reliable optimal 

solutions to constraint-uncertain MOPs. This paper is inspired by the worst-case 

optimization approach of Branke et al. (2008), and Avigad and Branke (2008) to 

ensure worst–case reliability. It should be emphasized that the worst-case 

Evolutionary Computation (EC) treated to date, does not deal with constrained 

problems. To consider worst-case for constrained problems by utilizing EMO, two 

main issues are discussed in the current paper. The first issue is how to assess the 

worst-case violation of a solution's scenarios. Naturally, if there are more than two, 

possibly contradicting, constraints, the worst might be a set of worst cases.  The 

second issue is how to amalgamate this assessment within an EMO search for an 

optimal reliable front. Considering this issue, Avigad and Coello (2008) highlighted 

the fact that there is no correlation between the constraints space and the objective 

space. This means that a solution's scenarios worst-case performances are not 

necessarily the same scenarios associated with the worst violation of the constraints. 

Therefore, the performances of a solution might be represented by one set of 

scenario(s) while its violation of constraints is represented by another set. These two 

sets are then used for developing a MOEA that will increase its selection pressure 

towards the optimal reliable set and front.       

The following section briefly surveys the state-of-the-art as related to the solution 

of constrained MOPs and worst-case EMO. These two issues are in the core of the 

paper and will be fundamental factors in the construction of the introduced MOEA.  

 



2. BACKGROUND 
 

2.1 Solving Constrained MOPs by MOEAs  
 

Although multi-objective optimization and constraint handling have received a lot 

of attention separately, relatively few studies have been conducted regarding the 

solution of constrained multi-objective optimization problems.  

One main approach, which is related to several algorithms that handle constraints 

in MOPs, is to amalgamate dominance relations with a violation of constraints in 

order to prefer one solution over the other. It is reiterated here that a solution i is said 

to dominate a solution j if both of the following conditions are true: 

1. Solution i is no worse than solution j in all objectives, i.e. (assuming 
minimization), 

 
)x(f)x(f jmim ≤∀  

2. Solution i is strictly better than solution j in at least one objective, i.e., 
 

)x(f)x(f jmim <∃ . 
 
Deb et al. (2002) proposed a constrained dominance relation as follows: A solution 

i is said to constraint-dominate a solution j if any of the following conditions is true: 

1. Solutions i and j are feasible and solution i dominates solution j. 
2. Solution i is feasible and solution j is not. 
3. Solutions i and j are both infeasible, but solution i has a smaller constraint 

violation. 
 
Coello (2000) suggested a somewhat different definition of domination as follows: 

A solution i is said to constraint-dominate a solution j if any of the following 

conditions is true: 

1. Solutions i and j are feasible and solution i dominates solution j. 
2. Solution i is feasible and solution j is not. 
3. Solutions i and j are both infeasible and solution i violates less constraints than 

solution j. 
4. Solutions i and j are both infeasible and solutions i and j violate the same 

number of constraints, but solution i has a total amount of constraint violation smaller 
than the constraint violation of solution j where the total amount of constraint 

violation for an individual x  is given by:  
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A closely related approach to the latter has been suggested in Jiménez and 

Verdegay (1998). In this case, instead of comparing two infeasible solutions based on 

the total sum of their constraints' violations, the solution closer to the constraint 

boundary is chosen. According to Oyama (2005), a solution i is said to constraint-

dominate a solution j if any of the following conditions are true: 

1. Solutions i and j are both feasible and solution i dominates solution j in objective 
function space. 

2. Solution i is feasible and solution j is not. 
3. Solutions i and j are both infeasible, but solution i dominates solution j in 

constraint space. 
where dominance in constraint space is defined according the following definition: 

A solution i is said to dominate a solution j in constraint space if both of the 

following conditions are true: 

1. Solutions i is no worse than solution j in all constraints, i.e., 
 

)x(G)x(G jnin ≤∀  
2. Solution i is strictly better than solution j in at least one constraint, i.e., 
 

)x(G)x(G jnin ≤∃  
 
where 

))x(g,0max()x(G inin =  
 
The proposed method simply introduces the idea of non-dominance adopted in 

objective function space into the constraint function space. 

In Binh and Korn, (1997) a Multi-Objective Evolutionary Strategy (MOBES)  

taking into account the objective functions as well as the degree of constraint 

violation of the infeasible solutions has been suggested. Infeasible solutions are 

divided into different classes according to their "nearness" to the feasible region. 

Thereafter, each is assigned a rank based on their class. Moreover, a mechanism to 

maintain a feasible Pareto set is employed within the suggested algorithm. In all of the 

above, the search pressure is solely applied towards the feasible front. There are quite 

a few studies in which the pressure is not just applied towards the feasible front, but 



also towards feasibility. This means that feasible solutions are further pressurized to 

improve in the direction of increased optimality whereas infeasible solutions are 

pressurized to become feasible. This is done by taking different approaches. One such 

approach is presented in Jimenez et al. (2002). There, they proposed an evolutionary 

algorithm with non-dominated sorting and radial slots that employs the min-max 

formulation for constraint handling. In addition, they introduced a diversity technique 

based on the partitioning of the search space into a set of radial slots along which the 

successive populations generated by the algorithm are positioned.   Another attempt to 

incorporate the knowledge of constraint satisfaction during mating was proposed by 

Hinterding and Michalewicz (1998), in which "constraint matching" was employed 

during partner selection. The mating individuals are chosen according to this 

approach by utilizing the sum of squares of the constraints violation. An improvement 

to the work of Hinterding and Michalewicz (1998) has been suggested in Ray et al. 

(2001).  Ray et al. (2001) suggested the use of three different non-dominated rankings 

of the population. The first ranking is performed using the objective function values; 

the second is performed using the different constraints; and the third is a ranking 

which is based on the combination of all the objective functions and constraints. 

Depending on these rankings, the algorithm evolves towards the feasible front. The 

mating process within the proposed evolutionary algorithm incorporates the 

knowledge of every individual’s constraint satisfaction/violation and objective 

performance. 

Another approach to drive solutions towards feasibility has been recently suggested 

in Yomas et al. (2007), who introduced an algorithm in which the value of the 

objective function is influenced not just by the related individual dominance relations, 

but also by a distance measure and a penalty that takes into account the amount of 

constraint violation. In that work, the preference of one individual over the other 

depends on consideration of the objective performances and the constraints violation 

as being in one space. Therefore, it is possible that an infeasible solution is assigned a 

higher fitness than a feasible solution. The work seems to introduce an approach that 

outperforms other existing approaches when considering performances, which are 

computed based on the so-called performance matrix (see e.g., Deb, 2001). 



 Repairing the infeasible solutions is yet another approach to direct the search 

towards the feasible region. Harada et al. (2007) suggested a hybrid approach to 

constraint handling. In this approach, a repair of infeasible solutions is carried out 

such that they become feasible. This is done by monotonically reducing the number of 

constraints violations utilizing a local search in the vicinity of the infeasible solutions 

(i.e., by utilizing the Pareto descent Method –PDM of e.g., Harada et al. 2006).  

 

2.2 Searching reliable solutions to MOPs by EMO  
In many cases, the MOP involves not only constraints, but also uncertainties. In 

such a case, it is required to consider reliability, for which the cluster has to be 

checked for constraint violation by considering the extent of the required reliability 

(e.g., Deb et al. 2007, Daum et al. 2007).  In Deb et al. (2007), two approaches 

amalgamating classical reliability optimization techniques with EMO are suggested in 

order to solve the reliability problem.  It  is  noted  that  both  deal  with  problems  

where  the uncertainties  are  not  bounded and a statistically based distribution of the 

scenarios around the mean is assumed, which  is  in  contrast  to  the  current paper. In 

Daum et al. (2007), the concept of structural reliability has been discussed. In that 

discussion it has been stated that: "if the desired reliability is large, the number of 

samples must also increase to find at least one infeasible solution".  In that paper, 

estimation for the failure probability through the use of the most probable point 

(Hasofer and Lind, 1974) has been found by utilizing the reliability index approach. 

This was then utilized for an evolutionary search of reliable solutions. In the current 

paper, worst-case optimization is considered.  

The worst-case paradigm in EMOs was initiated in a work by Avigad et al. (2005). 

That work has been involved with choosing concepts to multi-objective problems. 

The approach presented in (Avigad et al. 2005) has been adopted and generalized in 

(Branke et al 2008) to allow a worst-case optimization using evolutionary algorithms. 

An embedded algorithm that formulates some related issues and allows the solution of 

continuous problems has been suggested by Avigad and Branke (2008).  A further 

development aimed at reducing the computational complexity has been presented in 

Branke and Rosenbusch (2008) and further developments are reported in Stuermer et 



al. (2009). The two latter papers have treated worst-case in MOPs through the use of a 

coevolutionary approach.    

In worst-case EMO, each possible solution is associated with a set of possible 

realizations. The comparison of two solutions x and y is based on their worst cases 

W(x) and W(y), respectively. The comparison utilizes the non-dominated 

representatives of  with respect to the inverted problem (where 

and vice versa). If all non-dominated representatives (in the inverted 

problem) belong to W(x), then solution y (worst-case-) dominates x (denoted as y 

≻ wc x). If all non-dominated representatives belong to W(y), then solution x (worst-

case-) dominates y (x ≻ wc y). Otherwise, the two solutions are non-dominated. In 

the worst-case approach, the search for optimal solutions results in a set termed as the 

best of the worst, and its related best of the worst front. There exist some other works 

within the framework of EMO which deal with robust design of solutions for multi-

objective problems by taking a worst-case approach (e.g., Ong et al. 2006 and Lim et 

al. 2006). In those works, a combination of a max-min optimization strategy 

with a Baldwinian trust-region framework is employed together with a local 

surrogate model for designing robust solutions.  

)y(W)x(W U

maxmin →

 

2.3 Observations and focus 

The following may be stated about the works which were revised above. 

a. All works assume a normal distribution of the parameters in design space. This 

is so at least for all the examples, which were found in those works. As 

surveyed by us, this is far than being correct in many engineering problems 

(e.g., dynamic loads, climate changes, etc.) In fact, assuming an uncertainty 

probability function makes some of the possible cases improbable! 

b. Only one point represents a solution in determining reliability. This means that 

there is one worst case. Considering the notion of optimality, if the constraints 

are contradicting, then there might be a set of worst cases (a Pareto set in 

constraints' space, which is a solution of the reversed constrained violation 

problem). Simply saying, considering just one point for the worst, contradicts 



the notion of optimality in multi-objective problems. With that respect, think of 

a Pareto front, would the solution associated with the minimal (for a min-min 

problem) distance to the origin, at objective space, be chosen as the best 

solution over all other Pareto set's solutions? Why?  

c. In all of the revised works some algorithmic parameters should be tuned (e.g., 

epsilon in Daum et al. 2007).  

d. In order to assess the worst, the approaches use non evolutionary search 

approaches (e.g., gradient-based in Daum et al. 2007, and radial based neural 

net in Ong et al. 2006). 

 
Based on the above observations, the focus of the research, which is reported in 

this paper, is: 

a. The distribution of uncertainty associated with the design parameters is not 

an issue and any distribution might exist. This issue also means that any 

situation might occur with no probability of occurrence. This makes a major 

difference between the former approaches and the current one. Assuming a 

normal distribution, the boundary of a parameter will never be realized, 

whereas in the current paper it may be realized like any other case. This 

means that, comparing between the hereby suggested approach and former 

approaches is somewhat unfair. This is due to the fact that here, the worse 

might be inherently worse than could be found by formerly suggested 

approaches. Therefore, in the current paper the focus is on the introduction 

of a novel approach and the highlighting of some limitations of former 

works, avoiding artificial test comparisons.  

b. A search for the worst in a multi constraints space by confining to the well 

defined notion of optimality in multi objective problems. This means that 

there are cases where a set of points represent the worst rather than a single 

point.  

c. The introduced algorithm has no tunable parameters.  

d. No hybridization of an evolutionary search is considered.  

 



3   Methodology 

In this section, the constrained worst-case optimization problem and an approach to 

solve it are introduced and formulated. The approach is comprised of several steps, 

which lead ultimately to a set of optimal and worse case reliable solutions.  

 
3.1 Problem definition 
  

The problem of optimizing solutions to a MOP associated with uncertainties of the 

environmental parameters can be formalized as: 
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where Ω is the design parameters space (parameters that are to be chosen) and Γ is 

the model's environmental parameters space (which are not chosen but might be 

uncertain).  are the uncertainty upper and lower boundaries of the 

design and environmental parameters, respectively. The term p is a vector of 

constants, which are not to be chosen. The last two expressions are related to the 

addition of the constraints and the demand for high reliability.  
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3.2 Solution 
 
As a result of the uncertainty, each nominal solution, , in which 

, may be realized by a possible set of realizations, 

. Each of these realizations is defined within given boundaries as 

T
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follows: . Each such realization may be subjected to 

different environmental conditions that are expressed by the set of the environmental 

parameters, 

n  1,2,...,i , rrr
)U()L( i

x
i
x

i
x =≤≤

}d,.....,d,..,d{d Dj1=  , where ,  and is bounded such 

that . The combination between a possible realization of a solution 

x and an environmental condition is designated as a scenario of x, sx. The set of all 

possible scenarios associated with a solution x is designated by Sx, where 

. Each scenario sx has its related performances, , in 

objective space. The corresponding set of all the scenarios' performances of the 

solution x is designated as: Yx , .  
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It is desired to search for solutions to equation (1) that are optimal and highly 

reliable (R=1). When high reliability is sought, it is a requirement that a scenario does 

not violate the constraints, whereas, optimality might be considered based on the 

performances of the nominal solution's scenario. Considering equation (1), the 

nominal scenario of a solution x, is . Here, a reliable solution will be designated by 

xR.  In that case, the solution to the problem is the optimal reliable set and optimal 

reliable front, RX, RXf respectively:   

x
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The formulation of the solution as given in equation (2) includes demands for both 

optimality and reliability. That is, a solution is not dominated by any other solution, 

which might have worst scenarios that do not violate any of the constraints. In 

equation (2), the optimality is associated with domination and the reliability of a 

solution x is ensured by demanding that no scenario of x violates the constraints. 

When considering the worst-case paradigm, instead of ensuring that there is no 

scenario that violates the constraints, it is ensured that the worst cases will not violate 



the constraints. The word "worst" implies precisely that, a search for the worst, i.e., 

optimization. In the following sub-section, the notion of worst violating set is 

formulated. 

 

3.3 Worst set and front 

 When there is more than one constraint and the constraints are contradicting, what 

is considered as the worst? The answer is straightforward: it might also be a set of the 

solution's scenarios. In the following, the worst-case violation is considered. 

Each scenario has its related performances in the constraints space: . 

The set of all of a solution's scenarios' performances in the constraints space is 

designated as:  

)s(gv x
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The set Vx may be sorted to find the solution x related to the worst scenarios set, 

 and its related worst scenarios front . These are defined as 

follows:   
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where R
p means that dominates in the reversed problem (here; 

maximization), within the constraint space. More simply, the worst scenarios set of a 

solution are the scenarios that have the worst performances, which are found by 

optimizing the scenarios in the reversed constrained violation problem.  

)s(g 'x )s(g x

Finding the sets of equation (3) may be done by solving the following optimization 

problem which is defined for constraints that are given without loss of generality as: 

.0)p,d,x(g < The problem is in fact a reverse constrained space problem where 

the maximal violation is searched for. 
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where;  
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In the current paper, it is suggested to embedd an NSGA-II algorithm (Deb et al. 

2002) to search for each solution's worst violating front. This is explained in Section 

3.4 

 
3.4 Comparing solutions 
  

A solution does not violate the constraints if . In the current 

approach, non-violation of the constraints possesses a supplemental meaning: 

specifically, that the solution is worst-case reliable. The demand for worst-case 

reliability is automatically ensured if all worst cases do not violate the constraints. It 

is noted that attaining all worst scenarios for a continuous space is 

impossible/impractical, and therefore a sample of them is the best one could do. 

Clearly, as the number of samples gets higher the validity of the estimation gets 

higher. The question is how to compare the two solutions, which are both involved 

with the violation of the constraints by way of their related scenarios. It is suggested 

that the comparison should utilize the worst violating set for this comparison. As 

surveyed in the introduction, comparison between two solutions when no uncertainty 

is involved may be accomplished by comparing the solutions' nominal performances 

in the objective space. Here, such approaches are not valid because, in the current 

case, one set is compared to another, with these sets being generally unequal in terms 

of size. The question is how to compare between two solutions associated with a set 

of scenarios. Several measures for this comparison, two of which are explained next, 

have been considered. In all cases, it is suggest considering only solution's scenarios 

that violate the constraints. This means that the worst set may be associated with 

scenarios which violate the constraints while others do not. Considering reliability, 

only the violating scenarios are of any interest. Therefore, it is suggest to dilute the set 

of all worst scenarios of a solution x (see equation (3)) in order to extract the worst 

violating set of the solution,  out of .  The diluted worst scenarios set and 

the related diluted worst front,  are formalized as follows:  
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Figure 1 depicts two solutions' clusters of all performances in a bi-constraints 

space. Each solution is designated by a different symbol (squares and circles). The 

solutions' worst sets ( ) are designated by gray filling and the diluted set ( ) is 

designated by thick borders.  

x
wvF x

wvDf

 
Figure 1: Two solutions' performances (designated by circles and squares) in 
constraints' space. The worst set of each solution is designated by gray filling and 
the diluted set by a bold boundary. 
 

3.4.1 Constraint domination measure 

As a first suggested measure, let’s consider adopting and adapting the measure used 

by Avigad and Branke 2008 (initially introduced by Branke et al. 2008) for the 

comparison between two worst-case sets of a solution x and a solution x' based on 

their diluted worst cases as follows: 
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where G, is the number of constraints of the MOP in hand.  In practice, this measure 

may be computed by:  
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The , which is termed here as the constraint domination measure, gives a 

numerical value to a solution x when compared to solution x'. In fact, this value is a 

measure of the minimal distance the diluted worst set of x' should be moved in each 

direction along the constraints axis in order for the diluted set of x to become the 

worst non-dominated case (in the reversed problem). 

+ϑ



In order to elucidate the characteristics of the measure, which is aimed at allowing a 

comparison between two solutions, one should refer to the following hand calculation 

examples, which are related to Figure 2. 

 

 
Figure 2: Four example cases for comparing worst scenarios. 

 

In the figure, four different cases of comparing between solutions' worst sets, in 

constraints' space, are depicted. Each case is designated by a different symbol. In each 

case, two solutions are compared, designating one from the other by bold and blank 

worst scenarios fronts. Utilizing the measure, which is defined in equation (7), values 

of 1.5 and 0.5 correspond to the bold and blank circles, respectively; 0.0 and 1.0 to the 

bold and blank triangles, respectively; 1 and 0.5 to the bold and blank diamonds, 

respectively; 2 and 2 to the bold and blank squares, respectively.  The first three 

comparisons show the following: 

a.  The measure gives preference to dominating scenarios (see circles).  

b. The measure gives preference to concave over convex worst sets (see 

triangles).   

c. The measure gives preference to less spread scenarios' constraints violation 

(see diamonds).  

A comparison of the black and white squares shows equality of the measure values. 

Comparing between two solutions based on the constrained domination measure is 

fine, but the manner of ordering them within the set of infeasible solutions is a 

problematic issue. It calls for sorting the solutions' worst sets by non-dominance 

levels, which will further increase the complexity.  Moreover, the way of ordering 

them within a domination level is unclear (here crowding is not an issue).  



 

3.4.2 Constraint violation measure  

In contrast to the relative measure introduced in the previous section, here an 

absolute measure, is suggested. It is also based on the worst violating set  and is 

termed here as the constrained violation measure. It is computed as follows:  
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where u is a step function and 1<<ε . The smaller the measure is, the smaller the 

constraints violation is. In the numerator, the normalized distances of the solution 

diluted set performances from the feasible region are summed up. The step function 

ensures that only violations (positive values) are accounted for. The denominator 

normalizes the measure to account for different diluted set sizes. Considering the 

example of Figure 2, the following values for the constraint violation measure are 

obtained:  black circles; 0.90, white circles; 0.987, black squares; 0.53, white squares; 

0.501, black triangles; 0.869, white triangles; 0.92, black diamonds; 1.18, white 

diamonds;1.16. Viewing these values, it may be seen that generally the measure 

coincides with the constrained domination measure with the proviso that it does not 

prefer any of the diamond related solutions over the other. This is reasonable because 

the current indicator measures the distance the solution scenarios have to be moved in 

order for the solution to become feasible and not in order to dominate another 

solution. The current measure has a major advantage over the former. Being an 

absolute measure, it allows its direct utilization in ordering the solutions based on 

their violation. In the current example, the white square has the smallest violation 

whereas the black diamond is associated with the highest constraints violation. Thus, 

the constraints violation measure may serve the following purposes: 

 

 1. To assess the reliability of a solution, that is, if the measure equals zero, then the 

solution is worst-case reliable. 



2. To compare two solutions that are violating the constraints such that if 

, then, x violates to a smaller degree the constraints than x'.  )S(I)S(I 'x
WV

x
WV ++ ϕϕ <

3. To sort the infeasible solutions according to their constraints violation i.e., 

.                            ),I(sortIN <= +ϕ

 

Based on the advantages of the constraints violation measure, it is suggested here, to 

adopt it for the evolutionary search.  

Considering the general case for comparing between two solutions i and j: 

A solution i is said to constraint-dominate a solution j if any of the following 

conditions is true: 

1. Solutions i and j are feasible and solution i dominates solution j, i.e. 
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2. Solution i is feasible and solution j is not i.e. 
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i
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3. Solutions i and j are both infeasible, but solution i has lower value of the 

constraint violation measure ( ), +ϕI
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The suggested measure and comparison procedure allow the direct use of the NSGA-

II algorithm. The dominance relations are utilized both for comparing  solutions in the 

tournament selections as well as for constructing the elite population. The 

evolutionary algorithm is provided and explained in the following. 

 

3.5 The Evolutionary Algorithm 

In the current paper, it is suggest using the proposed methodology within an NSGA-II 

framework. This has been motivated by the popularity of the algorithm, which is 

highlighted in Deb (2008). In fact, the procedure contains two different versions of 

NSGA-II. One is the main algorithm in which solutions are evolved while the other is 

an embedded NSGA-II in which scenarios are evolved for each solution in order to 



find the solution's worst set. In the suggested algorithm there is a clear aspiration for 

both optimality and worst-case reliability. The algorithm is introduced and explained 

in the following sub-section.  

 

The MOEA 

a. Initialize a population tP of size n= |Pt| which decodes the nominal scenario of a 

solution x ( x
Ns ). Also, set Qt = tP . 

b. Combine parent and offspring populations and create ttt QPR U= . 

c For each individual of : tR

c.1 Initialize a population of size n'=|Gt| which decodes all uncertain parameters 

(design and environmental) within their range of search.  

tG

c.2 Run NSGA-II on the reversed constrained space problem, see equation (4)) to 

find for each x its worst scenarios set, (see equation (3)). x
wS

c.3 Find for each solution x its diluted worst scenarios set ( equation (5)). x
wDS

c.4 Find for each solution x its constraint violation measure (equation (8)). 

d. Sort all feasible solutions (for which ) to levels of non dominance (see 

Deb et al., 2002) utilizing the nominal solution performances. 

0)S(I x
WV =+ϕ

e. Sort all non-feasible solutions to a list IN, ),I(sortIN <= +ϕ . 

f. While not all individuals of are sorted to a list: tR

f.1 Fill up a list , containing all feasible solutions (solutions for which 

) according to the procedure of NSGA-II (taking into account level of 

non dominance, boundary solutions and crowding distances). 

LI

0)S(I x
WV =+ϕ

f.2 Continue to fill up the list  this time, with infeasible solutions from the list IN   LI

g. Initialize a new parent population ∅=+1tP of size n and include the first n solutions 

of  in the new parent   population: ,  to form an elite population.  LI 1tP +



h. Create a population from by a tournament selection, where the 

comparison between the competing individuals is based on the four conditions, which 

were presented in sub-section 3.3. 

*
1tQ + 1tP +

i. Perform Crossover on  to obtain . *
1tQ +

**
1tQ +

j. Perform mutation to obtain . 1tQ +

k. If the last generation has not been arrived at, go-to 'b'. 

l. Present to the designers the first level of non dominance for all solutions 

with . 0I =+ϕ

The difference between the well-known NSGA-II and the hereby introduced 

algorithm is in the embedding of Step 'c' as well as the sorting of infeasible solutions 

in Step 'e' 2.  In section 4, the algorithm is applied to both academic and engineering 

problems.  

 

3.6 Computational complexity  

 The embedded MOEA is computationally expensive. The need to perform a complete 

evolutionary run for each individual of a population is a major drawback of the 

approach. Without considering the complexity of the non-embedded algorithm, the 

embedded algorithm’s complexity is considerably higher than that of a common 

MOEA. The complexity of NSGA-II is , in which J is the number of 

generations, K is the number of objectives, and n is the population size. The n2 term is 

due to the fitness assignment process. Here, for each solution, the complexity is: 

where E is the number of generations of the embedded algorithm. 

Therefore, the overall complexity becomes . Although 

computationally tractable, the complexity increases rapidly as the number of 

realizations (n') and the number of generations of the embedded algorithm are 

increased. It is further noted that, as the number of realizations used within the non-

embedded part are increased, the complexity associated with the set-based 

comparisons is correspondingly increased. In order to reduce complexity, the 

following recommendations should be considered:  Modification 1 - Run a basic 

)JKn(O 2

))'n(EK(O 2

))'n(JnEKJKn(O 22 +



constrained MOEA using the nominal scenarios and then discard solutions with 

positive values of their constrained violation measure; modification 2 - Run a basic 

constrained MOEA using the nominal scenarios until all solutions are feasible and 

then activate the suggested procedure.  

4 Examples 

4.1 Academic Examples 
 
In this section, the introduced approach, is tested through utilizing adapted versions 

of well known constrained MOP test cases, namely the SRN (Deb et al., 2000) and 

the CEP1, CEP2 (Deb et al., 2001). The adaptation includes the addition of 

uncertainty to the design variables. The SRN test-case in its adapted version, 

distinguished as SRN*, is as 

follows:  
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The difference between the original SRN and the hereby adapted one is the 

addition of the tolerance  associated with the design parameters x1 and x2. In the 

current example, =0.2. The population is of size 20 and with 30 embedded 

individuals. The initial population (Rt) depicted by its nominal parameters values is 

shown in the left panel of Figure 3.  

Δ

Δ

 



 
Figure 3: An initial population of solutions is depicted by its related nominal design 
values (left panel), its nominal solutions' performances (upper right panel) and its 
solutions' clusters of performances in constraint space (lower right panel). The 
feasible regions in design and constraints spaces are designated by gray areas. 

 

Also shown in the figure are the constraints. The feasible region is highlighted in 

gray. The nominal performances of these solutions are shown in the upper right panel 

of Figure 3. The lower panel on the right hand side of Figure 3 depicts the solutions' 

scenarios performances in the constraints' space. Running the embedded algorithm for 

such an initial population, results in a representative front for each of the solutions. 

These fronts (just for the elite 20 solutions) are depicted in Figure 4.  

 

 
Figure 4: The initial elite population worst Pareto sets in constraints space 
 

It is observed that some fronts are associated with a set of performances (e.g., see the 

enlarged circled set) while others are associated with single representing scenarios 

(see e.g., the points in the vicinity of [40.0, 0.0]). When executing the suggested 

algorithm (see Section 3.5), the number of worst case infeasible solutions decays 



rapidly as depicted in the left panel of Figure 5 by plotting the average constraint 

violation in a population versus the generation number.  

 

 
Figure 5: The decay of the number of worst-case unfeasible solutions (left panel) and 
the final elite population worst Pareto sets in constraints space 

 
When the run is over, all solutions are optimal and reliable. Their constraint violation 

measure is non positive, as depicted in the right panel of Figure 5. It is noted that the 

reliable optimal set constitutes a front also in constraints space. This might be an 

interesting point that might be considered by multi-criteria decision makers.  

Such a front does not always develop. For example, consider the following example, 

which is an adapted CEP1 problem (see Deb et al., 2001). With the addition of the 

uncertainties, the adapted constrained MOP, distinguished as CEP1*, is as follows: 
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The left panel of Figure 6 depicts 100 solutions' representing sets in the constraints 

space.  



 
Figure 6: Initial population initial (left panel) and final violations (right panel) 
in constraints space.  

 

It is shown that some solutions possess scenarios that violate both constraints, others 

just one, while some do not violate any of the constraints. The unique arrangement of 

the scenarios performances in the constraints space indicates that, in most cases, the 

worst is not a set but rather a single scenario performance vector. Running the 

suggested algorithm (of Section 3.4) for 100 generations results in the solutions worst 

sets performances in constraints space, which are depicted in the right panel of Figure 

6. It is observed that at the end of the run, all of the evolved solutions are worst-case 

reliable. Changing the multipliers of the exponent in the constraints expressions shifts 

the apparent line to the left/right, whereas changing the multipliers in the exponents 

changes the angle of this apparent line.   

In order to reduce the computational time associated with the introduced algorithm, 

two different modifications have been suggested (see Section 3.5). In order to assess 

the impact of these modifications with respect to the original algorithm, they are 

statistically compared based on the number of reliable solutions, within the elite 

population, after the final generation has been evolved. This has been repeated for 

three different test problems including SRN*, CEP1*, and CEP2*. This has been 

tested for =0.2. The statistics are based on 40 individuals evolved for 100 

generations and run 50 times for each approach and test problem. The results are 

summarized in Figure 7 and discussed thereafter.  

Δ

 



 
Figure 7: Comparing different search approaches. 

 
The following might be inferred from the results. The original algorithm performs the 

best, although modification 1 provides competitive results. It is noted that, if fewer 

generations are used, modification 1 is not as competitive since it finds it harder to 

recover from the sudden demand for worst-case reliability. Modification 2 is clearly 

not an option, especially in cases in which the constraints are in the vicinity of the 

front, as depicted in the CEP1, and more distinctly, in CEP2. These conclusions 

receive further support when the uncertainty is increased. 

 
4.2 Real life application 
In order to demonstrate the applicability of the approach to real life engineering 

problems, the well-known cantilever problem, which has been used in Deb et al., 

2001, is modified and utilized.  The original problem, depicted in the left panel of 

Figure 8, involves the design of a 14 inches long beam that needs to be welded on 

another beam and must carry a load of 6000 lb at its end. The objectives of the design 

are to minimize the cost of fabrication and the end deflection. The design parameters 

are h, b, l, t, which are shown in the left panel of Figure 8 and are searched within the 

design space limits as follows: 5b,h25.0 ≤≤  and 10t,l1.0 ≤≤ . The details of the 

model might be found in the Appendix. 

 

 



Figure 8: The welded beam design problem (left panel) and the related Pareto 
front, which has been evolved by setting the uncertainty to zero (right panel). 

 
In Avigad and Branke, 2008, the problem has been utilized for the worst-case 

optimization by inserting uncertainties to the parameters b and t such that 

and . In the current paper, the uncertainties of the values of the 

parameters t and b, which are associated with the values of the parameters h and L, 

has been added. The adapted problem is therefore altered such that, for each design 

variable, the scenarios are associated with: 
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lll Δ±=Δ±=Δ±=Δ±= alminnoalminnoalminnoalminno ,hhh,bbb,ttt , where,  

,  .  It is noted that in the current problem the 

uncertainty is involved only in the design parameters. Nevertheless this should not 

obstruct the validity of the example as the approach is not influenced whatsoever, 

from the source of the uncertainty, and the difference between the uncertainties lies 

only in the problem's formulation. A typical initial population solution scenarios' 

performance in the constraints space is depicted in Figure 9.  
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Figure 9: A typical initial solution clusters of performances in constraints space. 

 

Each panel in the figure depicts the performances in a different bi-constraint space 

(out of 6 such bi-constraints combinations).  It can be observed that some of the 

constraints are violated (e.g., g3), while others are not (e.g., g1). According to the 

suggested procedure, each solution is associated with a worst front, which has to be 

evolved (by the embedded algorithm).         



For the solution of Figure 9, the projections of this front on the g2-g4 and g1-g3 are 

depicted in Figure 10.  

 

 
Figure 10: A solution worst violating set projection in some of the constraints sub-
spaces. 

 

The fact that in both cases a worst Pareto front is formed indicates the contradicting 

nature of these constraints. Nevertheless, in case of g2 versus g3, the Pareto set 

includes a single worst-case scenario, implying the non-contradictory nature of this 

couple of constraints.    

When the suggested procedure is applied to the problem, the result is a Pareto set 

with all its scenarios' performances within the feasible region. An example of a Pareto 

solution set of scenarios is depicted in Figure 11, showing that all are feasible 

(g(x)<0).  In the current example, the optimal reliable front is collocated with the 

original front (with no uncertainty), nevertheless it is shorter. The front is limited to 

the front between the two arose in Figure 8.  

 

 



 Figure 11: A typical Pareto set solution clusters of performances in constraints 
space. 
 

Although the approach no doubt works well for the current problem, it highlights 

the main weakness of the suggested approach, namely, its computational complexity. 

In the current case, just two objectives are considered, but with four constraints. 

Naturally, if there are more constraints and more problem objectives, the complexity 

might be too high. Moreover, if there are many constraints, the problem of producing 

a good Pareto approximation is analogous to treating many objectives.    

 
 

4. Summary and conclusions  

In this paper, the notion of worst-case reliability, has been introduced. Solving such a 

reliability problem is aimed at generating solutions for which no scenario violating 

any of the constraints exists. To ensure such reliability, assumptions concerning the 

statistical distribution might not suffice. This means that here the requirement of 

obtaining knowledge about the boundaries of the uncertainties is vital. In order to 

ensure such a high reliability, the worst possible cases should be checked for their 

constraints violation.  If the problem is associated with more than one constraint, the 

worst might be a set of scenarios' performances in constraints space. Finding the 

worst might be achieved by searching for it by way of optimization within the 

constraints' space. Such a search has been formulated and suggested in the current 

paper. It involves an evolutionary search for the solutions' worst scenarios 

performances in the constraints space. These scenarios are the solution worst set with 

their performances constituting the solution’s worst front. These solutions' fronts are 

utilized in order to compute a measure to the extent of the constraints violation by 

their worst cases. This measure is then introduced into a constrained multi-objective 

evolutionary search in order to evolve a set of optimal reliable solutions. Several test 

cases were utilized in order to demonstrate the suggested approach and its 

applicability to real life applications.  

Considering the study reported hereby, the following may be stated:  
 
• A multi-objective worst-case reliability problem has been formulated. 



•  A worst-case multi-objective multi-constraints evolutionary algorithm has 

been suggested and tested. 

• In cases where the boundaries of the uncertainties are known or might be 

assessed, the suggested worst-case algorithm may ensure finding highly 

reliable optimal solutions.       

 
Although the approach has been demonstrated to work well on the investigated test 

cases, a major problem of the approach has also been highlighted. It concerns the 

computational complexity, which seems to raise doubts about the applicability of the 

approach. When comparing the achievements of the current paper with respect to the 

computational issue, the following is stated: 

• The proposed approach is the only one suggested till date that may guarantee 

worst-case reliability. At this stage it is important to emphasize again that 

utilizing statistical data and related measures is not to be compared with the 

hereby taken approach for the following reasons: a. If the distribution is not 

normal, then sampling this space may give samples with no relation to the 

normal distribution measures. It is possible to consider a transformation from 

one kind of distribution to the other, alas; it is not always possible to achieve 

a transformation. b. Till date all approaches did not assume that the 

boundaries of uncertainty are given or might be assessed. This means the 

direct evaluations may give an estimation of the boundary performances.  

• If the computational time involved with the assessment of the constraints 

functions is within the time limit given for the reliability design, the 

approach should perform well.  In that respect, it is pointed out that 

computational speed will probably increase rapidly in the future. 

• When new suggested search approaches are investigated in the future, 

probably considering statistical distributions, the current approach may 

serve as a benchmark for comparison.  

• Less expensive computational approaches should be sought. Saying that, it is 

argued again, that in cases, reliability comes to the expense of 

computational time and moreover what looks like elaborated 



computations today, may probably appear like uncomplicated in a not 

too far future.   

 
Future work should address both computational issues as well as MCDM related 

aspects. As related to the computational issues, the effect of the number of 

generations and the size of the embedded algorithm on the results should be studied. 

Furthermore, more elaborated cases (e.g., more parameters, more objectives/ 

constraints) should be examined. Some other approaches of worst-case optimization 

within evolutionary approach might be hybridized to the procedure in order to reduce 

its complexity (e.g., the coevolutionary approach suggested by Branke and 

Rosenbusch, 2008). It might be also interesting to search just for the knees of the 

reversed optimization problem or to hybridize statistical data. Concerning MCDM , 

an approach to support designers in reaching a decision based on the added 

knowledge from constraints space might be valuable. In that respect, maybe a worst-

case optimization together with a worst-case constraint violation algorithm should be 

developed, followed by a decision making procedure to prefer worst-case optimal, 

worst-case reliable solutions. The decision might be posed as an auxiliary MOP where 

optimality and relative reliability may be contradicting.   
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The first constraint ensures the shear stress developed at the support is smaller than 

the allowable shear strength (13,600 psi). The second constraint ensures that the 

normal stress developed at the support is smaller than the allowable yield strength of 

the material (30,000 psi). The third constraint ensures that the thickness of the beam is 

not smaller than the weld thickness. The fourth constraint makes sure that the 

allowable buckling load (along direction) of the beam is more than the applied load F. 
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